
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal Name

Dynamic moduli of magneto-sensitive elastomers: a
coarse-grained network model

Dmytro Ivaneyko,∗a Vladimir P. Toshchevikov,a,b and Marina Saphiannikovaa

The viscoelastic properties of magneto-sensitive elastomers (MSEs) in a low-frequency regime
are studied using a coarse-grained network model. The proposed model takes into account the
mechanical coupling between magnetic particles included in a whole network structure and mag-
netic interactions between them. We show that the application of a constant uniform magnetic
field leads to the splitting of the relaxation spectrum into two branches for the motions of the
particles parallel and perpendicular to the field. The shear dynamic moduli G

′
and G

′′
of MSEs

are calculated as functions of frequency. The values of G
′

and G
′′

are shown to depend on the
direction of the shear deformation with respect to the magnetic field. For instance, both G

′
and G

′′

decrease if the magnetic field is applied parallel to the shear velocity (D-geometry) and increase
if it is applied along the shear gradient (G-geometry). The latter prediction is in a qualitative
agreement with existing experimental data. The theory allows to analyse experimental data and
to extract the structural characteristics of MSEs.

1 Introduction
Two-component polymer composites, consisting of a soft non-
magnetic polymer network and magnetic filler particles, are smart
materials, which can change their mechanical properties under
application of the external magnetic field. Such materials are
often called magneto-sensitive elastomers (MSEs), magnetorhe-
ological elastomers (MREs) or, sometimes, soft magnetic elas-
tomers (SMEs).1 Under external magnetic field, MSEs acquire
peculiar properties: they change their elasticity (the shear and
Young’s moduli) and shape. Due to such smart behaviour, MSEs
are widely used nowadays in many technical applications: con-
trollable membranes, rapid-response interfaces designed to opti-
mize mechanical systems and in automobile applications such as
adaptive tuned vibration absorbers, stiffness tunable mounts and
automobile suspensions.2,3

Different kinds of magnetizable particles with different shapes
and sizes can be used as magnetic fillers. However, the parti-
cles prepared from carbonyl iron with the size from hundreds
nanometers to several micrometers are mostly used due to their
high magnetic permeability.4–6 Although the microsize carbonyl
iron particles have a multi-domain magnetic structure, very
narrow hysteresis cycles for the powders and composites with
these particles were observed which indicate a soft magnetic be-
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Petersburg, Russia

haviour.4–6 Such particles have shape close to an ideal sphere that
simplifies dispersion of the particles within a polymer melt before
its cross-linking. Besides, the carbonyl iron particles in a poly-
mer melt are not magnetized and do not create inhomogeneities
like clusters or agglomerates in the absence of the external mag-
netic field. Therefore, one can synthesize the MSEs with per-
fect isotropic particle distribution.4,6,7 Moreover, the anisotropic
chain-like or plane-like particle distribution can be produced by
means of application of the magnetic field before the cross-linking
of a polymer melt.4,6,8

Due to high importance of MSEs for practice, their mechan-
ical properties have been extensively studied during the last
decade. There are a lot of experimental works,9–12 theoretical
studies13–20 and computer simulations1,21,22 devoted to mechan-
ical properties of MSEs in the equilibrium (static) state. Static
magneto-induced deformation, as well as the change of the static
Young’s modulus and static shear modulus under external mag-
netic field have been investigated. On the other hand, very im-
portant topic is the dynamic-mechanical behaviour of MSEs, since
in various technical applications these materials can be influenced
by the oscillating mechanical loading.3,23,24 There are a lot of ex-
perimental works which discuss the influence of the external con-
stant magnetic field on the frequency dependences of the stor-
age G

′
and loss G

′′
moduli.6,25–30 It was shown that the values

of G
′

and G
′′

at a given frequency f depend on the magnitude
of the external magnetic field. For the shear geometry with the
shear velocity perpendicular to the magnetic field vector H (G-
geometry in Fig. 1) both G

′
and G

′′
are found to increase with
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Fig. 1 Three principal geometries of the shear deformation with respect to the direction of the magnetic field vector H: shear gradient geometry G,
vorticity geometry V and displacement geometry D. Shear deformation is applied along the α-axis and the shear gradient is along the β -axis.

the increase of the magnitude of external magnetic field at fixed
frequency. Influence of structural parameters, such as the volume
fraction of the magnetic particles and the degree of cross-linking
of an elastomeric matrix, on the dynamic mechanical behaviour
of MSEs under magnetic field has been discussed in a number of
experimental works.25–27,29

Although the experimental study of the dynamic-mechanical
properties of MSEs has been performed extensively, the structure-
property relationships for dynamic behaviour of MSEs are under-
stood not so well from theoretical point of view. The frequency
dependences of the storage and loss moduli of MSEs have been
analysed using some phenomenological approaches.31–33 How-
ever, these works do not discuss the relationship between the
microstructure of MSEs and phenomenological parameters in-
cluded into the theories. The relaxation spectrum of ferrogels was
recently studied, using a microscopic 1D and 2D dipole-spring
models.34 However, the dynamic moduli were not considered in
the literature using microscopic models. Moreover, MSEs under
magnetic field become anisotropic and, thus, should demonstrate
anisotropy of their dynamic-mechanical behaviour. One can ex-
pect that the dynamic moduli should depend on the geometry
of the shear application with respect to the magnetic field (see
Fig. 1), as it was shown, e.g., for anisotropic liquid-crystaline
(LC) networks.35 Note that the anisotropy of the static Young’s
modulus for MSEs has been considered theoretically.16 On the
other hand, anisotropy of the dynamic moduli of MSEs was not
discussed in the literature at all.

In order to overcome these drawbacks, in the present study we
propose a coarse-grained dynamic model, which allows to study
the dynamic-mechanical properties of MSEs in a low-frequency
regime depending on the MSE microstructure. The model takes
explicitly into account the effects of interactions between mag-
netic particles on the dynamics of MSEs. Using this model, the
frequency dependences of the storage and loss moduli of MSEs
for the G-, V- and D-geometries are calculated as functions of
the strength of the magnetic field depending on the volume frac-
tion of magnetic particles, their magnetization and the elasticity
of polymer matrix, which is related to the degree of cross-linking.
The obtained structure-property relationships are in agreement
with experiments and can be of a high importance for practical
applications.

2 Dynamic model of MSE and its validity
range

To begin with, it should be emphasized that theoretical descrip-
tion of dynamic behaviour of real polymer networks is a complex
task even for isotropic polymers, because the dynamic properties
depend strongly on the structure of the networks. This results in a
complex character of network relaxation. Different effects on the
dynamics have been discussed in literature such as: incorporation
of polymer chains into a united network structure,36–38 hetero-
geneous distribution of cross-links,38,39 polydispersity of network
strands,38,40 the presence of dangling chains and loops,41–43 pos-
sible fractal structures of network domains,38,44,45 etc. These
works demonstrate clearly that the frequency dependences of the
dynamic moduli are very sensitive to the structure of polymer net-
works, for more details see the review.38 Thus, for each particular
kind of network structure one needs a special network model.

On the other hand, the cubic network model is widely used to
describe the mechanical properties of three-dimensional isotropic
polymer networks.35–39,46–49 In ref.48 it was shown that the me-
chanical properties under external stress, provided by cubic net-
work model, coincide with the results for Gaussian networks with
random orientations of the network strands in the linear response
regime. The prediction of the cubic network model for the storage
modulus, G

′ −G(eq) ∝ ω3/2, is fulfilled for synthesized networks,
e.g. for poly[oxi(methilsilylene)]’s networks, see ref.35 Such
low-frequency scaling behavior of the storage modulus around
the low-frequency plateau, G(eq), corresponds to a collective mo-
tion of chains incorporated into a united network structure.35–38

Thus, the cubic network model takes explicitly into account the
three-dimensional connectivity of chains in a polymer network.
Moreover, the cubic network model describes quite well the dy-
namics of heterogeneous elastomeric matrices with domain struc-
ture.38,39

The aim of our work is to study the effect of magnetic field
on the moduli of MSEs. We are interested in the change of the
moduli under application of magnetic field as compared to the
moduli for the reference system, i.e. for the network at absence
of the magnetic field. Since the cubic network model was widely
used to describe the dynamics of polymer networks, we start from
the cubic network as a reference system to study the dynamics of
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MSEs.

The present study focuses on the low-frequency viscoelastic
behaviour of MSEs with isotropic distribution of magnetic par-
ticles (see Fig. 2a) at scales longer than the distance between
neighbouring particles. In this regime the relaxation processes
inside each network domain which contains one magnetic par-
ticle are finished and the dynamics of the network domains be-
tween neighbouring particles can be described by simple Hookean
springs. Furthermore, it is assumed that the isotropically dis-
tributed magnetic particles fluctuate around their average posi-
tions on the sites of the cubic lattice. Thus, to describe the dy-
namics of MSEs in the long-scale regime we use a coarse-grained
cubic network model, its cell is shown on Fig. 2b. The length of
the edge, a, equals the average distance between neighbouring
particles and is related to the volume fraction of the particles, φ :

φ =
υ

a3 , (1)

where υ is the volume of one magnetic particle.

The mobility of particles in the model is determined by the elas-
ticity constant K of the Hookean spring and by the friction coeffi-
cient ζ of the network junction. The friction coefficient ζ in the
coarse-grained model describes the dissipative effects which ap-
pear under displacement of the neighbouring magnetic particles
on the long scales. The elasticity constant K describes entropic
losses in network domains under displacement of the neighbour-
ing particles with respect to each other. The value K can be re-
lated to the static modulus of an MSE at the absence of the mag-
netic field using the following argument. Application of the shear
strain γ along the y-axis, for example, results in the appearance
of the mechanical force, F , acting on a given particle due to de-
formation of the spring: F = K∆y, where ∆y = γa. Thus, the me-
chanical stress is equal to σ =F/a2 =Kγ/a and the shear modulus
G0 = σ/γ is given by:

G0 = K/a. (2)

For isotropic incompressible media the shear modulus is three
times smaller than the tensile Young’s modulus E0: G0 = E0/3.
Typical values of the shear modulus for MSEs are from 10 kPa to
100 kPa.25–27,29,50,51

Note, that the introduced coarse-grained network model, pro-
posed originally in ref.36, was widely used to describe the long-
scale dynamics of usual non-magnetic rubbers. It allowed to
study the collective motions of network fragments included into
a whole network structure. In refs.37,38,47 it was shown that
the coarse-grained network model describes correctly the low-
frequency dynamics of multi-segmental network models. Re-
cently, the coarse-grained network model was modified to study
the low-frequency dynamics of polymer networks with included
particles46,49 as well as the dynamics of anisotropic networks
with LC-order35 or under external forces.48,52 As in the previous
works for networks of different structure,35–38,46–49,52 we start
from the coarse-grained cubic network model in order to study
the low-scale dynamics of magneto-sensitive elastomers. Using
this model, we take explicitly into account both the elastic in-
teractions between the magnetic particles included into a united

network structure and the magnetic interactions between them.
Application of a constant magnetic field of the magnitude H

induces an average magnetic moment m = Mυ in each particle
along the direction of the field. Here M is the magnetization of the
particles which is a function of the magnetic field H. The depen-
dence M(H) can be estimated using other theoretical works.15,53

The magnetic field H is assumed to be directed along the x-axis
(see Fig. 2b).

The dipole-dipole interactions between the magnetic particles
influence the molecular mobility of an MSE. The mobility of a
given particle is determined by the potential, U(rn), acting on this
particle from other ones. This potential includes the mechanical
and magnetic parts:

U(rn) =Umech(rn)+Umagn(rn), (3)

where rn is the position vector of the n-th particle. Here we intro-
duced the 3D index n = (nx,ny,nz), which numerates the particles
in the cubic network model (see Fig. 2b). The components nx, ny

and nz count the particles in the x-, y- and z-directions and run
over all integer values: nx,y,z = . . . ,−1,0,+1, . . . . The mechanical
part in eqn (3) is given by:

Umech(rn) =
1
2

K ∑
n′

Cnn′(rn− rn′)
2, (4)

where the coefficient Cnn′ = 1 if the n- and n′-th particles are
connected by the spring and Cnn′ = 0 otherwise. The magnetic
part has the following form for induced magnetic moments in the
linear response regime:54

Umagn(rn) =−
µ0

8π
υ

2M2
∑
n′

3(xn′ − xn)
2− (rn′ − rn)

2

|rn′ − rn|5
, (5)

where µ0 is the permeability of the vacuum.
The last equation uses the approximation of point-like dipole-

dipole interactions between magnetic particles. It was shown in
ref.54 that this approximation describes very well the interactions
of magnetic particles of a finite radius r at separation distances
a > 3r. The condition a > 3r corresponds to the volume frac-
tions φ < φc, where φc is defined from the condition that each
particle occupies on the average the volume of a sphere with the
radius 1.5r: φc ∼ r3/(1.5r)3 ∼ 30%. Note, the typical MSEs have
concentration of the particles that usually does not exceed 30-
35%.26,29,55 Thus, the approximation of point-like interactions of
magnetic particles given by eqn (5) is quite reasonable to analyze
the dynamics of MSEs with isotropic particle distribution.

The validity range of the introduced model is determined by a
condition of the stable equilibrium for the position of particles on
the sites of the cubic lattice. The stable equilibrium means that
the positions of particles on the sites of the cubic lattice corre-
spond to minima of the energy U(rn). To estimate the validity
range of the model, let’s consider a small displacement of an n-th
particle, δrn, from its average position taking into account the in-
fluence of the nearest neighbours with the numbers (nx±1,ny,nz),
(nx,ny ± 1,nz) and (nx,ny,nz ± 1). Positions of the neighbouring
particles are assumed to be fixed. As it follows from eqn (4), the
mechanical potential Umech(δrn) has a local minimum for motions
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Fig. 2 Schematic representation of an MSE with magnetic particles, isotropically distributed inside an elastomer matrix (a). The cell of the
coarse-grained cubic network model, see text for details (b).

in all directions: Umech(δrn) = 3K(δx2
n+δy2

n+δ z2
n). However, the

change of the magnetic potential depends on the direction of the
displacement. Using eqn (5), we find that for the motion perpen-
dicular to the magnetic field (δyn 6= 0,δxn = δ zn = 0) the change
of the magnetic potential is positive:

Umagn(δyn) =
21µ0

8π

υ2M2

a5 δy2
n. (6)

On the other hand, using eqn (5), we find that for the motion
parallel to the magnetic field (δxn 6= 0,δyn = δ zn = 0) the change
of the magnetic potential is negative:

Umagn(δxn) =−
21µ0

4π

υ2M2

a5 δx2
n. (7)

Thus, for the motion perpendicular to the magnetic field the total
potential has a local minimum at any values of M:

U(δyn) =

(
3K +

21µ0

8π

υ2M2

a5

)
δy2

n = 3K

(
1+

1
2

(
M
M∗

)2
)

δy2
n,

(8)
whereas for the motion parallel to the magnetic field the change
of the potential U(δxn) is determined by an interplay between the
mechanical and magnetic parts:

U(δxn) = 3K
(

1− 7µ0

4π

υ2M2

Ka5

)
δx2

n = 3K

(
1−
(

M
M∗

)2
)

δx2
n. (9)

Here we have introduced a critical value of the magnetization M∗,
which can be written in the following form using eqn (1) and (2):

M∗ =
(

4πG0

7µ0φ 2

)1/2
=

(
4πE0

21µ0φ 2

)1/2
. (10)

One can see that at M < M∗ the potential energy U(δrn) has a
local minimum at δrn = 0, whereas at M > M∗ it is characterized
by a saddle point at δrn = 0. Thus, at M > M∗ an unstable equi-
librium state takes place at δrn = 0 and the particles are expected
to rearrange and to form chain-like agglomerates along the mag-
netic field. The formation of chain-like agglomerates under mag-
netic field has been discussed in many experimental works.6,8,56

At the same time, theoretical description of this effect is not a triv-
ial problem, since (i) the quadratic terms of the mechanical poten-
tial Umech(δrn)∼ δr2

n are not enough to compensate the magnetic
potential, as can be seen from eqn (9), and the nonlinear elas-
ticity should be taken into account; (ii) irregularity of the local
spatial distribution of particles can play a significant role for the
rearrangement. Therefore, the rearrangement of the particles is
not considered in the present study, which deals exclusively with
the dynamics of MSEs with homogeneously distributed particles
at M < M∗.

The critical value M∗ can be related to the critical value of the
external magnetic flux density B∗ which determines the bound-
ary between two regimes mentioned above. To estimate B∗ we
use the relationship between the magnetic field B and the mag-
netization M in the linear response regime. For a spherical parti-
cle with a high magnetic susceptibility (χ � 1) inside a spherical
sample this relationship is given by: M = 3B/µ0.57 Using the last
relationship and eqn (10), the value of B∗ is estimated as:

B∗ =
(

4πµ0G0

63φ 2

)1/2
=

(
4πµ0E0

189φ 2

)1/2
. (11)

For sufficiently stiff MSEs (with G0 ∼ 100 kPa) and at φ ∼ 0.2
as in experiment,25 the value of B∗ is estimated to be ∼ 790 mT.
Note that the region B< 800 mT is used in this experiment.25 This
illustrates that our model is applicable in a broad region of mag-
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netic fields for sufficiently stiff MSEs. For sufficiently soft MSEs
(E0 ∼ 20 kPa) and at φ ∼ 0.2 as in experiment,50 the value B∗

is estimated to be ∼ 200 mT. The range B < B∗ for soft MSEs
is shorter as compared to more stiff MSEs, but nevertheless it is
comparable with the magnetic fields (B < 400 mT) used in exper-
iments. Thus, the proposed dynamic model is applicable to study
the dynamic-mechanical properties of MSEs in experimentally in-
vestigated region of the magnetic field.

3 Equations of motion. Relaxation spec-
trum

The equation of motion for the position vector rn of the n-th junc-
tion in the coarse-grained network model is given by the Langevin
equation:

ζ ṙn +
∂U(rn)

∂rn
= F(Br)

n +F(Ext)
n , (12)

where ṙn is the time derivative: ṙn = drn/dt, F(Br)
n is the Brow-

nian force and F(Ext)
n is the external force acting on the particle

due to oscillating mechanical loading. The potential U(rn) of the
n-th particle in the magnetic field is given by eqn (3) and (5).
As it was discussed in many monographs,58–60 the inertial term
can be neglected as compared to the viscous drag term in a good
approximation for the viscoelastic polymer materials.

The position vector rn of the magnetic particle can be presented
as a sum of its average value, r(0)n , and deviation from this value,
δrn:

rn = r(0)n +δrn. (13)

One can see from eqn (5) and (12) that the dynamics of
an MSE is determined by a non-linear equation of motion
when taking into account the magnetic interactions. However,
for calculation of the dynamic moduli in the linear response
regime we can use linearization of the equation of motion
with respect to small deviations |δr| � a. Substituting eqn (3)
and (5) into (12) and using this linearization, the equation of
motion for δrn can be rewritten in the following matrix form:

ζ δ ṙn +K ∑
n′

Cnn′(δrn−δrn′)+12K
(

M
M∗

)2

∑
k

â(k)(δrn−δrn+k) = F(Br)
n +F(Ext)

n , (14)

where components of the symmetric matrix â are given by:

axx(k) =
8k4

x −24k2
x(k

2
y + k2

z )+3(k2
y + k2

z )
2

56k9 , (15)

ayx(k) = axy(k) =
5kxky(4k2

x −3k2
y −3k2

z )

56k9 , (16)

azx(k) = axz(k) =
5kxkz(4k2

x −3k2
y −3k2

z )

56k9 , (17)

ayy(k) =−
4k4

x +4k4
y − k4

z +3(k2
x + k2

y)k
2
z −27k2

x k2
y

56k9 , (18)

azy(k) = ayz(k) =
5kykz(6k2

x − k2
y − k2

z )

56k9 , (19)

azz(k) =−
4k4

x +4k4
z − k4

y +3(k2
x + k2

z )k
2
y −27k2

x k2
z

56k9 . (20)

In eqn (14) the index k = n′−n was introduced and the relation-
ship r(0)n′ − r(0)n = ak was used. Besides, to derive eqn (14), the
relation (10) between M∗ and the structural parameters φ , υ and
E0 was taken into account. To solve eqn (14) we use the new co-
ordinates, which for the cubic network are related to the Fourier
transform:35–38,46,47,49,52

Q(θθ) = ∑
n

δrneinθθ , (21)

where nθθ is the scalar product of the vectors. The components
of the vector θθ = (θx,θy,θz) change within the range from 0 to π:
θx,y,z ∈ [0,π]. Similar to the classical Rouse model,58 the differ-
ent values of θθ determine different scales of motion in the 3D
network. For instance, the limiting values of θθ → (0,0,0) de-

termine the long-scale dynamic modes with co-phase motion of
neighbouring particles. The limiting values of θθ → (π,π,π) deter-
mine the short-scale dynamic modes with anti-phase motion of
neighbouring particles.35–38,46,47,49,52

The solution of the system of eqn (14) relative to the compo-
nents δ rx,δ ry,δ rz of the vector δrn as a function of external forces

F(Br)
n and F(Ext)

n can be derived from a general solution of a homo-
geneous system of these equations, whose right sides are equal to
zero: F(Br)

n = 0 and F(Ext)
n = 0. The solution of the homogeneous

system of equations determines such important characteristics of
MSEs as normal modes and the relaxation-time spectrum. Multi-
plying both parts of eqn (14) by the factor einθθ and taking a sum
over the index n, we obtain the homogeneous system of equations
in the following matrix form:

Q̇(θθ)+
1
τ0

B̂Q(θθ) = 0, (22)

where τ0 = ζ

12K is the minimal relaxation time of the cubic net-
work at the absence of the magnetic field.37 The matrix B̂ has the
following form:

B̂ = λ0 Î +
(

M
M∗

)2
Â, (23)

where λ0 is a function of θθ : λ0 =
1
6 [3−cos(θx)−cos(θy)−cos(θz)],

Î is the 3× 3 unit matrix and the matrix Â is related to the sym-
metrical matrix â:

Aαβ = ∑
k

aαβ (k)(cos(kθθ)−1). (24)

Note that the non-diagonal coefficients of the matrix Â are not
equal to zero: Aαβ 6= 0 at α 6= β (α,β = x,y,z). This means that
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Fig. 3 Coefficients Aαβ , where α,β = x,y,z as functions of
θ = θx = θy = θz.

the dynamics along a given axis depends on the motion along the
other axes. However, as we will show below, the contribution
of the non-diagonal elements of the matrix Â to the dynamic-
mechanical characteristics can be neglected in a good approxima-
tion.

The sum in eqn (24) is performed over the components of the
3D index k, where kα change within the range of integer numbers
from −N to N. As in ref.,17 we have found that the sum over
k converges already at N ≈ 10. To obtain results with the high
accuracy, we calculate the sum over k at N = 20. Fig. 3 shows the
coefficients Aαβ at equal values of the components of the vector
θθ (θx = θy = θz ≡ θ) as a function of the parameter θ . Note that
according to eqn (15)-(20) and (24) Ayy = Azz, Axy = Ayx = Axz =

Azx and Ayz = Azy at θx = θy = θz.
One can see from Fig. 3 that absolute values of the non-

diagonal coefficients Aαβ (at α 6= β) are much smaller than ab-
solute values of the diagonal coefficients Aαα and, thus, can be

neglected at θx = θy = θz. In a general case with θx 6= θy 6= θz

all elements of the matrix Â differ from each other: Axx 6= Ayy 6=
Azz 6= Axy 6= Axz 6= Ayz. The contribution of non-diagonal elements
at θx 6= θy 6= θz to the solution of eqn (22) is discussed below.

The solution of eqn (22) can be found in the following form:

Q = Ve−t/τ , (25)

where τ is the relaxation time for a given normal coordinate. It is
convenient to introduce a dimensionless inverse relaxation time
λ = τ0/τ. Substituting eqn (25) into (22), we get equation for λ

in the following form:
B̂V = λV. (26)

Thus, the vector V is the eigenvector of the matrix B̂ and the re-
laxation time τ is related to the eigenvalues λ of the matrix B̂.

We calculated numerically the three eigenvalues λ1 < λ2 < λ3

of the matrix B̂ as functions of θx, θy, θz. The results of numerical
calculations of λi (i = 1,2,3) were compared with the approxima-
tion, in which the non-diagonal elements of matrix Â are equal to
0. In this approximation, the eigenvalues of the matrix B̂ can be
written in the following simple form:

λα (θθ) = λ0(θθ)+

(
M
M∗

)2
Aαα (θθ), (27)

where α = x,y,z. One can see that λx,λy and λz are functions of
the θx,θy,θz and depend on the parameter M/M∗. Besides, it can
be seen that λy = λz at θx = θy = θz. Note that λ0 describes the
eigenvalues λ for the isotropic cubic network at the absence of
any fields.35,37,38

Fig. 4 shows the eigenvalues λ at θx = θy = θz = θ as functions
of θ for M/M∗ = 0.5 (a) and M/M∗ = 0.9 (b). The solid lines
with symbols illustrate the result for exact eigenvalues λ1, λ2, λ3

obtained by numerical diagonalization of the matrix B̂. The bare
solid lines present analytical results of the approximation given
by eqn (27) for λx,λy, λz. The dashed line in Fig. 4 shows the
eigenvalue λ0 for the isotropic network (at H = 0) as function of
the parameter θ .

First, it can be seen that application of the magnetic field leads
to the splitting of the spectrum λ into two main branches for
motions along the external magnetic field (λx) and perpendic-
ular to the field (λy,λz). Moreover, the higher is the magnetic
filed, the higher is the splitting: the values λx (λx < λ0) decrease
as a function of M/M∗, whereas λy = λz increase (λy,λz > λ0).
This tendency can be explained by the fact that the inverse re-
laxation time λα is proportional to the effective elasticity along
the α-axis. As we have shown, the effective elasticity along the
x-axis decreases (eqn (9)) leading to the decrease of λx, whereas
the elasticity along the y-axis increases (eqn (8)) leading to the
increase of λy. Moreover, one can see from Fig. 4 that the discrep-
ancies between the exact value λ1,λ2,λ3 and their approximation
λx,λy,λz at equal values of θx = θy = θz are negligible in the region
M/M∗ ≤ 0.9.

In a general case θx 6= θy 6= θz the values of λα are different:
λx 6= λy 6= λz. Fig. 5 shows relative deviations between the val-
ues λ1,λ2,λ3 and λx,λy,λz averaged over the vector θθ , running in
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Fig. 4 Dependence of λ0, λx,λy, λz and λ1,λ2, λ3 on θ = θx = θy = θz.

a cube θα ∈ [0,π], α = x,y,z: ε1 = 〈 |λ1−λx|
λx
〉, ε2 = 〈 |λ2−min(λy,λz)|

min(λy,λz)
〉

and ε3 = 〈 |λ3−max(λy,λz)|
max(λy,λz)

〉. One can see from Fig. 5 that the values
of the average deviations ε2,3 for the modes perpendicular to the
external magnetic field are smaller than 0.5% for M ≤ M∗. The
value of the average deviation ε1 for the mode along the exter-
nal magnetic field is smaller than 0.5% at M ≤ 0.9M∗ and then
rapidly increases when M→M∗, i.e., when M approaches to the
boundary of the validity range of the model. Below we will per-
form calculations of the frequency dependent dynamic moduli in
the range M ≤ 0.9M∗, neglecting the non-diagonal terms of the
matrix Â and approximating the eigenvalues by eqn (27).

4 Dynamic moduli of MSE
For calculation of the dynamic moduli of MSEs we will use a for-
malism developed previously by one of the authors for anisotropic
networks.35,52 As in refs.35,52 we consider infinitesimal periodic
shear deformation, γ, applied along the α-axis with the shear
gradient along the β -axis (see Fig. 1). Orientation of the ex-

Fig. 5 Dependence of the average deviations εi (i = 1,2,3) on M/M∗.

ternal magnetic field H along three particular directions (the α-
and β -axis as well as perpendicular to the αβ -plane) reproduces
three principal experimental geometries, denoted by G, V and D
in Fig. 1.

The shear deformation results in appearance of the mechanical
stress, σαβ . At small shear rates γ̇(t) the shear stress depends
linearly on γ̇(t) and can be written in the following form:35,52,58

σαβ (t) =
∫ t

−∞

dt ′Gαβ (t− t ′)γ̇(t ′), (28)

where Gαβ (t) is the shear relaxation modulus for a given αβ -
geometry. Using assumption Aαβ = 0 (α 6= β), the equation of
motion (eqn (14)) for MSEs becomes similar to the equation of
motion for anisotropic LC-networks.35 Note that in spite of the
difference between the physical phenomena, which are consid-
ered here and in ref.35, both of them can be described by the
same mathematical formalism. Using the formalism developed in
ref.35 for the relaxation modulus of anisotropic networks, expres-
sion for Gαβ of an MSE can be written in our notation as follows:

Gαβ (t) = G(eq)
αβ

+
kBT
V ∑

p

λα,p

λβ ,p
e−(τ

−1
α,p+τ

−1
β ,p)t , (29)

where G(eq)
αβ

is the equilibrium (static) shear modulus, kB is the
Boltzmann constant, T is the absolute temperature, V is the vol-
ume of the network, index p numerates all normal modes in the
3D cubic network. Note, the equilibrium shear modulus G(eq)

αβ
for

MSEs was considered in our recent work.17

For a finite network with fixed boundaries, the index θθ runs
over the discrete values:

θθp =
π

Nc
(px, py, pz). (30)

Here the integers pα run from 1 to Nc−1, where Nc is the number
of cells of the finite network along the x-, y- and z-axis. The total
number of the cells is N3

c . For the infinite network (Nc → ∞) the
sum over indexes pα can be replaced by the integral over the

Journal Name, [year], [vol.],1–12 | 7

Page 7 of 13 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



vector θθ in the volume Ω of the cube with the side length π:

1
N3

c
∑

px,py,pz

→ 1
π3

∫
Ω

dθθ (31)

and eqn (29) can be rewritten as follows:

Gαβ (t) = G(eq)
αβ

+ ckBT
1

π3

∫
Ω

dθθ
λα (θθ)

λβ (θθ)
e−(λα (θθ)+λβ (θθ))t/τ0 , (32)

where c = N3
c /V is the number of magnetic particles in the unit

volume.
The dynamic shear modulus G∗

αβ
(ω) is related with the relax-

ation modulus Gαβ (t) as:

G∗
αβ

(ω) = iω
∫

∞

0
Gαβ (t)e

−iωtdt, (33)

where ω = 2π f is the angular frequency. The real and imaginary
parts of G∗

αβ
give the storage and loss moduli: G

′

αβ
= Re(G∗

αβ
)

and G
′′

αβ
= Im(G∗

αβ
). Substituting eqn (32) into (33) we obtain:

G
′

αβ
(ω) = G(eq)

αβ
+ckBT

1
π3

∫
Ω

dθθ
λα (θθ)

λβ (θθ)

(ωτ0)
2

[λα (θθ)+λβ (θθ)]
2 +(ωτ0)2 ,

(34)

G
′′

αβ
(ω) = ckBT

1
π3

∫
Ω

dθθ
λα (θθ)

λβ (θθ)

ωτ0(λα (θθ)+λβ (θθ))

[λα (θθ)+λβ (θθ)]
2 +(ωτ0)2 . (35)

Varying the sets of the indices α and β , we can calculate
the moduli for the three principal geometries: (α,β ) = (y,x) for
the G-geometry (G∗yx = G∗G), (α,β ) = (y,z) for the V-geometry
(G∗yz = G∗V ) and (α,β ) = (x,y) for the D-geometry (G∗xy = G∗D).
Fig. 6a, 6b, 6c show the frequency dependences of the storage
(filled symbols) and loss (open symbols) moduli for G-, V- and
D-geometries, respectively, at varying values of the reduced mag-
netisation M/M∗. The black lines in Fig. 6a, 6b, 6c illustrate the
moduli for an isotropic network at the absence of the magnetic
field. As can be seen from eqn (34)-(35), G∗G = G∗V = G∗D at H = 0
and the dynamic moduli G∗

αβ
coincide with the dynamic modulus

for the isotropic network found in ref.35,37,38

The coarse-grained cubic model provides the asymptotic
power-law of the storage modulus with the exponent 3/2:35–38

(G
′ −G(eq))/ckBT ∼ ω3/2 at ω < τ

−1
0 , as can be seen from Fig. 6.

This feature distinguishes the cubic network model from, e.g.,
Maxwell model, which predicts the asymptotic power-law behav-
ior with the exponent 2: (G

′−G(eq))/ckBT ∼ω2 at ω < τ
−1
M , where

τM is the single time in the Maxwell model. The frequency behav-
ior ∼ ω3/2 of storage modulus of the polymer networks is caused
by the contribution not only from a single mode of motion but
by the set of all collective modes from chains included into the
united network structure.

Note that since we consider only the long-scale modes at τ > τ0,
the density c in eqn (32)-(35) determines the concentration of
the magnetic particles in MSE sample. However, after including
all the nano-scale modes at τ < τ0, the density c in the prefactor
will become the density of the Kuhn segments.43 In this case, even
the absolute value ckBT will be in the quantitative agreement with
characteristic experimental values of the moduli: ckBT ∼ 105−106

Pa.43 However, contribution of the nano-scale modes to the dy-

Fig. 6 Reduced storage G
′

and loss G
′′

moduli as functions of the
reduced frequency ωτ0 for the G-, V-, D-geometries, calculated at
M/M∗ = 0.00,0.50,0.75,0.90; τ0 is the minimal relaxation time of the
cubic network at the absence of the magnetic field.

namic moduli of MSE is the special task. Since our model includes
only long-scale modes at τ > τ0, presently it makes sense to com-
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pare the relative changes of the moduli with respect to the initial
values, but not the absolute values.

The blue, green and red lines in Fig. 6a, 6b, 6c show the moduli
of MSEs at the presence of the magnetic field with M/M∗= 0.50,
0.75, 0.90, respectively, as compared to the initial values at M = 0
(black lines). One can see that application of the external mag-
netic field leads to the different behaviour of the dynamic moduli
of MSEs for different geometries. The modulus G∗G increases and
G∗D decreases significantly, whereas G∗V changes slightly with in-
crease of the magnetic field. This tendency can be explained by
the fact that the moduli are proportional to the different combina-
tions of the inverse relaxation times: G∗G ∝ λy/λx, G∗V ∝ λy/λz ≈ 1
and G∗D ∝ λx/λy. As we have shown above (see Fig. 4), the inverse
relaxation time λx decreases, whereas the inverse relaxation times
λy and λz increase with increase of the magnetic field. This leads
to the increase of G∗G and to the decrease of G∗D. At the same time,
the difference between λy and λz is sufficiently small and, thus,
the dynamic modulus G∗V changes only slightly with increase of
the magnetic field.

It is important to point out that our model predicts the values
of the dynamic moduli for the G-geometry, which are in a qual-
itative agreement with experimental data. Many experimental
works demonstrate that both G

′

G and G
′′

G increase with increase
of the magnetic field and the change of their values at fixed fre-
quency can reach up to 1 or even 2 decades at experimentally
investigated magnetic flux densities.6,25,27,29,50 As can be seen
from Fig. 6a, the proposed model provides the change of G

′

G and
G
′′

G up to one decade at B < B∗. The V- and D-geometries were
not yet studied in experiments. Thus, the theoretical results for
these geometries can be considered as a prediction of the theory.

5 Comparison with experimental data. Dis-
cussion

In this section we will demonstrate that the theoretical formal-
ism proposed above allows to analyze the experimental data for
the G-geometry also quantitatively. Since eqn (34)-(35) for the
dynamic moduli include a numerical integration, we use an addi-
tional approximation for the inverse relaxation times to simplify
the calculations. As we discussed above, the values of λx and λy

are proportional to the effective elasticity constants for motions
along x- and y-axis. According to eqn (8)-(9) these elasticity con-
stants can be introduced as:

K(eff)
x = K

[
1− (M/M∗)2

]
, (36)

K(eff)
y = K

[
1+0.5(M/M∗)2

]
. (37)

Thus, the ratio between λx and λy can be approximated by the
ratio between appropriate elasticity constants:

λy

λx
∼=

1+0.5(M/M∗)2

1− (M/M∗)2 . (38)

In this approach, the ratio λy/λx in eqn (34)-(35) for the G-
geometry is independent of the integration variable θθ and can be
taken out of the integrals. Using the approximation λx ≈ λy ≈ λ0

in the integrands, the remaining integrals with the prefactor

ckBT/π3 are equal to the storage G
′

0(ω) and loss G
′′

0(ω) mod-
uli at the absence of the magnetic field: G

′

0(ω) = G
′
(ω)|H=0 and

G
′′

0(ω) = G
′′
(ω)|H=0. At small M/M∗ we obtain the following ap-

proximate equations:

G
′
' G0

[
1+1.2(M/M∗)2

]
+(G

′

0−G0)
[
1+1.5(M/M∗)2

]
, (39)

G
′′
' G

′′

0

[
1+1.5(M/M∗)2

]
, (40)

where G0 is the static shear modulus at the absence of the mag-
netic field given by eqn (2). Here we used a prediction for the
equilibrium shear modulus G(eq)

G , obtained in the framework of

the cubic lattice model:17 G(eq)
G ' G0

[
1+1.2(M/M∗)2]. Using

an identity of the ratios M/M∗ and B/B∗, eqn (39)-(40) can be
rewritten as follows:

G
′
' G

′

0 +C1B2, (41)

G
′′
' G

′′

0 +C2B2, (42)

where the frequency-dependent coefficients C1 and C2 are deter-
mined by the structural parameters of the model B∗, G

′

0, G
′′

0 and
G0, as it follows from eqn (39)-(42):

C1 =
1.5

(B∗)2

(
G
′

0−0.2G0

)
, (43)

C2 =
1.5

(B∗)2 G
′′

0. (44)

Here we recall that the critical value B∗ depends on the volume
fraction of magnetic particles and on the static modulus of the
composite according to eqn (11). Thus, eqn (41)-(44) provide ex-
plicitly the structure-property relationships for the dynamic mod-
uli for MSEs using a microscopic dynamic model.

Now, we use eqn (41) and (42) to analyse experimental data
for G

′
and G

′′
measured at a constant frequency. As an example,

we consider the experimental data of ref.26 for the storage and
loss moduli, measured as functions of the magnetic field B in the
range B = 0..700 mT at f = 10 Hz and for different volume frac-
tions φ . For our theoretical analysis we use the data for G

′
and

G
′′

at low magnetic field (B = 0..200 mT), shown in Fig. 7 by solid
lines with the symbols. This regime corresponds to the validity
range of our model.

The fits are shown by the dashed lines in Fig. 7 and the fitting
parameters G

′

0, C1, G
′′

0 and C2 are presented in Table 1. The ex-
perimentally measured volume fractions φ are given in the first
column. Parameters G

′

0, C1, G
′′

0 and C2 allow us to estimate the
structural parameters B∗ and G0 using eqn (43)-(44):

B∗ =

(
1.5G

′′

0
C2

)1/2

, (45)

G0 = 5

(
G
′

0−
C1G

′′

0
C2

)
. (46)

Finally, using the values of B∗ and G0 we estimate theoretically
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Fig. 7 Dependences of G
′

(a) and G
′′

(b) on the magnetic flux density B
at f = 10 Hz and at different volume fraction φ = 10%,20%,30% and
35%. Solid lines with the symbols illustrate the experimental data
extracted from ref., 26 dashed lines show their fitting according to
eqn (41)-(42).

the volume fraction φth according to eqn (11):

φth =

(
4πµ0G0

63(B∗)2

)1/2

. (47)

The values of B∗, G0 and φth estimated for each experimental vol-
ume fraction φ are shown in Table 1.

From this table one can see that the static shear modulus G0 in-
creases with increase of the volume fraction. It is approximately
2-7 times smaller than the storage modulus G

′

0 measured at 10
Hz and at the absence of the external magnetic field. Here we
note that the static modulus G0 = G

′

0(ω → 0) can be up to one
order of magnitude smaller than G

′

0 measured at 10 Hz.25,29,43

Additionally, we obtain the values of φth, which are very close
to the experimental values φ . This good agreement of the the-
oretical results with experimental data demonstrates a great po-
tential strength of the proposed theoretical formalism to study
the dynamic properties of MSEs of different structures. The for-
malism can be considered as a basis for future studies of the ef-

Table 1 Fitting parameters G
′
0, C1, G

′′
0 , C2 and estimated values of B∗,

G0 and φth.

φ , G
′
0, C1, G

′′
0 , C2, B∗, G0, φth,

% [kPa] [ Pa
(mT)2 ] [kPa] [ Pa

(mT)2 ] [mT] [kPa] %

10 68.0 0.37 17.9 0.10 518 8.9 9.1
20 75.4 0.56 18.8 0.15 434 26.1 18.6
30 103.4 1.31 27.0 0.37 331 39.0 29.9
35 153.9 1.43 41.0 0.42 383 71.5 35.0

fects of complex network structure (such as short-scale segmen-
tal motions inside the network strand, heterogeneous distribution
of cross-links, polydispersity of network strands, the presence of
dangling chains and loops, etc.) on the dynamic properties of
MSEs. Especially, the influence of particle distribution on the dy-
namic moduli of MSEs can be a topic of further theoretical de-
velopments, for example, based on hexagonal or body-centered
cubic network models, which were used to study the static mod-
uli of MSEs.18,57

6 Conclusions
A viscoelastic microscopic model has been introduced for de-
scription of the low-frequency dynamics of magneto-sensitive
elastomers with isotropically distributed magnetic particles un-
der external homogeneous magnetic field. The network do-
mains between neighbouring particles are represented in the low-
frequency regime by linear Hookean springs, which connect the
near-neighbour particles. Equations of motions take into account
the influence of mechanical and magnetic forces on the dynam-
ics of magnetic particles. The theory is developed for magnetic
flux densities below the critical value B∗, at which the magnetic
particles are only able to fluctuate around their average positions
and do not rearrange into chain-like clusters under the magnetic
field. The critical value B∗ increases as a function of the elastic
modulus of the composite. The range B < B∗ corresponds to ex-
perimentally studied ranges of the magnetic fields: B∗ ∼ 200−800
mT.

The relaxation spectrum and the frequency-dependent shear
moduli G′ and G′′ of MSEs are calculated as functions of the mag-
netic field. We show that application of the external magnetic
field can lead to the increase or decrease of G′ and G′′ depend-
ing on a mutual arrangement of the magnetic field vector and
the direction of shear deformation. Three principal geometries
of shear deformation are considered, in which the magnetic field
H is applied along the shear gradient vector (G-geometry), along
the shear displacement vector (D-geometry) and perpendicular to
the plane formed by these two vectors (V-geometry).

In the G-geometry the value of G∗G increases with increase
of the magnetic field and can reach up to one order of magni-
tude. This result of our theory agrees well with experimental
studies.6,25,27,29,50 Further, we show that in the V-geometry the
shear deformation is disturbed only slightly by the presence of
the external magnetic field. An opposite picture is found for the
D-geometry, where application of the external magnetic field soft-
ens the magnetised sample considerably. The results for the shear
moduli in the D- and V-geometries can be considered as predic-
tions of the theory. Moreover, we propose a simple fitting proce-
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dure, which allows to describe experimental data and to extract a
number of structural characteristics of MSEs. The extracted val-
ues of the volume fraction are close to experimental ones and the
calculated static shear moduli of MSEs have a reasonable magni-
tude.

The frequency dependences of the dynamic moduli show ten-
dencies in a qualitative agreement with a number of experimen-
tal data: the moduli are increasing functions of frequency in the
low-frequency regime.6,25,27,29,50 However, the exponents α and
β of the frequency dependences G

′
∝ ωα and G

′′
∝ ωβ are ex-

pected to be very sensitive to the connectivity of network strands.
The dependence of the exponents α and β on the network struc-
ture demands a special analysis as it was shown in a number of
theoretical works for non-magnetic polymer networks.36–45 The
similar analysis for MSEs can be a topic of further theoretical in-
vestigations.

We hope that our theoretical findings will initiate new experi-
mental studies of the dynamic mechanical properties of MSEs for
different geometries of the magnetic field with respect to the os-
cillating mechanical loading.
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