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canonical partition function

Z(N,V,T ) =
∫

Γ
dxe−βU(x) , (2)

with Γ denoting the configuration space of the system. Already

for mesoscopic systems occurring in a simulation, the Boltzmann

factor e−βU(x) is sharply peaked at the minima of the potential en-

ergy. The efficient determination of the thermodynamic average

of an observable A(x) given by

〈A〉=
∫

Γ
dxA(x)peq(x) (3)

therefore requires any discretization of this high-dimensional in-

tegral to include the points where the Boltzmann factor con-

tributes the most. This is achieved, when one generates the sam-

pling points of the integral discretization through a Markov chain

MC method

p(x,n+1) = p(x,n)+
∫

Γ
dx′W (x|x′)p(x′,n)−

∫

Γ
dx′W (x′|x)p(x,n)

(4)

with transition densities W (x|x′) for going from state x′ at discrete

time n to x at time n+1. The general mathematical theory of such

Markov chains yields criteria for their convergence to a unique

equilibrium distribution; in the physics literature the most com-

mon practice is to use the detailed balance condition

W (x|x′)
W (x′|x) =

peq(x)

peq(x′)
= e−β [U(x)−U(x′)] . (5)

The fact that the unknown partition function drops out of this

equation is the basis for the success of the canonical MC method,

but at the same time it delineates its limitations. The method

as such is not able to determine entropies or free energies from

the simulation, as these would need knowledge of the density

of states, g(N,V,E), of the model, which is the micro-canonical

partition function from which the canonical one is obtained by

Laplace transform,

Z(N,V,T ) =
∫

dE g(N,V,E)e−βE . (6)

Within the scope of MC this shortcoming is most successfully ad-

dressed by two flat-histogram MC schemes, the multi-canonical

MC (MuMC) and the Wang-Landau MC (WLMC) scheme and

its mathematical pendant, stochastic approximation MC (SAMC).

Both schemes aim at sampling the macroscopic variable energy

with a uniform probability distribution and achieve this by re-

lated, but somewhat different means. They are developments

out of the classic idea of umbrella sampling MC8 and can be

formulated for the uniform sampling of other macroscopic vari-

ables as well. In the literature, there exist reviews on the MuMC

method6,9–11 and the Wang-Landau method12–15, so we will fo-

cus here especially on their application to the thermodynamics

and structure of polymer systems. Also, for the WLMC method

some mathematical background relating it to the SAMC approach

needs to be reviewed.

In the following sections we will first present the mathematical

background on MuMC, WLMC and SAMC, and then turn to se-

lected results obtained with these methods for the thermodynam-

ics and structure of polymer systems. A final section will present

our conclusions and an outlook.

2 Background on the simulation methods

This section will present the idea and the background on the

MuMC and the WLMC and SAMC algorithms and discuss some

particulars of their application to polymer systems.

2.1 Multi-canonical Monte Carlo

The idea of multi-canonical MC (MuMC or “muca”) methods

dates back to 1991/92 when Berg and Neuhaus16,17 proposed

a novel simulation approach for overcoming the exponential

(sometimes called “super-critical”) slowing down of MC simula-

tions at first-order phase transitions in the canonical ensemble.

For finite systems, the phase coexistence at (temperature driven)

first-order phase transitions is reflected by a double peak of the

energy distribution Pcan,β (E), with the minimum in between gov-

erned by the interface tension σod between the coexisting ordered

and disordered phases: Pmin/Pmax ∝ exp(−2σodLd−1), where L

is the linear size of a d-dimensional cubic system and periodic

boundary conditions are assumed. Due to this exponential sup-

pression with increasing system size, it is very unlikely to transit

in a canonical simulation from one phase to the other and hence it

is very time consuming to generate accurate equilibrium results.

By “filling” this rare-event region with an artificial weight factor

W (E) (to be determined below), their method may be viewed as

a specific realization of non-Boltzmann sampling which has been

known since long as a legitimate alternative to the more stan-

dard MC approaches.18 In this interpretation, the multi-canonical

method appears as a non-standard reweighting approach,19 a

view which in most cases simplifies the actual implementation

and paves the way to multidimensional generalizations. Alterna-

tively, their method may be interpreted as a suitable combination

of canonical statistics over an extended temperature or energy

range in a single simulation run, instead of patching many in-

dependent canonical simulations at different temperatures as in

(static) reweighting procedures such as the weighted histogram

analysis method (WHAM).20,21 The latter view is stressed in the

original papers by Berg and Neuhaus16,17 and explains the name

“multi-canonical”.

It should be noted that the practical significance of non-

Boltzmann sampling has, in fact, already been demonstrated

much earlier by Torrie and Valleau8 with the “umbrella sam-

pling” method. Most of these early applications aimed at reliable
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computations of free-energy differences which can be obtained

by canonical Boltzmann sampling only indirectly via so-called

thermodynamic integration. Later the attention slowly shifted to

problems with rare-event sampling and quasi-ergodicity,22 but it

took many years before the development of the multi-canonical

scheme turned non-Boltzmann sampling into a widely appreci-

ated practical tool in computer simulation studies. Once the feasi-

bility of such generalized ensemble approach was realized, it was

for instance readily introduced into protein folding studies11,23

and many related methods were developed.

The multi-canonical method may be viewed as a two-step pro-

cess, where one first iteratively improves guesses of an a priori

unknown weight function W (E) for (e.g., polymer) configurations

x with system energy E(x) which replaces the usual Boltzmann

weight e−βE in the canonical partition function (2), (6):

Z(T ) = ∑
x

e−βE(x) = ∑
E

g(E)e−βE

→ ZMuMC = ∑
x

W (E (x)) = ∑
E

g(E)W (E) .

(7)

Here and in the following we omit the arguments N,V of the

canonical partition function and the density of states. Corre-

spondingly, the acceptance criterion of traditional Metropolis MC

simulations is modified to

pacc(x → x′) = min(1,e−β (E ′−E))

→ min(1,
W (E ′)
W (E)

) ,

(8)

where E ≡ Eold is the current or “old” energy of the configuration

(or micro-state) x and E ′ ≡ Enew the “new” energy of a proposed

updated configuration x′. As in Metropolis simulations, the up-

date proposals for going from a configuration x to a configuration

x′ may be local (such as end rotation, bend, or crankshaft moves

for polymers) or non-local (such as spherical rotation or pivot

moves).

After having determined an accurate multi-canonical weight

W (E), this is kept fixed and following some thermalization sweeps

a long production run is performed, where any statistical quantity

O can be “measured” multi-canonically,

〈O〉MuMC = ∑
x

O(x)W (E(x))/ZMuMC . (9)

The usually desired canonical statistics can be obtained by

reweighting the multi-canonical to the canonical distribution,

e.g., canonical expectation values (3) are computed as

〈O〉(β ) = 〈Oe−βEW (E)−1〉MuMC/〈e−βEW (E)−1〉MuMC . (10)

Note that this representation is exact for any choice of W (E).

As usual, in a simulation run with N measurements, the expec-

tation values are replaced by mean values (their “estimators”),

e.g., 〈O〉(β ) = 〈Oe−βEW (E)−1〉MuMC/〈e−βEW (E)−1〉MuMC ≈
∑

N
i=1 Oie

−βEiW (Ei)
−1/∑

N
i=1 e−βEiW (Ei)

−1. Of course, the ratio of

expectation values on the right-hand side of (10) is in principle

prone to bias effects, but here strong cross-correlations act

positively and keep this potential problem small.

The key of the multi-canonical method lies in the first step

where the weight W (E) is usually adjusted in such a way that

the transition probabilities between configurations with different

energies become roughly constant, giving an approximately flat

energy histogram

H(E) ∝ PMuMC(E) = g(E)W (E)≈ const. (11)

If this can be achieved, the simulation thus performs approxi-

mately a random walk through energy space. The second step

is the actual production run, which works with fixed weights as

produced iteratively in step one. By this one assures that de-

tailed balance is implemented in the same way as in the standard

Metropolis Markov chain procedure.

The formal solution of (11) is W (E) = g−1(E). However,

since the density of states g(E) is usually not known before-

hand one has to proceed by a weight iteration which is initialized

by setting W (E) = W (0)(E) ≡ 1. One thus performs a standard

canonical simulation at β = 0 which yields H(0)(E) ∝ Pcan,β=0(E).

This current multi-canonical histogram is used to determine the

next guess for the weights, the simplest update is to calculate

W (1)(E) =W (0)(E)/H(0)(E). The following run is performed with

W (1)(E) inserted in (7) and (8), which gives the energy his-

togram H(1)(E) and an improved estimate of the weight function,

W (2)(E) =W (1)(E)/H(1)(E). This iterative procedure can be con-

tinued,

W (n+1)(E) =W (n)(E)/H(n)(E) , (12)

until the multi-canonical histogram H(n)(E) is judged to be “flat”

enough. From (12) it is obvious that once H(n)(E) ≈ const.,

W (n+1)(E) ∝ W (n)(E) ∝ g−1(E) is at a fixed point of the iteration

and will not change anymore.

An example for an AB heteropolymer chain24 is shown in

Fig. 1. Here the density of states g(E) varies over about 50 orders

of magnitude. This sounds already like a lot, but once the multi-

canonical iteration is set up, it can be driven even much further:

Fig. 3 of Ref.25 and Fig. 2 of Ref.26 show density of states that are

covering more than 3000 orders of magnitude (for a 309-mer)!

An important parameter of this procedure is the simulation

length N(n) in the nth iteration step. If this is too small, the re-

sulting multi-canonical histogram is very noisy, which enters di-

rectly in the generalized Boltzmann probabilities of the next iter-

ation step. On the other hand, in order to optimize the total time

needed to construct the final multi-canonical weight, N(n) should

also not chosen to be too large. Since here also autocorrelation
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Fig. 1 The almost horizontal line fluctuating between 90−120 counts

per energy bin shows the flat multi-canonical energy histogram hmuca(E)

and the smooth curve spanning about 50 orders of magnitude depicts

the resulting density of states g(E). The data are obtained from a MuMC

simulation of an AB heteropolymer with 20 monomers forming the

sequence BA6BA4BA2BA2B2 (taken from Ref. 24).

times (in the intermediate multi-canonical ensembles during the

iteration) play an important role, it is not straightforward to give

an a priori estimate of the optimal values of N(n) (which, in fact,

may vary with the iteration level n).

Another option to tune the performance of the weight itera-

tion is choosing a suitable energy range, in which the “flattening”

of the multi-canonical distribution is started, for the problem at

hand. For instance, for a temperature driven first-order phase

transition it may be useful to place this range in the regime be-

tween the two peaks of Pcan,β (E) associated with the disordered

and ordered phases. This can be simply achieved by setting ini-

tially W (0)(E) ≡ e−β0E (instead of ≡ 1) for a suitably chosen β0.

This corresponds to a canonical simulation at β = β0 in the 0th

iteration step, resulting in H(0)(E) ∝ Pcan,β0
(E) which covers the

desired energy range around 〈E〉(β0). The remaining iteration

then proceeds as before.

An efficient construction of the weight W (E) is the most im-

portant technical part of multi-canonical simulations. As outlined

above, the caveat of the simple direct iteration scheme is its sen-

sitivity to the run times N(n). A more sophisticated recursion, in

which the new weight factor is computed from all available data

accumulated so far, reduces this dependency significantly and as a

consequence is more robust. Noting that in the Metropolis accep-

tance criterion (8) only weight ratios enter, it is useful to define

R(E) =W (E+∆E)/W (E) with some ∆E. The accumulative weight

iteration then works as follows:

1. Perform a simulation with R(n)(E) to obtain the histogram

H(n)(E), taking N(n) energy measurements.

2. Compute the statistical weight of the nth run:

p(E) = H(n)(E)H(n)(E +∆E)/[H(n)(E)+H(n)(E +∆E)] .

(13)

3. Accumulate statistics:

p(n+1)(E) = p(n)(E)+ p(E) , (14)

κ(E) = p(E)/p(n+1)(E) . (15)

4. Update weight ratios:

R(n+1)(E) = R(n)(E)
[

H(n)(E)/H(n)(E +∆E)
]κ(E)

. (16)

Goto step 1.

The recursion is initialized with p(0)(E) = 0. Due to the accumu-

lated statistics, this procedure is rather insensitive to the length

N(n) of the nth run in step 1. The idea behind (13) is that the

a priori error estimate for a histogram H(E) (normalized to total

counts) is given by
√

H(E). The rest is basically just error prop-

agation. Of course, to arrive at handy and easy-to-use formulas

some approximations are necessary, such as neglecting autocorre-

lation times, cross-correlations in histograms etc., but apart from

that the accumulative recursion has a firm theoretical basis.

Finally it should be stressed that also when employing flat-

histogram ideas the choice of update proposals can play a crucial

role for the success of polymer simulations.26 Moreover, it turned

out to be very useful to allow the range of the proposed update

moves to become energy dependent (at high energies correspond-

ing to high temperatures, large moves will be accepted, whereas

at low energies corresponding to low temperatures, only small

moves have a reasonable acceptance probability). Of course, a

priori this energy dependence causes violations of detailed bal-

ance. This can be regained, however, by introducing suitable bias

factors in a Metropolis-Hastings scheme.26

At times where the computer performance increases mainly

in terms of parallel processing on multi-core architectures, it is

crucial to parallelize the applied algorithm. With this in mind,

Zierenberg et al.27 recently developed a parallel implementation

of the multi-canonical method. The parallelization relies on in-

dependent equilibrium simulations that only communicate when

the multi-canonical weight function is updated. That way, the

Markov chains efficiently sample the temporary distributions al-

lowing for good estimations of consecutive weight functions. For

similar approaches see Refs.28,29.

Overall, the parallelization was shown to scale quite well in

applications to generic spin models and coarse-grained poly-

mers.27,30,31 In all cases, a close to linear scaling was observed

with slope one for up to 128 cores used. This means that dou-

bling the number of involved processors would reduce the wall-

clock time necessary by a factor of two. It is a straightforward

and simple implementation especially if wrapped around an ex-

isting multi-canonical simulation code. Therefore the paralleliza-

tion can be easily applied also to other flat-histogram simulations,
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e.g., multimagnetic simulations where the magnetization32,33 or

any order-parameter34,35 distribution is flattened. It should be

emphasized that no greater adjustment to the usual implementa-

tion is necessary and that additional modifications may be carried

along. This allows a straightforward application of this paral-

lelization to a broad class of complex systems such as (bio) poly-

mers and (spin) glasses.

2.2 Wang-Landau Monte Carlo and SAMC

In 2001 F. Wang and D. P. Landau published two ground breaking

papers36,37 presenting a new simulation method aimed at deter-

mining the density of states of a model system and applied it to

the 2d Ising model and other spin models, and in 2002 the first

application to the phase behavior of a liquid38 was published.

The basic idea is the following. If one assumes that a given MC

procedure moves through the configuration space of a system in

an unbiased fashion, then the probability for the next state, x′,
in a Markov chain to have an energy, E ′, is proportional to the

number of states g(E ′)∆E in the interval [E ′,E ′+∆E]. Equally, the

probability to start this move from a specific micro-state, x, be-

longing to the energy, E, is given by 1/(g(E)∆E). When one now

accepts this move with an acceptance probability proportional to

the ratio of the densities of states g(E)/g(E ′), the MC procedure

should lead to a random walk over the allowed energy values of

the model and thus to a uniform sampling of all energy states.

The problem here is, as in the MuMC approach, that g(E) is just

the unknown quantity the method aims to determine. This is re-

alized through the following basic schematic iteration procedure:

1. Start with the unbiased guess g(E) = 1 ∀E, a visitation his-

togram H(E) = 0 ∀E and a modification factor f = f0.

2. Perform a MC move going from x to x′ (i.e., from E to E ′)
and accept it with the Metropolis-like acceptance criterion

min(1,g(E)/g(E ′)). If the move is accepted, update g(E ′) =
f g(E ′) and H(E ′) = H(E ′)+1, else update g(E) = f g(E) and

H(E) = H(E)+1.

3. Check whether the visitation histogram is flat, i.e.,

(1−c)H(E)<H(E)< (1+c)H(E), where H(E) is the average

visitation. If this is fulfilled set H(E) = 0 ∀E and f =
√

f and

go to 2. If it is not fulfilled go to 2. directly.

4. Stop when f < 1+ ε.

Typical choices are f0 = e, c= 0.2 and ε = 10−9. Wang and Landau

showed that this scheme is empirically able to reproduce, e.g.,

the analytically known density of states of the 2d Ising model to

a very high accuracy, but why? Clearly, the schematic description

of the algorithm already shows that the method is not in the class

of Markov chain MC methods, as the acceptance criterion at any

time depends on the history of the simulation. Zhou and Bhatt39

argued that the WL algorithm converges, if one can assume the

sub-ordinate process generated on the macroscopic variable (i.e.,

the energy in the above discussion) to be a Markov process, but

just assumed that this would be the case if the updates of the

density of states are spaced in time with an interval larger than

the autocorrelation time of the underlying MC process. They also

proved that the final error of the above scheme scales as
√

ln f
−1

with a final modification factor f , which was verified in simu-

lations.40,41 To overcome this limitation, a modification of the

original method has been suggested,42,43 where the modification

factor is changed asymptotically proportional to 1/t (t being the

simulation time). In this method the final error is not bounded

from below, however, it has been pointed out,44 that the practi-

cal performance of this version of WLMC for polymer simulations

depends on the physical model it is applied to.

In parallel to much of this development, within the mathe-

matical literature on stochastic optimization problems Stochastic

Approximation Monte Carlo (SAMC) has been formulated.45–47

Using the mathematical background of stochastic approximation

methods, Liang et al.46 proved the convergence of SAMC and

showed that WLMC could be seen as a version of SAMC. The start-

ing point of SAMC is the same as for WLMC. Assume a configura-

tion space, Γ, and a microscopic probability density, ψ(x), on this

space. Assume an energy interval [Emin,Emax] which can be larger

than the admissible energy range of the model system, specifically

one can choose Emin < Egs, where Egs is the ground state of the

model. We further assume that we have a set of M discrete energy

states, either because they are intrinsic to the model or because

we have performed a numerically necessary binning of adjacent

energies when the model has a continuous variation of admissible

energies. This set of energies leads to a unique partitioning of the

microscopic configuration space Γ,

g(Ei) =
∫

Ei≤U(x)<Ei+∆E
dxψ(x) . (17)

Let g̃(Ei, t) denote the approximation of g(Ei) at time t in the sim-

ulation and define Si(t) = ln g̃(Ei, t). Perform a Markov Chain MC

simulation with the stationary distribution

p(x) ∝
M

∑
i=1

ψ(x)

g̃(Ei, t)
χi(x) , (18)

where χi(x) = 1 if Ei ≤ U(x) < Ei +∆E and zero elsewhere. If a

new state x′ with energy E j is generated from a state x with en-

ergy Ei with a conditional probability q(x′|x) then the Metropolis

acceptance criterion of this Markov chain is given as

min

(

1,
g̃(Ei, t)

g̃(E j, t)

ψ(x′)
ψ(x)

q(x′|x)
q(x|x′)

)

. (19)

Finally, the update of the guess for the density of states is per-
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formed on its logarithm:

S(t +1) = S(t)+ γt(e(t)−p∗) . (20)

The modification factor is typically chosen as γt = γ0t0/max(t0, t),

i.e., it has an asymptotic 1/t dependence. S, e, p∗ are M-

dimensional vectors. S is the vector of the {Si(t)}i=1,...,M , the vec-

tor e = (0,0, . . . ,1,0, . . . ,0) has a one in the position of the energy

value after the move, and the vector p∗ is a biasing probability

which will be the sampling frequency of the energy states when

the process is converged, i.e., one has

Emax

∑
E=Emin

p∗(E) = 1 . (21)

The following two necessary conditions exist for this method to

converge45,46:

∞

∑
t=1

γt = ∞ , (22)

∞

∑
t=1

γν
t < ∞ for someν ∈ (1,2) . (23)

The first of these conditions is violated by the original update

version36,37 of WLMC which explains its lack of convergence, but

it is fulfilled in the modified 1/t update of Refs.42,43. The SAMC

update scheme converges in the following form:

ln[g̃(E)] → ln[g(E)]+C− ln[p∗(E)+Φ] if E ∈ {E}adm , (24)

ln[g̃(E)] → 0 if E /∈ {E}adm , (25)

where {E}adm is the set of admissible energy values of the model

and C is an undetermined constant. If we let M0 be the num-

ber of energy states in the chosen energy interval which are not

admissible energy states of the model, then

Φ =
1

M−M0
∑

E /∈{E}adm

p∗(E) . (26)

The sampling frequency we introduced, p∗(E), defines the visita-

tion probability of the different energy states when the procedure

converges, i.e., for a converged simulation and one has

H(E)

∑E H(E)
→ p∗(E) E ∈ {E}adm . (27)

The choice of p∗(E) is arbitrary, however, different choices may

prove more or less efficient in sampling rare states in configura-

tion space.

To make contact with the WLMC method we have to consider

a flat sampling of configuration space, i.e., ψ(x) = const., without

biasing the moves, i.e., q(x′|x) = q(x|x′) and a flat target sampling

of the energy interval, p∗(E) = 1/M. Then (19) gives the accep-

tance rate of the WLMC scheme, and we have from (24)

ln[g̃(Ei, t)]→ ln[g(Ei)]+C′ (28)

where we have subsumed all constants on the right side into one

constant C′. Since ln[g(Ei)] can only be determined up to an un-

known constant anyhow, this is the approximation idea of the

WLMC method. A discussion of the convergence of WLMC there-

fore should not be performed within the context of Markov chain

Monte Carlo methods and detailed balance conditions, but as a

special case of SAMC.

There are, however, several algorithmic advantages in using the

SAMC scheme:

• The flatness criterion in the WLMC scheme only works if the

energy range or energy values of a model system are deter-

mined beforehand, whereas in SAMC one can work with an

arbitrary range encompassing the physical one.

• Even then, the WLMC iteration sometimes does not stop, due

to the stochastic nature of the time when the flatness crite-

rion is reached. SAMC in contrast is stopped after a prede-

termined time, when γt drops below some chosen threshold.

• SAMC allows for a selective bias towards a chosen energy

range by selecting the sampling probabilities p∗.

The quality of convergence of SAMC, however, is determined by

the same requirement as in WLMC, the final visitation histogram

to the energy states has to be flat (after normalization by the bias

p∗ if necessary). The applicability of SAMC for polymer simula-

tions has recently been analyzed in detail by Werlich et al.48.

The WLMC method has been parallelized along similar ideas

used in the parallelization of the MuMC method49 and tested

on applications to, e.g., spin systems and adsorption of polymers

onto walls. The scheme consisted of parallel threads calculating

the density of states in overlapping energy intervals partitioning

the complete energy range, which could be exchanged when they

reached the same energy value. The performance of this parallel

approach, as usual, sensitively depended on the choice of simula-

tion parameters.

3 Selected results

In this section we will present selected results achieved by the

application of MuMC and WLMC approaches to polymer physics

problems. The presentation will be along the physical problems

and not the methods as in the previous section. We will focus

on results we find of general relevance and will strive for a cov-

ering of what we find to be the essential literature in the area.

We will furthermore limit our discussion to coarse-grained model

systems.
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3.1 Single chain behavior in the bulk

In the limit of infinite chain length, single polymer molecules con-

stitute a well-defined thermodynamic system able to exhibit phase

transitions, the most prominent of these is the coil-globule tran-

sition of homopolymers. But also for finite chain length impor-

tant phase-transition-like structural transformations exist, most

importantly the folding transition of proteins, i.e., of specific se-

quences of heteropolymers of amino acids.

3.1.1 Homopolymer chains

One of the early applications of the MuMC approach to poly-

mer problems is given by the work of Noguchi and Yoshikawa

where they studied the collapse transition of stiff homopolymer

chains.50 Stiffness effects on the morphology of collapsed poly-

mer chains and polymer aggregates have been a recurring topic

in the application of flat-histogram simulations to polymer prob-

lems over the last 20 years. Noguchi and Yoshikawa were inter-

ested in the ability of simple models for stiff homopolymers to

reproduce and predict the non-trivial structure formation, most

notably a collapse into a toroidal structure, occurring for some

DNA variants. Using MuMC simulations, their model of tan-

gent hard-sphere chains with a persistent mechanism of flexibil-

ity and square-well attractions between the monomers showed a

continuous collapse transition for flexible homopolymer chains,

which became a first-order transition beyond a certain stiffness

value. For very high stiffness, the model exhibited a collapse

into a toroidal structure as found in the DNA case, at interme-

diate stiffnesses toroidal structures and rod-like ordered glob-

ules (akin to the lamella folded states of crystallized homopoly-

mers51) coexisted. The change from a continuous transition

for flexible polymers to a first-order collapse for sufficiently stiff

chains was expected on theoretical grounds52 and was studied

for very long chains by Bastolla and Grassberger using the ad-

vanced chain-growth Monte Carlo method PERM (pruned en-

riched Rosenbluth method)53 for lattice homopolymer models at

that time. The qualitative phase diagram for stiff chains, which

Noguchi and Yoshikawa found for a continuum polymer model,

could be confirmed in a canonical MC simulation of the bond-

fluctuation model54 for similar chain lengths, whereas a study of

longer chains needed an extended ensemble MC scheme55 which

also produced other collapsed morphologies (e.g., tennis rackets)

as found in, e.g., AFM experiments on polysaccharides.56 The

extremely challenging parts of the phase diagram from the com-

putational point of view are the dense collapsed and potentially

ordered states and transitions between them. The elucidation of

the equilibrium properties of these states requires the application

of the most advanced flat-histogram MC methods as well as care-

fully designed Monte Carlo moves like end-bridging57, double-

bridging58 and pull-moves59 or MuMC chain-growth methods60.

Progress in these fields has led to recurring simulation studies

and an improved understanding of these structures over the last

20 years.

The first WLMC simulations of single homopolymers61 were

targeted at the determination of the excess entropy of self-

avoiding walks compared to random walks and also exhibit a first

application of WLMC methods to ring polymers.62 Rampf et al.,

in a series of papers63–65 using WLMC simulation of the bond-

fluctuation model, returned to the problem of the collapse tran-

sition of a homopolymer chain. In Refs.63,64 they showed that

the coil-globule transition can be of first order, and not continu-

ous as believed until then, when the range of the attractive in-

teraction becomes short enough. Parsons et al.66 found no such

first-order collapse for a continuum model with Lennard-Jones

interactions, but also did not determine the density of states to

low enough energies to identify the first-order freezing transition

in the collapsed globule, which was identified in Ref.65 for the

bond-fluctuation model and a longer range of attractive interac-

tions compared to Refs.63,64. A detailed study of the effect of the

interaction range was then presented for a continuum model by

Taylor et al.67,68 using flexible tangent hard-sphere chains with

square-well attractions. These works established that for every

fixed chain length, N, there is a range of the attractive interaction,

λc(N), where the collapse transition changes from first order (for

λ < λc(N)) to second order (for λ > λc(N)), a finding supported

by simulations using a variant of the MuMC method applied to a

continuum chain model.69 This behavior carries over to the ther-

modynamic limit and λc(N) → λc(∞) at which value the liquid

phase gets destabilized for λ < λc(∞) due to the shortness of the

attraction and only the gas phase (coil) and solid phase (ordered

globule) survive.

Let us discuss the analysis of flat-histogram simulations from

which the above results were obtained. The main result of flat-

histogram simulations is the micro-canonical entropy, i.e., the log-

arithm of the density of states. This function is plotted for sev-

eral models on the top of Fig. 2 to give an idea about its typical

shape. For the tangent square-well spheres chain the range of

the attractive interaction is set to λ = 1.1 (the hard-sphere diam-

eter of the monomers is set to σ = 1, the bond length also).67,68

For the fused square-well spheres chain the bond length is set to

l = 0.6. The third density of states is from a lattice model, the

bond-fluctuation model63,64 and for chain length N = 256. All

models exhibit a maximum degeneracy for energies below the

maximum energy value, a finite size artefact leading to negative

micro-canonical temperatures for energies larger than the loca-

tion of the maximum. The S(E) curves are rather non-descriptive,

but contain all thermodynamic information on the model system.

For all of them, there exist convex regions (so-called convex in-

truders) for certain values of the energy which indicate a first-

order phase transition region, in which energy values connected

by a common tangent construction to the S(E) curves denote co-
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Fig. 2 Top: Micro-canonical entropies (i.e., the logarithm of the density

of states) as a function of energy per monomer for a tangent square-well

spheres chain of length N = 128 (blue curve), a fused square-well

spheres chain (bond length l = 0.6) of length N = 40 (red curve) and a

bond-fluctuation model lattice chain of length N = 256 (green curve).

Bottom: Micro-canonical temperature (blue curve) as a function of

energy per monomer for the tangent square-well spheres chain from the

top figure. Also shown is the canonical specific heat for this chain

(values on top, magenta curve) vs. the inverse temperature. The

Maxwell-like construction for the inverse temperature curve determines

the first-order phase transition, the isolated inflection point (filled blue

circle) a second-order collapse transition.

existing phases. The phase transitions are most easily analyzed

for finite chain length N in the micro-canonical ensemble,70–73

e.g., by the behavior of the inverse micro-canonical temperature,

T−1 = dS(E)/dE, shown on the bottom of Fig. 2 for the tangent

square-well spheres chain. The common tangent construction

here leads to a Maxwell-like loop (dashed blue line), whereas

a second-order phase transition is indicated by an isolated inflec-

tion point (filled blue circle) of the curve. With decreasing inter-

action range this inflection point moves into the coexistence loop

of the first-order transition, meaning that the transition from the

random coil to the liquid globule becomes metastable and a di-

rect transition from a random coil to an ordered (in this case fcc

ordered) globule occurs.67

From the micro-canonical density of states, the canonical par-

tition function is determined by a Laplace transform Z(T ) =

Fig. 3 Phase diagram of a tangent hard-spheres chain with square-well

attraction in the temperature-interaction range plane. The diagram is for

chain length N = 128, but the topology survives in the thermodynamic

limit (taken from Ref. 67).

∑E g(E)exp(−βE) and from this partition function all thermody-

namic functions in the canonical ensemble can be calculated, e.g.,

F(T ) =−kBT ln[Z(T )]. In the canonical ensemble the phase trans-

formations of the chains can be most easily identified as peaks in

the specific heat, C(T ) = ∂E/∂T = −T ∂ 2F/∂T 2 (magenta curve

in the bottom part of Fig. 2). The transition temperatures ob-

tained from the micro-canonical and the canonical analysis do

not agree for finite chain length (system size) but do so in the

thermodynamic limit N → ∞. From such a combined canonical

and micro-canonical analysis of the collapse transition of flexible

chains the phase diagram as a function of attraction range arises

shown in Fig. 3. In the infinite chain length limit, the tricritical

point in this figure moves to λc(∞) = 1.15. Incidentally, this value

is identical to the value where the liquid phase becomes unsta-

ble for colloidal systems with a square-well attraction.74 Due to

the correspondence between the single chain phase diagram and

the polymer solution phase diagram, the latter will also exhibit a

vanishing dense solution phase at this crossover.

An alternative way of analyzing the phase behavior within the

canonical ensemble consists in determining the Fisher zeros of the

partition function in the complex temperature plane.75 This ap-

proach delivers consistent results to the micro-canonical or stan-

dard canonical ones.

The fcc crystal in the ordered state of the collapsed globule oc-

curring for the tangent hard-sphere chains is reminiscent of the

crystal structures occurring in Lennard-Jones clusters, and this

analogy has been analyzed in detail by Schnabel et al.25,76 us-

ing MuMC simulations and by Seaton et al.77 using WLMC sim-

ulations. For finite chain lengths, the surface to volume ratio
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of the globular state is not small, and thus reordering transi-

tions occurring at the surface of the globule lead to prominent

low-temperature peaks in the specific heat of the system, similar

to finite-size rounded first-order peaks.78 Schnabel et al. found

magic chain lengths corresponding to magic numbers in Lennard-

Jones clusters, where stable icosahedral ground-state structures

are populated. With growing chain length a next shell around the

icosahedral structure is started in an anti-Mackay fashion (hcp-

like ordering) giving way to a closure of this shell before the next

magic chain length in a Mackay fashion (fcc-like ordering), where

we used nomenclature of the classification of Lennard-Jones clus-

ters. In the thermodynamic limit these transitions no longer con-

tribute (as pure surface effects) and one is left with bulk crystal-

lization into an fcc ground state as also found in Ref.67.

When the macromolecule is enclosed in a cavity of linear ex-

tent comparable to its (free) radius of gyration the characteristics

of the coil-globule transition may be modified by confinement ef-

fects. The transition to the ordered state of the collapsed glob-

ule, on the other hand, is usually hardly affected by the confine-

ment because in both the ordered and disordered globular state

the polymer is compact and hence usually smaller than the con-

finement scale. A prominent example is the folding behavior of

proteins in a cellular environment, for which an increase of the

folding temperature due to the confinement has been reported.79

A similar effect was observed in a MuMC simulation for the coil-

globule transition of a simple flexible polymer in a spherical cav-

ity,80 albeit just in the opposite temperature direction. One plau-

sible reason for this difference is that proteins are much stiffer

than the polymer simulated in Ref.80. This explanation has re-

cently been supported by further MuMC simulations including an

explicit bending stiffness term.81

Let us hence return now to the question of stiffness effects on

the structure of collapsed polymers with which we started this

section. One point to note is that not all stiffnesses are cre-

ated equal. Using a rotational isomeric state like stiffness with

anisotropic interactions based on torsional degrees of freedom,

Kemp et al.82 with MuMC simulations and Varshney et al.83 with

WLMC simulations studied the helix-coil transition of stiff poly-

mers. Later Magee et al.84 showed that this transition can even

be introduced by isotropic interactions, when one introduces stiff-

ness by studying fused-sphere models, i.e., models where the size

of the monomer is larger than the bond length, a finding later

also reported from WLMC simulations.15 However, here the heli-

cal state is only stable for very short chains, changing into stems

wrapped by helices for longer chains. Employing instead angle

potentials with 180 degrees as the minimal energy structure (per-

sistent mechanism of flexibility), Siretskiy et al.85 and Seaton et

al.86 using a WLMC simulations to generate a two-dimensional

density of states depending on stiffness energy and attraction en-

ergy, reproduced the collapsed morphologies found in Ref.54 for

the same class of stiffness potentials. In recent MuMC simulations

combined with parallel tempering (in an “orthogonal” parame-

ter direction) thermodynamically stable phases exhibiting knot-

ted conformations of various knot types have been identified.87

However, the results obtained so far are diagrams of states for

fixed finite chain length only, and the chain length dependence

of these diagrams and the extrapolation to the thermodynamic

limit have not been studied yet. Clearly, the asymptotically stable

structures will be determined by the competition between bend-

ing energy and non-bonded energy with respect to the thermal

energy, but which ordered structures are favored in which region

of this two-dimensional phase space in the thermodynamic limit

is still an open question.

Besides these studies of linear homopolymers, flat-histogram

simulations have also been used to study the phase behavior of

rings62, star polymers88 and dendrimers89. For the rings, only

relatively short chains (N ≤ 50) have been studied so far and the

main qualitative finding is that the strength of the coil-globule

transition relative to low-temperature ordering transitions is re-

duced compared to linear chains of the same length. The study of

star polymers was performed using the bond fluctuation model

with an interaction range equal to the one used in Refs.63,64.

Wang et al.88 confirmed the results for linear chains and showed

that the scaling curve Tcryst(N)− Tcryst(∞) ≃ N−1/3 for the finite-

size shift of the liquid-to-crystal transition is independent on the

functionality of the stars between 2 (linear chains) and 12 arms.

They also found that the choice of interaction range d =
√

6 for

this model yields the tricritical point where the coil-globule and

liquid-crystal transitions occur at the same temperature. This

finding is also compatible with the results by Wang et al.89 for

dendrimers, although the limited size range and stronger fluctua-

tions did not allow a quantitative analysis of the thermodynamic

limit there.

Another very active research field are studies of polymers in dis-

ordered environments where one investigates the polymer statis-

tics in the presence of obstacles or impurities. It is often a reason-

able approximation to consider the dynamics of the obstacles to

be static (or at least much slower than the polymer fluctuations),

which allows one to apply the so-called quenched approximation.

The randomly placed obstacles then act as a kind of “excluded

volume” constraint for the polymer statistics which leads to a very

rugged free-energy landscape with many rare-event states (e.g.,

squeezing the polymer through very small channels between two

obstacles is very unlikely). By artificially softening these hard

“excluded volume” potentials in a special variant of MuMC, this

landscape can be successfully flattened. This was first demon-

strated for flexible90 and semi-flexible91 polymers moving in un-

correlated disorder by comparison with an especially designed

chain-growth algorithm.92 More recently this method has been

applied to study semi-flexible polymers of worm-like chain type
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in the (correlated) disordered background of a quenched hard-

disk fluid.93 As the main result of this study it was found that

the semi-flexible polymer still exhibits effective worm-like chain

statistics, but with a renormalized (smaller) persistence length. A

simple empirical relation between this renormalized persistence

length and the original “thermal” persistence length defines a

novel quantitative measure of molecular crowding which suggests

that it may be possible to use semi-flexible polymers as a local

probe of material microstructure.93

3.1.2 Heteropolymers and simplified protein models

There are two main classes of heteropolymers studied in the lit-

erature. In HP models, where H = hydrophobic and P = polar

repeat units make up the chain, the H units have an attractive

interaction among themselves, whereas the P units only have ex-

cluded volume interactions with all other groups. In AB mod-

els there are attractive AA and BB interactions (usually taken as

equal) and only repulsive interactions between A and B units. The

HP model is generally studied on the lattice and the AB model

more in the continuum, but both can be defined in discrete and

continuous versions. The HP model is built to capture the hy-

drophobic demixing from a polar solvent, while the AB model

captures demixing between A and B in neutral solvent.

When one distributes few attractive H monomers (regularly)

along a P chain, one has a chain with sticker monomers. This was

studied with MuMC simulations in two dimensions for a lattice

model in Ref.94 and in three dimensions for continuum models in

Refs.95,96. In Ref.96 a regular chain of type (HPPP)n was studied

and shown to exhibit micelle formation of the H units. For a long

enough chain the collapse proceeds through two (for the longest

chains simulated in this work) stages: a formation of two micel-

lar cores in the first stage of the collapse which then aggregate

at lower temperatures in a second stage. The difference between

the HP and AB heteropolymers concerning their collapsed mor-

phologies was emphasized in a work studying regular (XmYm)n

heteropolymers.97 For the AB model the structures have to be

symmetric under the exchange of A and B, whereas for the HP

model they are not. Both models also show different trends in

the nature of the transitions as a function of the block length m.

For m= 1, an alternating copolymer, the collapse transition is con-

tinuous in the HP model and strongly first order in the AB model.

It then gets first order in the HP model beyond block length m= 4,

with a decreasing width of the transition as function of the energy

per monomer. In the AB model, on the contrary, the first-order

character weakens with increasing m until a two-stage collapse

occurs around m = 8, and both transitions seem to merge for still

larger m.97

The HP model is best known as a strongly simplified protein

model, obtained when the sequence of amino acids making up a

protein or short peptide is translated into a binary alphabet only

depending on whether an amino acid is classified as hydrophilic

or hydrophobic. In this case one has random-looking (but not

binomial98) sequences of H and P units with a fixed length de-

termined by the given protein one tries to model. For these sim-

ulations the question of a possible thermodynamic limit can not

be posed and one has to study the properties of each finite, indi-

vidual sequence. One of the most important properties of these

sequences is their ground-state energy, and it could be shown that

both, MuMC simulations99,100 using a MuMC PERM implemen-

tation60 and WLMC simulations101,102 using an advanced move

set57–59 were able to reproduce or even improve the ground-

state estimates for designed HP sequences in the literature up

to chain lengths of N = 136. These general simulation approaches

were therefore in this aspect competitive with the best specialized

ground-state searches applied to these chains. The same behav-

ior was found for HP models on 2d and 3d fcc lattices.103 How-

ever, the main result of the flat-histogram simulations, as always,

was the density of states and with that the complete thermal di-

agram of states of these model chains. For these lattice simu-

lations, the diagram of states always showed two transitions, the

hydrophobic collapse (coil-globule transition in the homopolymer

case) followed by a transition to the native state (liquid-to-crystal

transition in the homopolymer case) at a lower temperature. In a

recent large-scale WLMC simulation also the probability of knot-

ting under native (ground-state-like) conditions for random HP

sequences with 500 residues has been investigated.104 On aver-

age the lattice peptides are found almost as knotted as globular

homopolymers of comparable density, but the introduction of se-

quence leads to a large variability in the self-entanglements of

heteropolymers.

These lattice based HP models do not show the two-state fold-

ing often found for short proteins and peptides, whose thermo-

dynamics could be reproduced in a simple homopolymer chain

model for short enough interaction range.68 From this observa-

tion one can draw a speculative explanation for this failing of the

HP models: the interaction range in these (typically simple cubic)

lattice models is equal to the exclusion size of the monomers, i.e.,

much larger than the range needed for a first-order coil-crystal

(native state) transition, which is about 10% of the hard-core ex-

tension of the monomers. To introduce two-state folding behavior

for such chains, Go-like model features with energy penalties for

deviations from the native structure have to be introduced,105 or

one can introduce a first-order transition by inclusion of chain

stiffness, as was done in Ref.24 for an AB model in the contin-

uum. This is illustrated in Fig. 4, which shows the results for three

simple AB sequences with 20 monomers exhibiting (a) two-state

folding, (b) folding through intermediates, as well as (c) glass-

like metastability. Finally, mimicking the experimental approach

to explore the properties (especially the aggregation tendency)

of proteins by point mutations of selected amino acids in the se-

quence, the stability of the phase behavior of HP chains under
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The difference is caused by the importance of the translational en-

tropy in the slit case. Furthermore Möddel et al. argued that the

adsorption temperature in the slit geometry should be inversely

proportional to N−1 lnLz, where N is the chain length and Lz the

distance between the walls. For every fixed N the transition tem-

perature in the slit geometry in the dilute limit Lz → ∞ therefore

goes to zero. The nature of this phase diagram also did not de-

pend on whether a short-ranged108,112 or long-ranged van der

Waals like109,114 attraction to the surface was used. A simula-

tion at finite, adjustable concentration (i.e., distance Lz between

the slits) of a simplified model for a polyelectrolyte in solution

with its counter ions was performed by Volkov et al.111 where

they determined a two-dimensional density of states g(E,V ) de-

pending on energy and volume. The main adsorption properties

are also preserved when one considers a polymer confined inside

a spherical cavity attracted by the inner wall of the sphere.118

Here the usually employed 9-3 Lennard-Jones surface potential

for a flat substrate (resulting from integrating a 12-6 Lennard-

Jones potential over the lower half space) has to be replaced by

a 10-4 Lennard-Jones surface potential (due to integrating over

the spherical surface). By an appropriate matching of the cou-

pling constants it can be theoretically argued that this difference

does not matter much119 and MuMC simulations do confirm this

expectation.118

Of high practical importance is the adsorption of polymers on

patterned surfaces, for instance for sensor applications. Möddel et

al.120 studied this for the adsorption of a homopolymer of length

N = 40 onto a surface with a stripe pattern. The adsorption phase

diagram of a homopolymer next to a homogeneously attractive

surface is modified, because now the adsorption to the surface out

of the different three-dimensional equilibrium structures (coil,

globule, frozen) takes place with a concomitant recognition of

the surface pattern by the polymer. For dominating attraction

to the stripe, the polymer is extended into a rod-like structure

in the adsorption process. Such structures were also found in a

variation to a hard-wall confinement, where the phase behavior

of a polymer chain next to a (flat) membrane was studied.121

For very stiff membranes, the findings reproduced the behavior

at a hard wall, as expected. For flexible membranes, a new ad-

sorbed state occurred, where the membrane tries to wrap around

the adsorbed polymer. When the intramolecular interaction of

the polymer wins, the membrane wraps around a compact, col-

lapsed chain. For strong attraction to the membrane (which was a

square-lattice net), the chain adsorbed in an extended configura-

tion maximizing the monomer-membrane contacts. Such behav-

ior may depend on the local commensurability of the membrane

and the polymer, however.

3.3 Chain aggregates

Folding of proteins or the collapse of polymers are among the

most prominent phase transformations of single macromolecules.

In general, for an ensemble of a few interacting proteins or poly-

mers also the interplay with aggregation plays an important role.

In fact, for biopolymers, aggregation is one of the most relevant

molecular structure formation processes. An important and ex-

tensively studied example is the extracellular aggregation of the

Aβ peptide, which is associated with Alzheimer’s disease. Aim-

ing at an understanding of the basic mechanism of this process,

Junghans et al.72,122 considered a coarse-grained bead-stick HP

model in the continuum (also often referred to as “AB model”),

where each residue is represented by only a single interaction

site, the “Cα atom”). In particular they considered a short 13-

mer with sequence AB2AB2ABAB2AB (representing a Fibonacci

sequence) whose single-chain properties were already well stud-

ied.100 The intermolecular interactions among the various pep-

tides were assumed to be of the same 12-6 Lennard-Jones type as

the intramolecular interactions among the monomers or residues

of a single peptide. By confining M peptide chains in a cubic

box of edge length L (= 40) with periodic boundary conditions,

the relevant phase space could be completely covered by MuMC

simulations. As outlined above this allows one to analyze the

system from both the canonical and micro-canonical perspective.

In order to distinguish between the fragmented and aggregated

regime, an order parameter Γ2 = ∑i, j

(

~r i
cm −~r j

cm

)2
/2M2 (with im-

plicit minimal-distance convention for periodic boundary condi-

tions) was introduced that adopts the definition of the squared

radius of gyration for a single polymer and basically measures

the average spread of the center-of-mass distances |~r i
cm −~r

j
cm| of

the M chains i = 1, . . . ,M. In the aggregated phase, one thus ex-

pects Γ2 ≈ 0, whereas in the fragmented phase Γ2 approaches a

non-zero value.

Measuring the energy and specific heat as well as Γ2 and its

temperature derivative for systems with 2, 3, and 4 peptides,

clear evidence for a first-order-like aggregation transition was ob-

tained. For all three systems considered, the general behavior

turned out to be similar. There is only this single transition which

indicates that conformational changes of the individual peptides

accompany the aggregation process and are not separate transi-

tions, i.e., the hydrophobic core formation and the aggregation

transition happen at the same temperature. A closer look for the

4-peptides system revealed, however, that the micro-canonical

entropy and temperature derived from the multi-canonical data

are so sensitive that a hierarchy of sub-phases in the nucleation

transition region can be resolved.123 Physically these sub-phases

can be interpreted as signal that the next peptide starts to join

the aggregate. Using similar techniques also the intra-association

of hydrophobic segments in a 62 segment heteropolymer chain

has been investigated.124 In Ref.125 the micro-canonical thermo-
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structural transition without thermodynamic signatures. Clearly,

further studies of the gelation transition by means of MuMC and

WLMC simulations would be possible now and a timely endeav-

our.

4 Conclusions

Applications of flat-histogram Monte Carlo methods to polymer

simulations, be it in the form of the multi-canonical (MuMC), the

Wang-Landau (WLMC), or the more recent Stochastic Approxi-

mation Monte Carlo (SAMC) scheme, have proven to be an ex-

tremely powerful tool for obtaining accurate information on the

thermodynamics and structure of single polymer chains and poly-

mer aggregates over broad parameter ranges. Typically these

methods are able to give estimates of the density of states which,

in turn, may be used as a starting point for micro-canonical con-

siderations that can yield useful complementary information to

the more standard canonical data analyses.

From experience with the examples of polymer physics re-

viewed here and also from the numerous applications to more

traditional spin systems in statistical mechanics one obtains the

impression that the performance of the two methods, MuMC and

WLMC, is qualitatively comparable. A more quantitative com-

parison is rather difficult since both methods depend on quite a

few parameters that govern their performance in a subtle way

and render a detailed and fair comparison quite cumbersome.

The pros and cons of the two methods are also very sensitive to

the specific model under study and the considered ranges of the

physics parameters.

The great success of flat-histogram methods was only possible,

however, through a judicious choice of update proposal moves,

which for polymers can be quite a tricky issue. In fact, in many

applications this ingredient of flat-histogram Monte Carlo sim-

ulations can be most important to achieve convergence of the

method. Even with the most advanced algorithmic and move

choices, however, the methods fight against one problem which

is underlying the foundations of statistical physics: the entropy

is an extensive thermodynamic variable and thus the density of

states grows exponentially in the number of particles one is con-

sidering. For long single chains in a continuum model this al-

ready led to variations of the density of states over 3000 orders of

magnitude25,26, whereas a recent study of a melt of short semi-

flexible chains133 with 7200 monomers needed to determine a

density of states over 5000 orders of magnitude. And the mod-

els used in these works were simplified, coarse-grained polymer

models. Obviously, this poses great challenges when attempting

to extend such approaches to chemically realistic polymer mod-

els and more complicated situations which will require further

algorithmic advances to become feasible. Among others, these

include a judicious choice of energy ranges, energy dependent up-

date moves (with bias corrections), optimized convergence pro-

cedures, and also more refined parallelization schemes to fit flat-

histogram Monte Carlo methods perfectly into the architecture of

modern high-capability computers.
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