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Journal Name

Reconstructing the fractal dimension of granular ag-
gregates from light intensity spectra

Fiona H.M. Tang,∗a and Federico Maggia

There has been a growing interest in using the fractal dimension to study the hierarchical struc-
tures of soft materials after realising fractality is an important property of natural and engi-
neered materials. This work presents a method to quantify the internal architecture and the
space-filling capacity of granular fractal aggregates by reconstructing the three-dimensional ca-
pacity dimension from their two-dimensional optical projections. Use is made of the light in-
tensity of the two-dimensional aggregate images to describe the aggregate surface asperities
(quantified by the perimeter-based fractal dimension) and the internal architecture (quantified
by the capacity dimension) within a mathematical framework. This method was tested on
control aggregates of diffusion-limited (DLA), cluster-cluster (CCA) and self-correlated (SCA)
types, stereolithographically-fabricated aggregates, and experimentally-acquired natural sedi-
mentary aggregates. Statistics of reconstructed capacity dimension featured correlation coeffi-
cients R ≥ 98%, residuals NRMSE ≤ 10% and percent error PE ≤ 4% as compared to controls,
and improved earlier approaches by up to 50%.

1 Introduction
The majority of natural and engineered aggregated materials are
hierarchically structured over multiple length scales1, with these
hierarchy typically exhibiting statistical self-similarity (e.g., pep-
tide molecules2–4, proteins5, crystal and gel networks6,7, bioma-
terials8, nanoparticle clusters9 and granular materials10). Con-
cepts of fractality in analysing hierarchically-structured materi-
als has, therefore, gained great attention in the past decade3,9

to improve the understanding of macroscopic material property
and potentially contribute to the design and synthesis of new ma-
terials1, such as, nanostructures3. A fractal architecture can be
characterized in many aspects by means of the generalized fractal
dimensionality dq

11–13, which includes the capacity (q = 0), cor-
relation (q = 1) and information (q = 2) dimensions as well as an
infinite number of other fractal dimensions (for other moments
q). Among these, the capacity dimension d0 is one of the most
important, especially in material science, because it describes the
space-filling capability and relates closely to the mass, density and
porosity14,15.

Although direct calculation of the three-dimensional (3D)

∗ Corresponding author
a Laboratory for Environmental Engineering, School of Civil Engineering, The University
of Sydney, Bld. J05, 2006 Sydney, NSW, Australia. E-mail: fiona.tang@sydney.edu.au,
federico.maggi@sydney.edu.au

capacity dimension may be possible with techniques such as
electron microscope tomography16,17, X-ray computed tomogra-
phy18, and magnetic resonance interferometry19,20, these tech-
niques are either capital intensive or hamper measurements when
they require the transferring of samples, operation that can affect
the sample structures especially during the handling of fragile
materials. Hence, there is a need to develop a method that re-
lates the 3D capacity dimension of a body to its two-dimensional
(2D) fractal properties assessed from planar images (projections),
which can be obtained without physical perturbation of samples
and at relatively low cost using CCD and CMOS sensors. While ac-
knowledging the potentially wide range of applications, we give
emphasis to granular fractal aggregates in this contribution.

The capacity dimension d0(S2) of a 2D image S2 from a 3D
aggregate S3 with capacity dimension d0(S3) is widely accepted
to follow the expression21

d0(S2) = min{2,d0(S3)}. (1)

Inverting Eq. (1) allows to calculate d0(S3) = d0(S2) when
d0(S2)< 2, while d0(S3) is undetermined otherwise. Note that Eq.
(1) is an approximation;22 have given evidence that a projection
only preserves information of the dimensionality dq for the mo-
ments 1< q≤ 2, thus excluding the capacity dimension d0 at q= 0.
In addition, Eq. (1) is valid for indefinitely extended fractal sets,
while it fails to describe the relation between d0(S2) and d0(S3)
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for compact sets23–25 such as polymers, granular aggregates and
biological cells. As an alternative to Eq. (1),23 proposed a mathe-
matical expression that estimates d0(S3) from the perimeter-based
fractal dimension dP(S2), which measures the segmentation of the
external boundary of S2. The advantage of using dP(S2) is that it
is not included in dq and, therefore, is not subject to any of the
above limitations. Application of this equation to numerically-
generated diffusion-limited (DLA) and cluster-cluster (CCA) ag-
gregates25, interstellar medium24, paramagnetic particles26 and
lime softening flocs27 showed a significant improvement in re-
trieving d0(S3) as compared to Eq. (1), but it was found to lead
to 3 to 10% underestimation of the actual d0(S3) for small ag-
gregates with high fractal dimension25,27. It is contended here
that this underestimation stemmed from the use of the outermost
projection segmentation, i.e., dP(S2) of the boundary of S2; to
improve the method, we hypothesise here that additional infor-
mation can be retrieved from the interior part of the projection,
when information is readily available such as with modern imag-
ing techniques as explained below.

Light intensity of 2D optical images of soft matter (e.g., gran-
ular aggregates) is generally heterogeneous because scattering
depends on surface topography, which may itself be a proxy to
the internal fractal architecture. Exploiting this information may
therefore improve estimation of the capacity dimension d0(S3) of
3D aggregates from S2. We thus contend that the perimeter-based
fractal dimension of each intensity contour line, instead of just the
outermost boundary of S2, can be employed to this purpose.

The aim of this work is to put forth a method that uses the light
intensity and multiple perimeter segmentations of 2D images to
estimate the 3D capacity dimension of aggregates. To achieve
this, we first show that projections (images) of aggregates have a
characteristic intensity-based dP(S2) spectrum; next, we hypoth-
esise that there exists an optimal value of dP(S2) that can accu-
rately return d0(S3) of that aggregate. Based on this hypothesis,
we propose mathematical functions to describe dP(S2) spectrum
and determine the optimal dP(S2), which ultimately provides
d0(S3) of an aggregate. This method was then tested on aggre-
gates of various origin, including aggregates of diffusion-limited,
cluster-cluster, self-correlated, stereolithographically-fabricated
aggregates and experimentally-acquired natural sedimentary ag-
gregates.

2 Methods

This section outlines the basis upon which the method was devel-
oped and introduces the procedure used to validate it against a
control set of numerically-generated and stereolithographically-
fabricated aggregates with known d0(S3), and experimentally-
acquired sedimentary aggregates with benchmark values of
d0(S3).

2.1 Earlier approach

The method proposed in23 yields d0(S3) of an aggregate from
dP(S2) of its projection S2 as

d0(S3) =

√
a(`)

dP(S2)−b(`)
for dP(S2)< 2, (2)

where `= L/Lp is the dimensionless aggregate size with L as the
aggregate size and Lp as the primary particle size, and a(`) and
b(`) are the functions

a(`) = 9
(

z(`)− 2[k(`)]2−9z(`)
[k(`)]2−9

)
, (3a)

b(`) =
2[k(`)]2−9z(`)

[k(`)]2−9
, (3b)

with z(`) = (log[4`−4])/(log[`]) and k(`) = z(`)[z(`)−1]+1. In Eq.
(2), dP(S2) is defined as28,

dP(S2) = 2
log[NP]

log[NA]
, (4)

where NP and NA are the dimensionless perimeter (i.e., the num-
ber of pixels at the outermost boundary of S2) and area of the
projection S2 (i.e., the number of pixels contained within that
boundary after filling holes), respectively. Note that dP(S2) ranges
between [Z(`),2], where Z(`) is a function of ` defined as23,

Z(`) =


2 log[`]

log[`] = 2 for `= 1,

2 log[4`−4]
log[`2]

≤ 2 for `≥ 2,

1 for `= ∞.

(5)

The method proposed in this work improves and extends the
approach described above after introducing the following addi-
tional quantities.

2.2 Perimeter-based fractal dimension spectrum

Consider the normalized intensity I ∈ [0,1] of a grayscale image
(projection) S2 of an aggregate S3; depending on the grayscale
depth, N is the number of levels of I within its range of validity
(e.g., 256 for a 8-bit grayscale depth). The subset S2(I≥ I∗)= S2,I∗

is defined as the set of pixels with I≥ I∗; because every subset S2,I∗

has a perimeter-based fractal dimension dP(S2,I∗) = dP,I∗ , then the
set S2 is associated with N subsets S2,I and N perimeter-based
fractal dimensions dP,I . The set of points defined by I and dP,I is
the perimeter-based fractal dimension spectrum. Note that dP,I∗

is defined as in Eq. (4) with NP = NP(S2,I) and NA = NA(S2,I) the
dimensionless perimeter and area of subset S2,I .

2.3 Analytical description of the spectrum

Light intensity I is not uniformly distributed across the projection
S2 when irregular aggregates are characterized by surface asper-
ities. Hence, from a conceptual point of view, every subset S2,I is
expected to be distinct from one another and be associated with
information regarding surface characteristics of S2 at that I. Con-
sider projections of granular aggregates as in Fig. 1; the first sub-
set S2,0 at the lowest intensity shows the exterior outlook of the
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aggregate with some level of segmentation, while S2,0<I<1 reveals
how interior parts of S2 become increasingly more heterogeneous
and segmented as I increases, thus, unfolding the fractal nature
of the aggregate surface. With emerging fractal characteristics,
dP,I is generally expected to increase from dP,0 of the outermost
boundary to reach a maximum at some intermediate intensity.
However, as I increases to 1, subsets S2,I→1 would show less het-
erogeneity and segmentation and would eventually collapse into
a projection S2,1 with ideally no perimeter segmentation (Fig. 1);
in this instance, dP,1 = Z(`) as per Eq. (5).

Because the surface characteristics of aggregates with low
d0(S3) are expected to be distinct from those with high d0(S3), the
spectrum dP,I of an aggregate is presumed to depend on d0(S3).
For example, consider an aggregate A with high d0(S3) and an ag-
gregate B with low d0(S3) (Fig. 1); subsets S2,I of A are expected
to be less segmented than those of B. This implies that A would
show lower values of dP,I at intermediate intensity as compared
to B, signifying that the concavity of spectra decreases as d0(S3)

increases.
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Fig. 1 Conceptual perimeter-based fractal dimension spectra dP,I of S2
projections of aggregates with high and low capacity dimension d0(S3).

Since dP,I may increase from dP,0 at I = 0 to a maximum value,
and eventually decrease to Z(`) at I = 1, dP,I may be described by
a nonlinear (second-order) function of I as

dP,I = AI2 +BI +C. (6)

To determine A, B and C in Eq. (6), three conditions are required:

Condition 1 (for I = 0): By substituting I = 0 into Eq. (6), we
obtain

C = dP,0, (7)

where dP,0 is the outermost perimeter-based fractal dimension as
in Eq. (4).

Condition 2 (for I = 1): Because the spectrum dP,I would eventu-
ally be dP,I = Z(`) at I = 1, using Eq. (6) with C = dP,0 as in Eq.
(7) allows writing B as a function of A as,

B(A) = Z(`)−dP,0−A, (8)

where Z(`) is the known function of Eq. (5).

Condition 3
(

for ddP,I
dI and d2dP,I

dI2

)
: To reflect the characteristics of

the spectrum qualitatively depicted in Fig. 1, the first derivative
of Eq. (6) has to be positive at I = 0 and the second derivative has
to be negative as

ddP,I

dI

∣∣∣∣
I=0

= B(A)≥ 0, (9a)

d2dP,I

dI2 = 2A≤ 0,∀I. (9b)

Assuming that Eqs. (9) are linearly proportional to each other by
a factor α, then it is possible to write

d2dP,I

dI2 =−α
ddP,I

dI

∣∣∣∣
I=0

, (10)

2A =−αB(A), (11)

A =−
α(Z(`)−dP,0)

2−α
, (12)

where B(A) of Eq. (8) was used in Eq. (11). By making A and
B(A) explicit in Eqs. (9), then we obtain

ddP,I

dI

∣∣∣∣
I=0

=
2

2−α
(Z(`)−dP,0)≥ 0, (13a)

d2dP,I

dI2 =− 2α

2−α
(Z(`)−dP,0)≤ 0. (13b)

Because dP(S2) ∈ [Z(`),2], then (Z(`)− dP,0) ≤ 0 and Eqs. (13)
satisfy the disequalities only if (2−α) ≤ 0, that is, only if α ≥ 2.
When α→ 2, ddP,I/dI→∞ for I→ 0 (Eq. (13a)) and d2dP,I/dI2→
−∞ (Eq. (13b)); on the other hand, ddP,I/dI→ 0 for I→ 0 while
d2dP,I/dI2→ 2(Z(`)−dP,0) when α → ∞. Even though α → ∞ sat-
isfies the conditions in Eqs. (13), a finite value of α has to be
assumed to practically use Eq. (10); hence, an arbitrary value
α = α̃ is introduced here, while an explicit value is derived later
in Sec. 3.

As conceptually depicted in Fig. 1, d2dP,I/dI2 is not constant
but is a function of d0(S3) through α. Note also that d0(S3) is the
unknown that we aim to determine and, therefore, α has to be
written as a function of dP,0 instead. Because d2dP,I/dI2→−∞ is
expected for aggregates with an infinitely segmented perimeter
(i.e., dP(S2) = 2), then α = 2 for dP,0 = 2; in contrast, d2dP,I/dI2→
2(Z(`)− dP,0) is expected for aggregates with no perimeter seg-
mentation (i.e., dP(S2) = Z(`)), hence, α = α̃ for dP,0 = Z(`). In
the absence of substantial evidence of the order of the function
α(dP,0), the linear function

α =
(α̃−2)
Z(`)−2

dP,0 +
2(Z(`)− α̃)

Z(`)−2
, (14)

was used with α ∈ [2, α̃] and with Z(`) defined in Eq. (5). The

Journal Name, [year], [vol.],1–10 | 3

Page 3 of 11 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



value of A in Eq. (12) can be calculated by knowing the value of
α from Eq. (14).

Finally, using Eqs. (12), (8) and (7) from Conditions 1, 2 and 3,
the parameters A, B and C that determine the analytical spectrum
dP,I in Eq. (6) are

A =−
[(α̃−2)dP,0 +2(Z(`)− α̃)][Z(`)−dP,0]

(2−dP,0)(α̃−2)
, (15a)

B = [Z(`)−dP,0]

(
1+

(α̃−2)dP,0 +2[Z(`)− α̃]

(2−dP,0)(α̃−2)

)
, (15b)

C = dP,0. (15c)

where α̃ is a known arbitrary constant, Z(`) is calculated from Eq.
(5), dP,0 is assessed from the outermost boundary of S2 using Eq.
(4), and ` can be any positive value. Note that because A, B and
C are functions of `, the spectrum dP,I(`) is also a function of `.

Global maximum: Since dP,I(`)∈ [Z(`),2], the global maximum dP,Î
of Eq. (6) should not exceed 2. If dP,Î > 2, we impose dP,Î = 2. The
parameters A and B are then recalculated in terms of the intensity
Î that yields dP,Î by equating the first derivative of Eq. (6) to zero.
We then obtain

A =
dP,0−Z(`)

2Î−1
, (16a)

B = Z(`)−dP,0−
dP,0−Z(`)

2Î−1
. (16b)

The values of Î corresponding to dP,Î = 2 can be determined by
substituting Eqs. (16) and (7) for A, B and C into Eq. (6), which
returns the quadratic function (Z(`)− dP,0)Î2 + 2(dP,0− 2)Î + 2−
dP,0 = 0. Of the two solutions, only Î ∈ [0,1] is valid for this prob-
lem.

2.4 The optimal perimeter-based fractal dimension
Among the N subsets S2,I , there exists a subset S2,I̊ that yields
the optimum dP,I̊ to estimate d0(S3) of an aggregate. Note that,
dP,I̊ can be any point within the spectrum dP,I(`), but dP,I̊ = dP,0

is very unlike because dP,0 only provides segmentation of the out-
ermost boundary. This may be a possible explanation of why the
method in23 underestimated d0(S3) of DLA and CCA aggregates
tested in25. We then define a continuous function f (`) of ` that
intersects the analytical spectrum dP,I(`) and identify dP,I̊ as

(I̊(`),dP,I̊(`)) = dP,I(`)∩ f (`). (17)

The function f (`) is not known theoretically but an empirical ex-
pression for it will be presented along with experiments in Sec
3. The derivation of dP,I̊(`) is considered semi-analytical as it
involves both analytical (i.e., dP,I(`)) and empirical components
(i.e., f (`)). After determining dP,I̊(`) from Eq. (17), d0(S3) can
then be reconstructed using Eq. (2) with dP(S2) = dP,I̊(`).

2.5 Control set of test aggregates
The semi-empirical method developed above was validated
against a control set of different aggregates, including
numerically-generated and stereolithographically-fabricated ag-
gregates with known d0(S3) and experimentally-acquired aggre-

gates with benchmark values of d0(S3).

Numerically-generated aggregates: Particle aggregation governed
by different kinetics would normally produce aggregates of dif-
ferent geometrical structures. In order to account for these dif-
ferences, diffusion-limited (DLA), cluster-cluster (CCA) and self-
correlated (SCA) aggregation kinetics were used.

DLA was introduced by29 to account for aggregation by Brow-
nian (diffusion) motion that forms branch-like aggregates. CCA
allows diffusion and aggregation not only of single particles but
also clusters of particles, forming bridged and closed-ring aggre-
gates21,28,30,31. SCA aggregates, on the other hand, are produced
using static accretion, where particles are randomly attached onto
existing ones without involving motion explicitly23. The proba-
bility of an existing particle to receive a new one depends on an
exponential distribution function, where an exponent tunes the
resulting d0(S3) of that aggregate.

In this work, we used 8 3D DLA and 10 3D CCA aggregates
of 1000 primary particles already used in25. Additionally, 18 3D
SCA aggregates were generated as described above. Hence, a to-
tal of 36 numerical aggregates with d0(S3) ranging between 1.73
and 2.71 were available to our analyses. Among all, 9 of them
were used to determine the function f (`) in Eq. (17) and the
other 27 were used for validation. A summary of the characteris-
tics of the numerical aggregates is given in Table 1.

Projections S2,x,S2,y and S2,z of numerical aggregates along the
three principle directions were computed, and were then con-
verted into 8-bit grayscale images. To assign a grayscale to those
images, the light intensity observed at a point of the projected
plane was calculated as the number of primary particles located
at that point but in the direction normal to the projected plane.
For this approach, we used the principle of superposition of the ef-
fects along with Mie theory32, assuming therefore that light scat-
ter is proportional to the mass. This approach may not universally
apply to any type of aggregates, but it is particularly suited to ag-
gregates of granular (e.g., sediment, dusts, aerosols, etc.) and
biological nature (e.g., cells, microbes clusters, etc.), where indi-
vidual particles are translucent at those scales. Grayscale projec-
tions of numerical aggregates reconstructed using the procedure
above resulted in outlook similar to images of natural sedimen-
tary aggregates acquired through experiments (see images in the
first three columns as compared to those in the fourth column of
Fig. 2(a)).

Table 1 Characteristics of DLA, CCA and SCA numerical aggregates.

Aggregate type DLA CCA SCA

Number of aggregates 3 3 3
for calibration
Number of aggregates 5 7 15
for validation
Actual d0(S3) 1.82 - 1.86 1.73 - 1.84 1.91 - 2.71
Primary particles 1000 1000 704 - 8374
Dimensionless size 44 55 31

Stereolithographically-fabricated aggregates: Five of the 18 numer-
ical SCA aggregates described above were fabricated by stere-
olithography (3D printing) using an Objet Eden-250 3D printing
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S2, x S2, y S2, z

Organic

Grayscale reconstructed projections of 

numerical aggregates

CCD camera images 

of natural aggregates

Organic

Mineral

Organic

Organic (a)

DLA

��  ! = 1.86

CCA

��  ! = 1.73

SCA

��  ! = 2.71

SCA

��  ! = 2.22

SCA

��  ! = 1.91

(b)

SCA

��  ! = 2.70

SCA

��  ! = 2.56

SCA

��  ! = 2.40

SCA

��  ! = 2.22

SCA

��  ! = 2.06

Fig. 2 (a) example grayscale reconstructed projections of
diffusion-limited (DLA), cluster-cluster (CCA), and self-correlated (SCA)
aggregates in the three principle directions (first three columns) and
experimental images of natural sedimentary aggregates (fourth column).
(b) example images of stereolithographically-fabricated SCA aggregates
(top row) as compared to their grayscale reconstructed projections
(bottom row).

apparatus. Aggregates, having 5 cm linear size, were fabricated
with Fullcure 720 resin (Objet), which has a specific density of
1.22 g cm−3 33. For each stereolithographic SCA aggregate, pho-
tographic images were acquired in 8-bit grayscale and in three
different directions. These images (Fig. 2(b), top row) have rel-
atively similar outlook, though with higher light intensities, as
compared to the grayscale reconstructed projections of their cor-
responding SCA numerical aggregates (Fig. 2(b), bottom row).
These images of stereolithographic aggregates were then used for
validation.

Experimentally-acquired aggregates: Two types of sediment sus-
pensions were prepared: a natural suspension rich in organic
matter collected from Blackwattle Bay, Glebe Council, Sydney,
NSW, Australia; and a pure kaolinite suspension (type Q38, with

particle size ranging between 0.6 µm to 38 µm). Sampling was
conducted using the setup and procedure described in34. Aggre-
gate images were acquired in 8-bit grayscale using a µPIV system,
which consisted of a CCD camera, a high magnification lens and
a white light source. Images were processed with the algorithm
described in34. Note that both organic and mineral aggregates
generally have projections similar to those of numerical aggre-
gates, but they appeared closer to SCA aggregates as compared
to DLA and CCA (Fig. 2(a)).

2.6 Statistical estimators

Accuracy of estimations in this study was evaluated us-
ing the correlation coefficient R = cov(c,o)/(σcσo), nor-
malized root mean square error (residuals) NRMSE =(

1
n

n
∑

i=1
(ci−oi)

2
)1/2

/(max{o} − min{o}), and percent error

PE = |o− c|/o× 100, where cov is covariance, c and o are the
calculated and observed values, respectively, n is the sample size,
and σc and σo are the standard deviation of c and o, respectively.

3 Results

3.1 Projection-based and analytical spectra dP,I of numerical
aggregates

The spectra dP,I of numerical DLA, CCA and SCA aggregates were
calculated from their grayscale projections after subsets S2,I were
resized to the same ` (see dotted lines for three illustrative values
of ` in Fig. 3(a)-(c)). Projection-based spectra ranged wide inter-
vals in dP,0 (at I = 0), curvature, and dP,1 at (I = 1) regardless of
`, but appeared correlated with d0(S3) of the original aggregates
as conceptually depicted in Fig. 1. In particular, d2dP,I/dI2 de-
creased with dP,0 decreasing, hence, with d0(S3) increasing. All
spectra dP,I shared nearly the same value dP,1 < dP,0 at I = 1 and
had a maximum at intensities Î ∈ [0.25,0.5] for all d0(S3) tested
here.

This latter feature suggests a way to choose a suitable value
α = α̃. By equating the first derivative of Eq. (6) to zero and
using Eq. (11), Î can be expressed as Î =−B(A)/2A = 1/α. If the
assumption is taken that Î ∈ [0.25,0.5], then, α ∈ [2, α̃] with α̃ = 4.
Following this line, analytical spectra dP,I(`) of all the 36 numer-
ical aggregates were derived based on the procedures described
in Sec. 2.3 for α̃ = 4 and for ` = 2m, with m ∈ [6,13]. Compari-
son between projection-based and analytical spectra of numerical
aggregates are depicted in Fig. 3(a)-(c) only for ` = 26,28 and
213, whereas Fig. 3(d) reports NRMSE and R for all samples and
` values. Because NP(S2,I) and NA(S2,I) decreased with I increas-
ing and led to less accurate dP(S2), the spectrum for I ∈ [0.5,1]
was not used in this method. Neglecting these values of the spec-
trum, we found NRMSE≤ 20% and R≥ 90% regardless of `, with
slightly better accuracy at high ` (Fig. 3(d)).

3.2 Empirical derivation of the function f (`)

The function f (`) = I̊(dP,I̊(`)) describes the intensity I̊ correspond-
ing to the optimum dP,I̊ of any spectrum dP,I(`) at any `. To em-
pirically derive f (`), a calibration set comprising numerical aggre-
gates with known dP,I̊ was used, where dP,I̊ was calculated from
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Fig. 3 Example projection-based and analytical spectra dP,I(`) of
diffusion-limited (DLA), cluster-cluster (CCA), and self-correlated (SCA)
numerical aggregates for dimensionless aggregate size: (a) `= 26; (b)
`= 28; and (c) `= 213. (d) NRMSE and R of analytical spectra dP,I(`)

against projection-based spectra for all 36 numerical aggregates at
different `.

the actual d0(S3) by inverting Eq. (2) as

dP,I̊(`) =

{
2 for d0(S3)≤ k(`),

a(`)
[d0(S3)]2

+b(`) for d0(S3)> k(`),
(18)

with a(`), b(`) and k(`) defined in Eq. (3). By knowing dP,I̊(`), the

corresponding intensity I̊(`) can be solved for in Eq. (6) by sub-
stituting dP,I(`) = dP,I̊(`). Solutions lead to three different cases:

(i) two solutions I̊1 and I̊2 with I̊ = max{I̊1, I̊2} and I̊ ∈ [0,1] when
dP,I̊ < dP,Î; (ii) one solution of I̊ when dP,I̊ = dP,Î; and (iii) no real

solution when dP,I̊ > dP,Î; in this case, I̊ = Î is imposed. The set

of points (I̊(`), dP,I̊(`)) relative to the calibration set in Fig. 4(a)
shows a trend that can be described by a second order function of
the form,

f (`) = β1(`)[dP,I̊(`)]
2 +β2(`)dP,I̊(`)+β3(`), (19)

where β1(`), β2(`) and β3(`) are fitting parameters that depend
on ` (Fig. 4(b)). We noted that the concavity of f (`) increased
and that the goodness of fit also increased as a function of `

(NRMSE < 20% and R > 80%, Fig. 4(a) and inset therein). Addi-
tionally, fitting parameters showed monotonic trends (increasing
or decreasing) as a function of ` (Fig. 4(b)). A linear or nonlinear
interpolation can be used to obtain specific values of β1(`), β2(`)

and β3(`) at any given `.

3.3 Validation against numerically-generated aggregates
A validation set consisting of 27 numerical aggregates (DLA, CCA
and SCA) was used to test the accuracy of the method proposed
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Fig. 4 (a) least square fitting of f (`) using calibration coordinates (I̊(`),
dP,I̊(`)) sets. (b) fitting parameters β1(`), β2(`), and β3(`) of the f (`)
function in Eq. (19) for dimensionless aggregate size `= 2m, with
m ∈ [6,13] .

in this study and to compare this method to the earlier approach
in23 for `= 2m, with m ∈ [6,13].

Application of this method persistently achieved a better esti-
mation of d0(S3) as compared to the method in23 regardless of
` as shown by statistical quantities in Fig. 5. The method in23

showed sensitivity to ` as PE fluctuated greatly over values of `.
In addition, accuracy decreased when the method was applied
to aggregates with high d0(S3) (Fig. 6); these results agree with
those in27, where greater errors were observed when the method
in23 was used to estimate d0(S3) of small lime softening flocs that
were expected to have high d0(S3).

In contrast, the method proposed in this study showed less
sensitivity to ` and was able to reconstruct d0(S3) at a relatively
high accuracy for all d0(S3) ∈ [1.73,2.71], improving the earlier
approach by at least 50% with PE ≤ 2% (except for ` = 8192),
NRMSE ≤ 8% and R ≥ 98.5% (Fig.5). This method also resulted
in smaller standard deviation as compared to the method in23,
thus, implying a higher reliability (smaller uncertainty) for all `
and d0(S3).
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Fig. 5 Percent error PE, normalized root mean square error (residuals)
NRMSE and correlation coefficient R of estimated d0(S3) for numerical
aggregates obtained by using the methods in 23 (M&W (2004)) and in
this study.
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Fig. 6 Estimated d0(S3) using the methods in 23 (M&W (2004)) and in
this study against actual d0(S3) for dimensionless aggregate size `= 2m

with m ∈ [6,13].

3.4 Validation against stereolithographically-fabricated ag-
gregates

The projection-based spectra dP,I of stereolithographic aggregates
showed relatively similar trend to those of numerical aggregates
(Fig. 7(a)-(c)), with the spectra increasing from dP,0 to eventu-
ally converge to I = 1 and dP,1 ≤ dP,0. The second half of the
spectra, however, showed a steep increase and reached a maxi-
mum at 0.9 < Î < 1; this was explained by the aggregate showing
anisotropicity due to fabrication layering, with material deposited
as thin films causing a great light intensity reflected from the sur-
face - images of stereolithographic aggregates in Fig. 2(b) (top

row) showed higher light intensities than all other reconstructed
and real projections. After excluding I ∈ [0.5,1], the analytical
spectra dP,I captured the projection-based spectra relatively well
for all tested ` with NRMSE≤ 20% (shown in insets of Fig. 7(a)-
(c)).

The method in this study achieved 1.8%< PE< 3.4% with lower
standard deviation in the reconstruction of d0(S3) of stereolitho-
graphic aggregates as compared to the earlier approach in23

(PE > 3.6%) for all ` tested (Fig. 7(d)).
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Fig. 7 Projection-based and analytical spectra dP,I of stereolithographic
self-correlated (SCA) aggregates for dimensionless aggregate size: (a)
`= 2048; (b) `= 4096; and (c) `= 8192. (d) percent error PE, normalized
root mean square error (residuals) NRMSE, and correlation coefficient
R of estimated d0(S3) for stereolithographic aggregates obtained by
using the methods in 23 (M&W (2004)) and in this study.

3.5 Application to experimentally-acquired aggregates
For natural aggregates (mineral and organic), d0(S3) can be esti-
mated both directly using the method proposed in this study as
well as the earlier approach in23, or indirectly using their settling
velocities calculated from images acquired through the experi-
ments described in Sec. 2.5.

When applying the method in this study, we observed that the
projection-based spectra dP,I of organic natural aggregates were
substantially different from those of mineral aggregates (Fig. 8(a)
and(b)). Organic aggregates possessed spectra with distinct cur-
vature and were similar to spectra of numerical aggregates with
low d0(S3). In contrast, spectra of mineral aggregates were rel-
atively flat. More importantly, the analytical spectra dP,I of both
organic and mineral aggregates matched relatively well with the
first half of their projection-based spectra (NRMSE < 16.5% and
R > 95%). Application of the method in this study returned
d0(S3)∈ [2.78,2.87] for mineral aggregates and d0(S3)∈ [1.99,2.15]
for organic aggregates. On the other hand, the earlier approach
in23 resulted in slightly lower values of d0(S3) for both min-
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eral (d0(S3) ∈ [2.56,2.68]) and organic (d0(S3) ∈ [1.94,2.07]) ag-
gregates.

To validate estimated d0(S3) using 2D optical projections,
d0(S3) of natural aggregates was also determined from their
settling velocities v following the force balance equation
Fg − Fb = Fv + Fi, where Fg = π

6 L3`d0(S3)−3ρsg is the gravita-
tional force, Fb = π

6 L3`d0(S3)−3ρ f g is the buoyancy force, Fv =

6
√

πµv
(

π

4 L2)[(a/d0(S3))+b]/2 is viscous drag and Fi =
π

4 L2ρ f v2 is
impact drag35. Here, µ is the fluid dynamic viscosity, g is the
gravitational acceleration, L is the characteristic aggregate size, `
is the dimensionless aggregate size, ρs and ρ f are the sediment
and fluid densities, respectively, whereas a = 9/8 and b = 7/8 of
Eq. (3) were used with experimental data as in35. Here, Lp = 0.6
µm and Lp = 2.4 µm were used for mineral and organic aggre-
gates as per average values in the data base available in35, while
µ = 1.0×10−3 Pa s and ρ f = 1000 kg/m3 were used.

By knowing the aggregate settling velocity v and the size L from
experiments, ρs and d0(S3) remain unknown in the force balance
equation. Fig. 8(c) and (d) show the relationship between ρs and
d0(S3) derived using experimental v and L of both organic and
mineral aggregates, respectively. The estimated d0(S3) of mineral
aggregates yielded 1800 kg/m3 < ρs < 2200 kg/m3, whereas, the
approach in23 returned ρs ≥ 2600 kg/m3. Because kaolinite min-
eral has a density not generally exceeding 2600 kg/m3, results
using23 might have lower reliability in this circumstance (note,
though, that only a few aggregates were used as an illustration,
Fig. 8(d)). In contrast, both methods returned values of ρs of
organic aggregates that match previous literature35–37, with the
method in this study returning slightly lower values of ρs (1700
kg/m3 < ρs < 1800 kg/m3) as compared to the earlier approach
(1800 kg/m3 < ρs < 1900 kg/m3) (Fig. 8(c)).

4 Recommendations
Although the concept that drives the derivation of the method
proposed in this study bases on the light intensity spectrum of
grayscale images, the application of this method does not re-
quire the assessment of the full projection-based spectrum dP,I;
instead, it requires only the determination of dP,0 to derive both
the analytical spectrum dP,I and the empirical function f (`) used
to reconstruct d0(S3). This method, therefore, provides a simple
and effective alternative to improve estimation of d0(S3) of gran-
ular aggregates from two-dimensional images. The algorithm of
this method (a Matlab function file) is provided as supplementary
document.

Even though the applications of this method to different types
of aggregates (e.g., DLA, CCA, SCA and natural aggregates) were
shown to give good estimation of d0(S3) (NRMSE ≤ 10% and R
≥ 98%), there exists exceptional cases where the application of
this method is biased. For example, derivation of dP,I is not ap-
plicable to extensive fractal structures that do not have a definite
boundary, case in which this method would not be appropriate.
In addition, application of this method to Euclidean solids with
fractal surface would result in biased estimation of d0(S3); in fact,
a fully solid Euclidean body has d0(S3) = 3 but its planar projec-
tion would show significant perimeter segmentation as a result of
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Fig. 8 Projection-based and analytical spectra dP,I of (a) organic and (b)
mineral aggregates for dimensionless aggregate size `= 256;
relationship between aggregate density ρs and capacity dimension
d0(S3) according to force balance equation for (c) organic and (d)
mineral aggregates.

its surface roughness and, thus, the application of this method to
reconstruct its d0(S3) would result in false values. Hence, we rec-
ommend this method to be particularly suitable for applications
with compact fractal sets such as granular aggregates. If part of
the projection-based spectrum of a body looks like any of those
presented here, it is presumed that the method proposed here
can return a reliable estimation of d0(S3).

5 Conclusion

A semi-analytical method has been proposed to reconstruct the
3D capacity dimension d0(S3) of fractal aggregates from their 2D
grayscale projections. The method presented in this study makes
use of the light intensity and perimeter segmentation spectrum of
an aggregate image to determine the optimum perimeter-based
fractal dimension associated to the actual d0(S3) of that aggre-
gate. The integration of an analytical expression of the spec-
trum and an empirical intersecting function derived from fractal
granular aggregates of various nature (diffusion-limited, cluster-
cluster and self-correlated aggregates) makes the method partic-
ularly effective, robust, and user-friendly in that it only requires
a binary projection image of the aggregates under investigation.
This method resulted in an average error of 2% while an earlier
approach resulted in an average error of 4.5%, hence, showing
approximately 50% estimation improvement. The algorithm of
this method (coded in a Matlab function file) is provided as sup-
plementary document in an open source format.
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Appendix A: Supplementary documents
The algorithm to estimate d0(S3) of a fractal aggregate is provided
as an open source Matlab R2011b function file. Together with the
function, two grayscale images and two binary images of fractal
aggregates are provided as examples.

List of symbols
α,β [-] coefficients of Eq. (12) and Eq. (19)
` [-] dimensionless aggregate size
µ [ML−1T−1] fluid dynamic viscosity
ρ f , ρs [ML−3] fluid and sediment density
σc [-] standard deviation of calculated values
σo [-] standard deviation of observed values
a,b [-] coefficient of Eq. (2)
c [-] calculated values
cov [-] covariance
d0 [-] capacity dimension
dP [-] perimeter-based fractal dimension
dP,I [-] perimeter-based fractal dimension spectrum
dP,Î [-] global maximum of dP,I spectrum
dP,I̊ [-] optimum perimeter-based fractal dimension
dP,0 [-] outermost perimeter-based fractal dimension
f (`) [-] empirical expression for dP,I̊
g [LT−2] gravitational acceleration
k [-] coefficient of Eq. (3)
n [-] sample size
o [-] observed values
v [LT−1] settling velocity
z [-] coefficient of Eq. (3)
A,B, C [-] parameters in Eq. (6)
Fb [MLT−2] buoyancy force
Fg [MLT−2] gravitational force
Fi [MLT−2] impact drag
Fv [MLT−2] viscous drag
I [-] normalized light intensity
Î [-] I value corresponded to dP,Î
I̊ [-] I value corresponded to dP,I̊
L [L] aggregate size
Lp [L] primary particle size
N [-] number of levels of I
NA, NP [-] dimensionless area and perimeter
NRMSE [-] normalized root mean square error
PE [-] percent error
R [-] correlation coefficient
S2 [-] two-dimensional projection
S3 [-] three-dimensional body
Z [-] dP of a square

References
1 R. Lakes, Nature, 1993, 361, 511–515.
2 K. Giri, N. P. Bhattacharyya and S. Basak, Biophysical journal,

2007, 92, 293–302.
3 W. Wang and Y. Chau, Soft Matter, 2009, 5, 4893–4898.
4 L. Nicoud, M. Lattuada, A. Yates and M. Morbidelli, Soft mat-

ter, 2015, 11, 5513–5522.
5 T. S. Khire, J. Kundu, S. C. Kundu and V. K. Yadavalli, Soft

Matter, 2010, 6, 2066–2071.

6 A. G. Marangoni, Trends in Food Science & Technology, 2002,
13, 37–47.

7 L. G. Bremer, T. van Vliet and P. Walstra, Journal of the Chemi-
cal Society, Faraday Transactions 1: Physical Chemistry in Con-
densed Phases, 1989, 85, 3359–3372.

8 A. Carpinteri, P. Cornetti, N. M. Pugno and A. Sapora, Ad-
vances in Science and Technology, 2009, pp. 54–59.

9 S. Ahn and S. J. Lee, Soft matter, 2014, 10, 3897–3905.
10 J. P. Hyslip and L. E. Vallejo, Engineering Geology, 1997, 48,

231–244.
11 H. G. E. Hentschel and I. Procaccia, Physica D: Nonlinear Phe-

nomena, 1983, 8, 435–444.
12 H. E. Stanley and P. Meakin, Nature, 1988, 335, 405–409.
13 A. Chhabra and R. V. Jensen, Physical Review Letters, 1989,

62, 1327.
14 A. Khelifa and P. S. Hill, Journal of Hydraulic Research, 2006,

44, 390–401.
15 F. Maggi, Journal of Geophysical Research: Oceans (1978–

2012), 2007, 112, year.
16 U. Skoglund and B. Daneholt, Trends in Biochemical Sciences,

1986, 11, 499–503.
17 P. A. Midgley and M. Weyland, Ultramicroscopy, 2003, 96,

413–431.
18 W. A. Kalender, Physics in medicine and biology, 2006, 51,

R29.
19 H. E. Cline, C. L. Dumoulin, H. R. Hart Jr, W. E. Lorensen and

S. Ludke, Magnetic Resonance Imaging, 1987, 5, 345–352.
20 L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine,

M. Vaidyanathan, L. O. Hall, R. W. Thatcher and M. L. Silbiger,
Magnetic resonance imaging, 1995, 13, 343–368.

21 T. Vicsek, Fractal growth phenomena, World Scientific, 1989,
vol. 4.

22 B. R. Hunt and V. Y. Kaloshin, Nonlinearity, 1997, 10, 1031.
23 F. Maggi and J. C. Winterwerp, Physical Review E, 2004, 69,

011405.
24 N. Sánchez, E. J. Alfaro and E. Pérez, The Astrophysical Jour-

nal, 2005, 625, 849.
25 F. Maggi, Nonlinear Processes in Geophysics, 2008, 15, 695–

699.
26 P. Domínguez-García and M. A. Rubio, Colloids and Surfaces

A: Physicochemical and Engineering Aspects, 2010, 358, 21–27.
27 A. Vahedi and B. Gorczyca, Water research, 2011, 45, 545–

556.
28 P. Meakin, Fractals, scaling and growth far from equilibrium,

Cambridge university press, 1998, vol. 5.
29 T. A. Witten Jr and L. M. Sander, Physical review letters, 1981,

47, 1400.
30 P. Meakin, Physical Review Letters, 1983, 51, 1119.
31 M. Kolb, R. Botet and R. Jullien, Physical Review Letters, 1983,

51, 1123.
32 G. Mie, Ann. Phys, 1908, 25, 377–445.
33 F. Maggi, Journal of Hydrology, 2015, 528, 694–702.
34 F. H. M. Tang, F. Alonso-Marroquin and F. Maggi, Water re-

Journal Name, [year], [vol.],1–10 | 9

Page 9 of 11 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



search, 2014, 53, 180–190.
35 F. Maggi, Journal of Geophysical Research: Oceans, 2013, 118,

2118–2132.
36 K. J. Curran, P. S. Hill, T. G. Milligan, O. A. Mikkelsen, B. A.

Law, X. Durrieu de Madron and F. Bourrin, Continental Shelf
Research, 2007, 27, 1408–1421.

37 D. J. Lee, G. W. Chen, Y. C. Liao and C. C. Hsieh, Water Re-
search, 1996, 30, 541–550.

10 | 1–10Journal Name, [year], [vol.],

Page 10 of 11Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



 

3D capacity dimension d
0
(S
3
) of aggregates is retrieved using 2D perimeter-based 

fractal dimension spectrum d
P,I
 that varies with image light intensity. 
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