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Clogging of granular materials in silos: effect of grav-

ity and outlet size†

Roberto Arévalo,∗a Iker Zuriguel,b

By means of extensive numerical simulations we disclose the role of the driving force in the clog-

ging of inert particles passing through a constriction. We uncover the effect of gravity and outlet

size on the flow rate and kinetic energy within the system, and use these quantities to deepen our

understanding of the blocking process. First, we confirm the existence of a finite avalanche size

when the driving force tends to zero. The magnitude of this limit avalanche size grows with the

outlet size, as expected by geometrical reasons. In addition, there is an augment of the avalanche

size when the driving force is increased, an effect that is enhanced by the outlet size. This phe-

nomenology is explained by assuming that, in order to get a stable clog developed, two conditions

must be fulfilled: 1) an arch spanning the outlet size should be formed; 2) the arch should resist

until the complete dissipation of the kinetic energy within the system. From these assumptions,

we are able to obtain the probability that an arch gets destabilized, which is shown to primarily

depend on the square root of the kinetic energy. A minor additional dependence of the outlet size

is also observed which is explained in the light of recent results of the arch resistance in vibrated

silos.

1 INTRODUCTION

The flow and transport of particulated materials still poses a con-

siderable challenge to our scientific understanding. While the di-

luted regime is well described in terms of kinetic theory, dense

flow is still far from a complete comprehension. Theoretical

modeling seems divided between continuous theories preferred

in the analytical approach (see, e.g.,1,2) and the discrete ap-

proach which constitutes the basis of most numerical models. In

this conundrum, clogging emerges as a conspicuous characteris-

tic of particulate materials that clearly separates them from fluids.

Clogging occurs when the flow of particles is suddenly arrested by

the development of a stable structure (generically, an arch) that

obstructs the channel. It is usually observed in bottlenecks of

width similar to the size of the particles. The concurring causes

range from friction among particles and channel walls to geomet-

rical frustration. The phenomenon is truly universal3 and has

been reported in systems as diverse as a suspension of micropar-

ticles passing through a narrowing4,5, electrons on the surface of

liquid helium passing through nanoconstrictions6,7, vortex mat-
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ter in type II superconductors8–10 and clogs of humans and other

animals flowing through narrow doors3. Examples are numerous

in the engineering literature11. Closely related is depinning12,13,

in which a system of particles experiences a transition from ar-

rested to flow states under an applied force. Surely, in this wide

range of systems, differences will be found in the details of the be-

havior. The law governing the flow of particles, for example, may

depend on the nature of their interactions, the source of driving

or the presence of interstitial medium (like air in a silo).

A paradigmatic and widely studied example of system undergo-

ing clogging is a silo, see Fig. 1. This is a deposit of particles that

is discharged by gravity through an orifice at its base. If the ori-

fice is bigger than several times the typical size of the particles, a

steady flow develops. In this case, the flow is given by the Bever-

loo expression14 Q = Cρb
√

g(D− kd)3/2, in the two-dimensional

case. Here Q is the flow in number of particles per unit time, C is

a dimensionless constant related to the properties of the flowing

material, ρb is the bulk density, g is the acceleration of gravity,

D is the size of the aperture, d the diameter of the grains, and

k is a geometric factor usually related to the effective outlet for

finite sized flowing particles. This empirical expression is valid

for a small span of D values and has been recently reformulated

in order to give physical meaning to the different constants intro-

duced15.

For outlet sizes only a few times bigger than the particles, clogs

might develop: the larger the aperture, the less frequently arches

appear, so for very big orifices clogging is not observed on acce-
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Fig. 1 (Color online) Example of clogging in two of the simulated silos.

Left, the aperture size is D = 2.5, right is D = 4.5

sible time scales. A convenient way to study clogging is to define

the avalanche size s as the number of particles that flow from

the arch destruction until the development of a stable clog. The

distribution function is conspicuously found to be an exponential

(this also holds for other systems undergoing clogging) and can

be explained assuming a constant probability of clogging during

the whole avalanche duration16. In that scenario, if p is defined

as the probability that a particle passes through the outlet without

forming a clog, the distribution function is given by:

n(s) = ps(1− p) (1)

The first moment of the distribution (the average avalanche

size 〈s〉) can be then used to analyze the effect of changing sev-

eral parameters. Among them,the role of the aperture size has

been the most extensively studied. Current experimental data are

compatible with two very different interpretations. By one side,

it is proposed that there exists a power law divergence at a cer-

tain critical aperture size17–19; by other side, experimental results

have been found to be compatible with exponential laws18,20,21

with no critical transition. Undoubtedly, a better understanding

of the arching formation process is necessary to settle the depen-

dence of the avalanche size with the aperture.

In this sense, while the role of the orifice size is being thor-

oughly investigated, that of the driving force -gravity in this case-

has received much less attention. Regarding the flow rate, di-

mensional analysis suggests a square root dependence on gravity,

whose physical origin is usually attributed to the particles falling

freely from an approximately circular region above the orifice.

However, the nature of this so called “free fall arch” has not been

disentangled until very recently22. Experimentally, the flow rate

dependence on the square root of gravity has been verified in a

range that goes up to 20 times Earth’s acceleration of gravity, us-

Fig. 2 (Color online) Average avalanche size (in logarithmic scale)

versus Γ0.5 for six different outlet sizes as indicated in the legend.

ing a centrifuge in the continuous flow regime (i.e. large outlet

sizes)23.

So far, there are not experimental measurements on the role

of driving force in the clogging process. In a previous work24

simulations were used to change parameter g over four orders of

magnitude in the clogging regime (for a small outlet size). As ex-

pected, the flow measured between clogs was found to depend on√
g. Surprisingly, it was also reported that the average avalanche

size tends to a finite value when the driving force tends to zero. In

the present work we extend and generalize our previous results

by carrying out a thorough investigation of the effect of both, the

aperture size and driving force, that allows to unveil the different

roles that these variables play in the silo clogging process.

2 Simulations

In this work, we report numerical simulations of the discharge

of inert grains from a silo by gravity24. We implemented 6 dif-

ferent outlet sizes in the range of 2.5 to 5.0 times the diame-

ter of the particles, hence observing development of clogs in all

cases16,18,19,25–29. The avalanche size and flow properties are

measured for 10 different values of g in a range spanning four

orders of magnitude.

We use soft-particle molecular dynamics simulations of mono-

sized disks in two dimensions. The restoring force in the nor-

mal direction of collision depends linearly on the particles overlap

ξ = d − ri j, with stiffness kn = 105(mg/d), where d = 1 mm is the
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Fig. 3 (Color online) Average avalanche size in logarithmic scale as a

function of the flow rate for different outlet sizes as indicated in the

legend.

particle diameter, m = 1 is the mass and ri j the distance between

the centers of the particles. Additionally, there is a dissipative

force proportional to the relative normal velocity of the colliding

grains, with damping parameter γn = 300(m
√

g/d). We imple-

ment static friction placing a spring in the direction tangential

to the normal joining the centers of the particles30. The elon-

gation of this spring is obtained integrating the relative velocity

of the surfaces in contact. The parameters are kt = (2/7)kn and

γt = 200(m
√

g/d). The friction coefficient is set to µ = 0.5, and

the gravity to Γ times the value of g.

The simulation protocol is as follows. A flat-bottomed rectan-

gular silo of width 18d is filled with 35 layers of grains which fall

freely from a height much larger than their size. The side-walls of

the container are smooth, while the base is formed by fixed grains

at mutual distances of 0.5d. Once the grains in the silo come to a

rest, a hole is opened at the center of the base and the particles

start to flow. The time at which each particle passes through the

orifice is registered and these grains are relocated at the top of

the silo in order to keep a constant height of the granular layer.

A clog is detected when the kinetic energy of the system falls to

the value it had before opening the hole (the difference amounts

to several orders of magnitude) and remains under this value for

20000 time steps. Then, the avalanche size (measured in number

of particles) and duration are registered, so from these data we

can also obtain the flow rate. The flow is resumed by removing

three of the grains conforming the blocking arch. To help visual-

izing our system a movie of the flowing grains for low and high

driving forces is provided as a Suplementary Information.

Several series of experiments (consisting of at least 1000

avalanches each) have been performed for different values of Γ.

In order to optimize the computing time, we use a primary inte-

gration step δ = 10−4
√

d/g for simulations with Γ ≃ 1. For Γ ≃ 3

the integration step is reduced to δ/3, and for simulations at Γ≃ 6

and Γ ≃ 10 we use a step of δ/6. For simulations at Γ ≃ 10−3 we

increase the time step to 10δ .

In the remainder of the paper we will use D as the adimensional

size of the oriffice and will express the flow Q in particles per

second, and the kinetic energy in mm2/s2 given that the mass of

all particles is 1.

3 Avalanche size

We start by presenting the effect of the driving force on the

avalanche size for all the outlets studied (Fig. 2). Interestingly,

the fairly linear trend observed in semilogarithmic scale suggests

an exponential dependence 〈s〉 ∝ eΓ0.5
. In our previous work24

we suggested a linear relationship. This was due to the use of

small orifice for which the variation in avalanche size was only a

50% and was well fitted by the linear approximation. Our new

data, with larger outlets that lead to a variation in 〈s〉 of around

a decade, allow to accurately describe the exact correlation. Fur-

thermore, we confirm the unexpected finding that, as the driving

force vanishes, the mean avalanche size tends to a finite value:

〈s0〉. This means that no matter how slowly the particles move,

there is always an initial flow before the silo eventually clogs. It

is natural to think of the limiting 〈s0〉 as a geometrical character-

istic of the problem. One can in principle rule out an effect of the
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Fig. 4 (Color online) a) Normalized average avalanche size as a

function of the flow, for the different outlet sizes as shown in the legend.

The average is normalized by the limit value of the avalanche when

Γ → 0 obtained from fitting the data of Fig. 3. b) Same results but with

respect to the square root of the kinetic energy in the system. c) Total

kinetic energy inside the silo as a function of the flow rate for different

values of Γ. Each symbol refers to a value of D as shown in the legend

of a).

silo width, since the walls are known not to play a crucial role in

clogging, then the only geometrical quantity left is the aperture

size (D).

From the results reported in Fig. 2 it becomes also clear that

the driving force has the same qualitative effect for all the outlet

sizes, but there are some quantitative differences. The first one is

related to the limit avalanche 〈s0〉 which increases with the outlet

size. Moreover, the slope of the curves does also notably increase

with D. These results can be understood in the following man-

ner: when Γ → 0 the discharge process becomes extremely slow,

since the flow rate also tends to zero, so the kinetic energy within

the system becomes very small. In such situation any arch that is

formed covering the whole outlet is expected to clog it as it could

be hardly destabilized. By other hand, as Γ increases the flow rate

increases and some of the clogging arches would be unable to re-

sist the impacts of the particles above them. Hence, one can think

of 〈s0〉 as a parameter that gives information about the number of

geometric configurations that clog the outlet21 without consider-

ing possible destabilization; while the slope of log〈s〉 as a function

of Γ0.5 would be related to the dynamics of the problem.

Since we can measure the flow directly in our simulations, we

display the same data than in Fig. 2 but with respect to Q, as in

Fig. 3. Interestingly, the flow rate dependence on D14,15 leads

to a scenario where the slopes of all curves become similar. This

is confirmed by representing the rescaled avalanche size 〈s〉/〈s0〉
versus the flow rate (Fig. 4a). At first order, all the curves seem to

collapse in a single one suggesting that the destabilization process

is intimately related to the flow rate (which in turn depends on

Γ and D). The origin of this behavior can be understood taking

into account the dependence of the rescaled avalanche size on

the square root of the kinetic energy within the system (Ek) as in

Fig. 4b. Both Fig. 4a and Fig. 4b look very similar with a slightly

larger dispersion of the data when using the kinetic energy as the

independent variable. The reason for this similarity is justified by

the relationship Ek ∝ Q2 shown in Fig. 4c and justified in the next

section.

Our result in Fig. 4a implies that the avalanche size obeys a

scaling form:

〈s(Γ,D)〉= 〈s0〉g(Q(Γ,D)) . (2)

According to the Beverloo law14, the combination Q(Γ,D)

is given (modulo a constant) by the product Q∗ = Γα Dβ , with

α = 1/2 and β = 3/2 in a two dimensional silo. We can test

the values of the exponents plotting 〈s(Γ,D)〉/〈s0〉 versus Γα Dβ

and looking for the values of α and β that give the best collapse.

Since a visual assessment is not satisfactory we implement the

following quantitative protocol. First, for each value of α and

β we divide the range of Q∗ in vertical bins. For each bin we

compute the difference along the vertical axis of all the pairs of

values 〈s(Γ,D)〉/〈s0〉, and we take the average, since each bin has

different number of points. We subsequently average over bins,

therefore the values of α and β that minimize these differences

are the ones that give the best collapse. The results are shown

in Fig. 5. Fig. 5a is obtained by setting α = 1/2 and sweeping

several values of β . Now, since the best collapse seems to be ob-
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tained for β = 1.55, in Fig. 5b we compare the result obtained

for different α using the best value for β , as well as β = 3/2, the

expected value14. Both results are very similar, and compatible

with α = 0.5. Given that the possible correction for β (around

3%) falls below the uncertainties in our measurements, we can

say that the result is compatible with the Beverloo scaling.

One could perform a similar analysis on Fig. 4b, plotting

against E
γ
k
, instead of the actual measured kinetic energy, and

looking for the exponent that gives the best collapse. In this

case, however, we do not obtain a minimum in the differences of

〈s〉/〈s0〉 values. Thus, although the avalanche size does roughly

increase with the kinetic energy of the whole system, another

variable is needed to account for the precise behavior. An alterna-

tive possibility is that 〈s〉/〈s0〉 scales not with the kinetic energy of

the whole system, but with that of the particles close to the exit.

Effectively, when an arch forms, since grains are not rigid they

do not become at rest at the same time. Those on top of the silo

could could be still moving downwards while the information of

the clog propagates upwards through the system, in the form of

a pressure wave, for example. This possibility is interesting and

could be investigated, but entails the difficulty of defining the re-

gion close to the outlet that should be relevant.

In summary, from these findings we can conclude that, for a

given outlet size, the increase of the avalanche size with the driv-

ing force correlates with the augment of the flow rate (or the ki-

netic energy within the system). In addition, the enhancement of

the avalanche size with respect to the limiting case Γ → 0 seems

to be rather independent of the kinetic energy for the different

outlets studied. Notwithstanding, it must be remarked that when

both, Fig. 4a and Fig. 4b, are thoroughly examined it can be ap-

preciated an increase of the slope with the aperture’s size indicat-

ing a more complex dependence on this variable.

We turn now to the explicit dependence of the avalanche size

with the aperture size (Fig. 6). All curves display the same quali-

tative behavior and can be fitted by 〈s〉= k1ek2D2

which is in agree-

ment with experimental results18,21. Note that D2 is roughly pro-

portional to the number of particles in the vicinity of the outlet.

The fitting parameters depend on the driving force as reported in

Fig. 7. The uncertainties in the parameters are 5%− 10% for the

prefactor and around 2% for the characteristic distance. Interest-

ingly, the same expression holds for the curve of 〈s0〉 = p1ep2D2

(continuous line in Fig. 6), with p1 = 1.45 and p2 = 0.358, the

fitting uncertainties being 10% and 2% respectively. Finally, this

figure shows that the outlet size is the main determinant of clog-

ging, with the driving force playing a second order effect. Indeed,

the role of the driving force is enhanced as the outlet size is in-

creased (the separation of the data from the 〈s0〉 curve increases

with D) as it was already mentioned in reference to Fig. 2.

In order to clarify the roles played by the outlet size and driv-

ing force in the clogging process, we have extended the model

derived in16 and explained in the introduction to justify Eq. 1.

The idea is to assume that, in order to have a permanent clog in

the system, two conditions should be fulfilled: i) an arch should

be formed spanning the length of the outlet; ii) the arch should

resist the collisions of particles coming from above until all the

energy within the system is dissipated.

Fig. 5 (color online). Average sum of the differences along the vertical

axis of the pairs of points 〈s(Γ,D)〉/〈s0〉. Top, differences as a function of

the exponent β in Q∗ = Γα Dβ for α = 0.5. Bottom, differences as a

function of the exponent α for β = 1.5 and β = 1.55 as indicated in

legend.
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Fig. 6 (Color online) Semilogarithmic plot of the average avalanche size

as a function of the aperture size (D) for all values of Γ. The continuous

line indicates the limit of 〈s0〉 (〈s〉 for Γ → 0) obtained for each D. It has

the same functional dependence than the full avalanche size,

〈s0〉= p1ep2D2
.

Fig. 7 (Color online) Fitting parameters of the data in Fig. 6 to the

expression 〈s〉= k1ek2D2
for different values of Γ.

We first define p0(D,Γ → 0) as the probability that, for the

limit case of Γ → 0, a particle passes through the orifice without

forming a blocking arch with its neighbors. Then we introduce

a new parameter pb(D,Γ), which measures the probability that

an oriffice spanning arch (which could potentially cause a clog)

collapses before all the kinetic energy in the system is dissipated.

To be consistent and facilitate calculations, pb(D,Γ) is the prob-

ability measured per particle in the system; in other words, the

probability that a particle passes through the outlet due to the

destabilization of arches.

By assuming that p0(D,Γ → 0) is purely governed by geomet-

rical effects and no destabilization is possible in this limit case,

and that the events associated with the probabilities p0 and pb

are independent, we can deduce an expression for the probability

of observing an avalanche of size s which necessarily ends with

a stable clog of probability (1− p0)(1− pb). The expression for

ns was already obtained for the case of vibrated silos31 where a

similar argument was used to understand the destabilization pro-

cess:

ns(D,Γ) = (1− p0)(1− pb)[p0 +(1− p0)pb]
s (3)

and the corresponding mean avalanche size is

〈s〉D,Γ =
[p0 +(1− p0)pb]

(1− p0)(1− pb)
(4)

Thus, from Eq. (4), pb can be calculated for any value of Γ by

using the following equation that considers 〈s〉D,Γ and 〈s0〉 (which

is indeed 〈s〉D,Γ→0) for each outlet size31:

pb(D,Γ) =
〈s〉D,Γ −〈s〉D,Γ→0

〈s〉D,Γ +1
(5)

The results are displayed in Fig. 8 and show that the larger Γ

is, the higher the probability that an arch becomes destabilized;

an effect that is enhanced as the outlet size increases. These out-

comes are appealing since, in the hypothetic case of pb reaching a

value of one, this would imply the impossibility of obtaining a sta-

ble clog. Actually, in this situation clogs could be formed but they

would be unable to resist until all the energy within the system is

dissipated.

In Fig. 9 we try to collapse all the results of pb using the kinetic

energy within the system. The curves become rather similar but

with a noticeable effect associated with the outlet size: for the

same kinetic energy in the system, the larger the outlet size, the

more likely that an arch becomes destabilized. This relationship

between the arch length and its fragility is known from experi-

ments of vibrated silos32.

In summary, by performing extensive numerical simulations of

the silo clogging phenomenon, we have been able to shed light

on the different roles that driving force and outlet size play in

the process. We assume that, in order to get a permanently sta-

ble clog, two conditions must be fulfilled, i.e., arch formation and

arch resistance until all the kinetic energy in the system is dissi-

pated. Arch formation would be a primary geometrical problem

mainly ruled by the ratio between the outlet and particles sizes.

The geometrical nature of clogging is twofold: i) the larger the
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Fig. 8 (Color online) Probability that an arch is destabilized versus the

outlet size for different values of Γ as shown in the legend.

Fig. 9 (Color online) Probability that an arch is destabilized versus the

total kinetic energy inside the silo for different values of D as shown in

the legend.

outlet, the more difficult to find a geometrical structure among

those developed spontaneously that clogs it. ii) the larger the

arch, the weaker. Arch destabilization, however, would be af-

fected by the amount of kinetic energy that must be dissipated

after arch formation. This is determined by both, the outlet size

and the driving force.

4 Flow rate and kinetic energy within the

system

In the previous section we showed that the kinetic energy scales

with the square of the flow rate Ek ∝ Q2 (Fig. 4c). This was the un-

derlying reason given to justify the similar trends observed when

representing 〈s〉/〈s0〉 versus Q (Fig. 4a), and versus E
1/2

k
(Fig. 4b).

To our knowledge, this is the first time that this relationship be-

tween the flow rate and the total kinetic energy in the silo is re-

ported, so we will try to provide an explanation. To this end, we

have measured the dependence of both, Q and Ek on the variables

explored in this problem; i.e. the driving force Γ and the outlet

size D.

In Fig. 10 the flow rate is shown to scale with Γ0.5 as already

predicted14 and evidenced, both numerically24 and experimen-

tally23. This scaling is valid for the whole range of outlet sizes

implemented and its origin has been recently clarified22. In the

silo, there is a region above the orifice where the kinetic stress is

maximum. Below this region, particles start to increase their ac-

celeration, reaching g only at the very orifice. Despite this picture

does not match the traditional view of the free fall arch below

which particles fall freely with gravity, it was found that the scal-

ing of the velocity with
√

Dg holds at the outlet. The flow rate

therefore scales as (D−1)3/2, as shown in Fig. 11, because D−1

is the effective section through which particles flow. The same

fundamental scaling of the velocity with Γ naturally explains the

linear dependence of the kinetic energy on this variable as shown

in Fig. 12. Finally, the scaling Ek ∝ (D−1)3 reported in Fig. 13 can

be explained considering the dependence of the velocity fields of

the particles at the outlet with D reported in15. In that work,

a collapse of the velocity profiles was found when rescaling by

one side the vertical velocity with the maximum at the center of

the orifice (vc) and, by other side, the horizontal coordinate with

D. In addition, vc was experimentally proved to scale with D0.5

giving rise to the global dependence of the velocity on D3/2 that

agrees with the scaling Ek ∝ (D−1)3.

5 Conclusions and discussion

In this work, we have reported the results of a systematic study

on the effect of the driving force in the passage of inert grains

through bottlenecks of different sizes. We obtain the expected

dependence of the flow rate on the square root of gravity (Q ∝

Γ0.5) which is known to be caused by the fact that Γ sets the

scaling of the velocity of the particles at the very outlet. This

in turn explains the proportionality between the kinetic energy

within the system and gravity Ek ∝ Γ. Furthermore, we recover

the Beverloo relationship between the flow rate and the outlet

size for two-dimensional silos (Q ∝ (D− 1)3/2) which is valid for

all gravity values. Finally, we observe a dependence of the kinetic
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Fig. 10 (Color online) Logarithmic plot of the average flow rate as a

function of the driving force for all the orifices studied as indicated in the

legend.

Fig. 11 (Color online) Logarithmic plot of the average flow rate as a

function of D−1 for different driving forces as indicated in the legend.

Fig. 12 (Color online) Logarithmic plot of the kinetic energy in the

system as a function of the driving force for all the orifices studied as

indicated in the legend.

Fig. 13 (Color online) Logarithmic plot of the kinetic energy in the

system as a function of D−1 for different driving forces as indicated in

the legend.
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energy within the system with the outlet size Ek ∝ (D− 1)3 that,

connected with the previous scalings between Ek, Q, Γ and D

allows to explain the proportionality: Ek ∝ Q2.

Concerning clogging, the first conclusion that can be deduced

is that gravity does not play a crucial role on its development.

And this is so, even when gravity notably affects the flow rate as

explained above. As an example, in a silo with an orifice 3 times

larger than the particles, the average avalanche size in Jupiter

(24.79 m/s2 gravity) will be of around 70 particles; whereas in

Ceres (a dwarf planet with a gravity of 0.27 m/s2) it will just de-

crease to around 40. Remarkably, the duration of the avalanche

would be completely different (0.08 s in Jupiter and 0.77 s in Ceres

as a consequence of the very important effect that gravity has on

the flow rate.

Our findings evidence that the ratio between outlet and parti-

cle size is the most important variable determining clogging. The

primary role of the outlet size is imposing a geometrical condi-

tion for the clogging arches: their span should be larger than

the orifice21,25. This is related with the limit avalanche (s0) ob-

tained for each outlet size when Γ → 0, a situation in which the

dynamical effects are –in principle– minimized. As expected, this

limit avalanche size increases with the size of the outlet as it de-

creases the number of structures spanning it. The second role of

the outlet size is related to its effect in determining the velocity

of particles at the outlet and then, their kinetic energy. Taking the

scenario of Γ → 0 as a reference, we show that rising the kinetic

energy within the system (by either increasing Γ or D) provokes

an increase of the avalanche size. This phenomenon is attributed

to a possible arch destabilization which could take place from the

moment of arch formation until all the kinetic energy within the

system is dissipated. The fact that the increase of the avalanche

size scales with the square root of the kinetic energy is in the line

of this idea. Indeed, in a recent work a timescale τ ∝ Γ−1/2 was

also found in the penetration dynamics of intruders in a granu-

lar medium under different gravities in33. The final role of the

outlet size seems to be related with the stability of arches. We

found that for a given value of kinetic energy within the system,

the larger the outlet size, the more likely that an arch becomes

destabilized. This result is in good agreement with the reduction

of arch stability found in vibrated silos when the outlet size is

increased32.

This work was partially funded by: Ministerio de Economía

y Competitividad (Spanish Government) through FIS2011-26675

and FIS2014-57325 projects.
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