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particles at the solid-fluid interface.13–15

We first describe the simulation algorithm used to compute our

simulations: a Lattice Boltzmann scheme which allows to account

for adsorption. We then analyze the effects of adsorption and

geometry of the material on transport. We further investigate

the influence of transport on adsorption and finally introduce an

improvement of the model, by taking into account the saturation

of adsorption sites and by examining its consequences.

1 Methods

1.1 The Lattice Boltzmann and moment propagation

method

The Lattice Boltzmann scheme for the numerical simulation of

fluid dynamics, which was developed in the late 1980s and has

gained much popularity since then, finds its roots in the Lattice

Gas Cellular Automata methods. While keeping the idea of the

description of the fluid on the nodes of a lattice, the Lattice Boltz-

mann approach introduces statistical physics through the use of

a Boltzmann equation.16–18 Unlike classical Computational Fluid

Dynamics, the Lattice Boltzmann method does not solve explic-

itly the Navier-Stokes equations but rather takes a mesoscopic

description of the fluid, from which the Navier–Stokes equation

can then be derived.19 One advantage of the Lattice Boltzmann

scheme is that it is relatively easy to incorporate microscopic in-

teractions within the scheme. Of particular interest in our case,

the method is efficient for modeling fluid behavior in heteroge-

neous media such as porous materials.12

At the core of the Lattice Boltzmann method is the propaga-

tion of the one-particle velocity distribution function f (r,c, t) cor-

responding to the probability of a particle to be at node r with

velocity c at a given time t. Time and space are discretized ,

and so are consequently the velocities, with different models de-

pending on the finite number of speeds ci considered, such as

D3Q15, D3Q19 and D3Q27.12,18 In this work we used the three-

dimensional model D3Q19 that has 19 speeds that correspond

to the face centers and edge midpoints of the cubic lattice. This

model was shown to be a good compromise between precision

and computational cost.20

The dynamics of the fluid on the lattice is then governed by the

following propagation equation:

fi(r+ ci∆t, t +∆t)

= fi(r, t)+

(

f e
i (r, t)− fi(r, t)

)

τ
+Fext

i ,

(1)

where for simplicity’s sake we denote by fi the component of f

on speed i, i.e. fi(r, t) = f (r,ci, t). f e
i corresponds to the local

Maxwell-Boltzmann equilibrium distribution, τ is the relaxation

time and Fext
i accounts for external forces acting on the fluid (such

as a pressure gradient) that will induce some flow. This equation

is implemented in our simulations following the method of Ladd

and Verberg,21 which allows efficient simulation of the dynam-

ics of fluids in complex porous media. This makes it possible

to study larger length and time scales, compared to atomistic or

coarse-grained methods, such as molecular dynamics and multi-

particle collision dynamics.3 22–24

In addition to the Ladd and Verberg method, we want here

to compute the dynamical properties of solutes dispersed in

the fluid. This problem of tracer dynamics is efficiently ad-

dressed by the moment propagation method proposed by Lowe

and Frenkel25,26 and further validated by Merks et al.27 In this

method, a propagated quantity P(r, t) is defined on the lattice

which evolves in time steps ∆t as:

P(r, t +∆t) =∑
i

P(r− ci∆t, t)pi(r− ci∆t, t)

+P(r, t)

(

1−∑
i

pi(r, t)

)

,

(2)

where pi(r, t) represents the probability of leaving node r with

speed ci:

pi(r, t) =
fi(r, t)

ρ(r, t)
−wi +wiλ with λ =

2Db

v2
T ∆t

. (3)

Here ρ is the fluid density, wi are constant weights depending

upon the underlying LB lattice, Db is the diffusion coefficient of

the tracers, and vT is the fluid’s speed of sound (v2
T = 1

3
∆x2/∆t2 for

D3Q19, with ∆x the lattice spacing). For a particular choice of the

propagated quantity, namely the probability to arrive at position r

at time t, weighted by the initial velocity of the tracer (in practice,

one quantity is propagated for each component of the velocity),

the velocity autocorrelation function Z can be obtained:

Z(t) = ∑
r

P(r, t)

(

∑
i

pi(r, t)ci

)

. (4)

Finally, an important quantity in the dynamical properties of the

tracers is the dispersion coefficient K to analyze and understand

the behavior of particles carried by a fluid.28–30 It quantifies the

spreading of particles inside the fluid and is defined from the stan-

dard deviation of the position of particles as:

K = lim
t→∞

σ2

2t
where σ2 = 〈r− r̄〉2 , (5)

with r̄ the average position of the particles at the considered time.

In practice, we compute it from the offsetted integration of the

velocity auto-correlation function:

K =
∫ ∞

0

[Z(t)−Z(∞)]dt . (6)

1.2 Accounting for adsorption

There are relatively few studies in the literature accounting for

physical adsorption in porous media within the Lattice Boltzmann

framework. Argawal et al. developed, in 2005, a Lattice Boltz-

mann model for one dimensional breakthrough curves simulat-

ing the adsorption of toluene on silica gels.31 Anderl et al. used

Lattice Boltzmann to simulate adsorption and bubble interaction

in protein foams,32 while Manjhi et al. applied it to the simula-

tion of two-dimensional unsteady state concentration profiles for

packed bed adsorbents.33 Zalzale et al. used a similar scheme

to study the permeability of microstructures of cement pastes,34
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as did Pham et al. and Tallarek et al. for adsorption on packed

beds.7,35

In the present work, we use a novel Lattice Boltzmann scheme

coupling adsorption and tracer dynamics, presented recently by

some of the present authors.13–15 In this approach, adsorption

occurs on interfacial fluid sites, defined as fluid nodes having at

least one solid neighboring node accessible through one of the

velocities of the D3Q19 model. We consider here the case where

adsorbed species do not diffuse on the surface. Adsorption on

interfacial site is described as an equilibrium between two popu-

lations of solute on the same lattice node: adsorbed and nonad-

sorbed (free) species. The local adsorption equilibrium between

these is dictated by the adsorption and desorption kinetic con-

stants, ka and kd , which are the probabilities to adsorb and desorb

per surface unit, respectively. The interplay between adsorption

and transport is tracked by considering an additional propagated

quantity for the adsorbed solute, Pads, and coupling its propaga-

tion to that of the free solute:

Pads(r, t +∆t) =P(r, t)pa +Pads(r, t)(1− pd)

P(r, t +∆t) =P(r, t)(1− pa)+Pads(r, t)pd ,

(7)

where pa = ka∆t/∆x and pd = kd∆t. At t = 0, the propagated quan-

tity is initialized from the steady-state densities of adsorbed and

free solute obtained by a prior calculation (see details in Sec-

tion 1.3). Within these approximations, the fraction of adsorbed

particles Fa in the steady state can be calculated analytically as a

function of the number of fluid lattice nodes N f , the number of

adsorption sites (interfacial nodes) Nads, and the adsorption and

desorption coefficients (see Supplementary Information):

Fa =

(

1+
pdN f

paNads

)−1

. (8)

In addition to the overall fraction of adsorbed species, it is also

of interest to know their spatial distribution, which needs not be

homogeneous, as shown in Section 3.2. We have thus introduced

the calculation of the adsorbed density Dads(r, t) and free density

Dfree(r, t) of tracers. Both quantities evolve according to the same

rules as the one involved in the computation of P and Pads. In

particular, at interfacial nodes they obey:

Dads(r, t +∆t) =Dfree(r, t)pa +Dads(r, t)(1− pd)

Dfree(r, t +∆t) =Dfree(r, t)(1− pa)+Dads(r, t)pd .

(9)

At t = 0, Dfree is set homogeneously in the fluid to 1/N f while Dads

is set to zero.

1.3 Practical details

The simulations reported herein are performed with the code

laboetie.∗ Each simulation is composed of three subsequent

integration steps. The first one is the flux equilibration, where

the velocity and density fields of the fluid itself are converged.

∗ version 15.5.4, disponible upon request to B. Rotenberg or M. Levesque

This allows computing the transition probabilities for tracer prop-

agation (Eq. 3). The second is the tracer density equilibration,

where the free and adsorbed density fields of the tracers are equi-

librated following Eq. 9, starting from homogeneous distribution

of the tracers in the fluid. The third step is the moment prop-

agation, which describes the motion of particles carried by the

fluid and accumulates dynamical information. Throughout this

last step, the propagated quantities for free and adsorbed parti-

cles are computed, as well as the velocity auto-correlation func-

tion, the diffusion coefficient and the dispersion coefficient.

This three-stage simulation procedure is different from the two-

stage procedure followed by earlier work,13 which considered

only flux equilibration and moment propagation, and where the

adsorbed density was assumed to be homogeneous and at ther-

modynamic equilibrium. We will show here (Section 2.4) that in

the presence of fluid flow, the adsorbed density is not identical

on all adsorption sites, as solute transport by the fluid induces

an heterogeneity. Thus, an extra stage in the simulation proce-

dure is required to equilibrate tracer densities in order to initialize

the propagated quantities in Equation 7. Otherwise, if the initial

values of the propagated quantities are not representative of the

steady state, dynamical information calculated from the Lattice

Boltzmann integration will be incorrect.

We used convergence criteria of 10
−14 (in relative step-to-step

variation) for the average velocity of the fluid along each di-

rection of space, 10
−12∆x/∆t on the value of the velocity auto-

correlation function, and 10
−9 for the step-to-step variation of the

dispersion coefficient. The tracer diffusion coefficient was fixed

throughout all the simulations reported here, at Db = 10
−2∆x2/∆t.

Three-dimensional periodic boundary conditions are enforced. In

section 2, results are presented in Lattice-Boltzmann units (re-

duced units) whereas the real units (S.I units) are employed in

section 3. The way to switch between reduced and real units is

explained in supplementary information.

2 Reciprocal influence of transport and ad-

sorption

2.1 Slit pore geometry

The first pore geometry studied here, albeit briefly, is that of the

slit pore made from two parallel walls. It is very simple yet serves

as a good reference for comparison of later results and discus-

sion. The pore width in these simulations was taken to H = 100

lattice units. In order to study the effect of fluid flow and its

coupling to adsorption, we varied both the adsorption equilib-

rium (by keeping ka = 10
−1∆x/∆t constant, and varying kd from

10
−4 to 10

−2∆t−1) and the external force Fext (from 4.10
−6 to

2.10
−5∆p/∆x, with ∆p the lattice pressure unit, describe in sup-

plementary information). Under these conditions the Reynolds

number ranges from 12 to 60 (but the effects observed are repro-

ducible regardless of the range of external force used).

The Figure 1 presents the evolution of the dispersion coeffi-

cient, K, as a function of the average velocity of the fluid and frac-

tion of adsorbed particles Fa. Figure 1a has been already shown

This journal is c© The Royal Society of Chemistry 2015 Soft Matter, 2015, [vol.], 1–10 | 3
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Fig. 1 Adsorption/transport coupling in the slit pore geometry. (a)

Influence of the average velocity of the fluid (
〈

vy

〉

) on the dispersion

coefficient (K) normalized by the bulk diffusion coefficient Db for 0%,

16%, 66% and 95% of particles adsorbed. (b) Influence of the adsorbed

fraction (Fa) for some different average velocities of the fluid (0.02, 0.04,

0.06, 0.08, 0.1 ∆x/∆t).

in13†. These results are consistent with the analytical expression

available in the specific case of the slit pore.13‡:

K

Db

= 1−Fa

+Pe2

(

102α2 +18α +1

210(1+2α)3
+

Db

H2kd

2α

(1+2α)3

)

,

(10)

where Pe = H 〈v〉/Db is the Péclet number and α = ka/kdH. We

see two effects. First, for a given adsorption strength, that is for a

given fraction of adsorbed species, dispersion increases with the

fluid average velocity (i.e. Péclet number): Advection spreads out

the particles. For low adsorption strengths, the particles stuck to

the walls increase dispersion: They are immobile, while the other

particles continue to be led away. For high adsorption strengths,

the quantity of particles that are led away becomes small since

the majority is adsorbed on the wall. Dispersion is maximum for

intermediate regimes identified around Fa ≈ 0.6. This maximum

can also be seen on earlier work on adsorption in slit pores of

Levesque et al.14

†Note there is an inversion of labels in 13

‡Note there is a term missing in 13. Re-calculating it from 14 gives Eq. 10 of the present

paper.

2.2 Crenelated pore

As a first move toward more complex geometries, we introduce

here a corrugated version of the two-dimensional slit-shaped

pore. This crenelated pore geometry, depicted in Figure 2, consists

in a slit pore with parallelepiped cavities on walls. It is a model

of geometries observed experimentally for example in freeze-cast

of porous ceramics,36 simple enough to allows us to perform and

understand the basics of coupling of adsorption and transport in

porous materials with complex pore systems. The model is de-

fined by the following geometric characteristics: L is the depth-

to-depth of the crenelated walls; ℓ is the peak-to-peak pore width;

w is the width of the crenels; and h = (L− ℓ)/2 is their depth. We

define r = h/w as the ratio between the height and the width of

the crenels, and set ℓ constant (ℓ = 20) in order to maintain con-

stant the effective pore aperture. The system is periodic in x and

y directions and not connected in z direction.

Fig. 2 Geometry of a slit pore having crenels on its walls in isometric

view. See text for the geometric characteristics.

In our simulations, we consider an external force (and thus a

fluid flow) perpendicular to the crenels, in the y direction. Fig-

ure 3 shows the streamlines in this geometry, for a crenel aspect

ratio of r = 0.5 (h = 5∆x, w = 10∆x) and Fext = 2.7.10
−4∆p.∆x−1. It

also presents the velocity profiles for y = 1 and y = 10. We see that

the fluid flow is able to enter inside the crenels, though there is

a non negligible part of the crenel where the velocity of the fluid

is close to zero, indicating the presence of a “dead volume”. The

flux profile at y = 1 is a no-slip Poiseuille velocity profile . The ve-

locity profile at y = 10 is Poiseuille, with additional shoulders due

to the pore widening and lower maximun velocity at the center

of the pore. The averaged (over Y) velocity profile, in this type of

geometry, is equivalent to a partial slip profile and the slip length

may be quantified analitically.37

2.3 Influence of adsorption and geometry on transport

We first set out to study the influence of adsorption and geom-

etry on transport, namely the influence of the fraction of ad-

sorbed particles Fa (which quantifies the adsorption “strength”),

4 | Soft Matter, 2015, [vol.], 1–10 This journal is c© The Royal Society of Chemistry 2015
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b

Fig. 3 (a) Streamlines of the flux inside a crenel geometry. Grey areas

represent the solid part of the material. The pressure drop is applied

along the y axis. The colorbar represents the norm of the velocity (units:

∆x/∆t) (b) Velocity profiles inside and outside the crenel at y = 1 and

y = 10. V is the norm of the velocity (units: ∆x/∆t).

the height-to-width ratio r of the crenels, and the mean fluid

velocity on the dispersion of the solute. we take, l = 100∆x,

r = [0,0.5,1,2,4,10] corresponding to h = [0,5,5,10,20,50] nodes

and w = [10,10,5,5,5,5] nodes. Figure 4 presents the results of

systematic variations of these two parameters. We first see that,

as in the case of the slit pore geometry a higher velocity of fluid

leads to a larger dispersion (Fig. 4a) and the dispersion varies

non-monotonically as a function of Fa. The value of adsorbed

fraction at which dispersion is maximal can be seen to depend

on the aspect ratio of the crenelated pore Fig. 4b), indicating the

influence of geometry on the transport properties of the solute.

Finally, we also see that for r < 1 the effect of crenel aspect ra-

tio has almost no impact on the dispersion, while for r > 1 (deep

narrow crenels) the dispersion is very sensitive to r and increases

alongside it. This strong dispersion is due to the existence of

a population of free tracer particles “trapped” inside the narrow

crenels, where the velocity of the fluid is almost zero.

Figure 4c represents the evolution of dispersion (K/Db) as a

function of Fa in the case Fext = 0, i.e. without fluid motion. The

tracer particles are thus following a purely diffusive regime, and

it can be seen that in this case the dispersion decreases linearly

with Fa. Note that the dispersion in the absence of flow (Fig. 4c) is

orders of magnitude smaller than in the presence of flow (Fig. 4a
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Fig. 4 (a) Influence of the ratio r = h
w

and the average velocity of the

fluid along y axis (
〈

vy

〉

) on the dispersion coefficient in the presence of

adsorption (ka = 0.1∆x/∆t and kd = 0.01∆t−1). (b) Influence of the

adsorbed fraction (Fa) and the ratio r = h
w

on the dispersion coefficient in

presence of fluid advection (Fext = 2.10
−6∆p/∆x). (c) Influence of the

adsorbed fraction (Fa) and the ratio r = h
w

on the dispersion coefficient

whithout fluid advection (Fext = 0∆p/∆x)

and 4b). Qualitative changes are observed between the vanishing

and large Fext cases, such as the linear to non-motonic variations

with Fa or the reverse effect of the crenel aspect ratio r. Never-

theless, the transition between the two regimes (for Fext → 0) is

continuous. When Fext ≫ 0, dispersion is mostly impacted by the

advection of fluid: Deeper and narrower crenels retain more par-

ticles and dispersion increases consequently. When Fext = 0 the

dispersion is governed only by diffusion: Deeper and narrower

crenels create obstacles to the diffusion, the effective diffusion

coefficient (i.e. the dispersion coefficient in theses conditions) de-

creases. For Fext = 0 and Fa = 0 in a slit pore, K is equal to the bulk

diffusion coefficient Db, as expected. But for crenelated pores the

dispersion coefficient is lower than the bulk diffusion coefficient,

This journal is c© The Royal Society of Chemistry 2015 Soft Matter, 2015, [vol.], 1–10 | 5
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highlighting the impact of the pore geometry on diffusion. If we

define Rm =Vdead/Vfluid = h/(L−h) as the ratio between the dead

volume of fluid, i.e. the volume of fluid inside the crenels and

the total volume of fluid, we can see that (1−Rm) and K/Db are

similar for all values of r (see Table 1). This, in turn, means that

the decrease in the dispersion coefficient is directly related to the

dead volume of the crenels.

r K/Db 1−Rm

0.5 0.96 0.95

1 0.96 0.95

2 0.91 0.91

4 0.84 0.83

10 0.67 0.67

Table 1 Values of the dispersion coefficient K normalized by the Bulk

diffusion coefficient compared with the ratio of dead volume without

advection of fluid. The values of K/Db correspond to the diffusive

regime without sorption (Fext = 0 and Fa = 0)

2.4 Influence of transport on adsorption

We now turn our attention to the reciprocal effect: the influence

of transport on adsorption. In order to do so we look at the spa-

tial distribution of adsorbed tracer, characterized by the adsorbed

density Dads(r), for different values of Fext (and thus average

fluid velocity). These simulations were performed at fixed ge-

ometry (h = 5, w = 10) and adsorption strength (ka = 10
−1∆x/∆t,

kd = 10
−3∆t−1). Figure 5 represents the disparities φfree and φads

of the free and adsorbed densities:

φfree =
Dfree −〈Dfree〉

〈Dfree〉
and φads =

Dads −〈Dads〉

〈Dads〉
, (11)

for Fext = 0∆p/∆x, Fext = 5.10
−5∆p/∆x, and Fext = 10

−4∆p/∆x.

Without fluid flow (Fext = 0), the adsorbed density is homo-

geneous: at thermodynamic equilibrium, all adsorption sites are

equally populated because they are equivalent. However, as fluid

flow is introduced, both the adsorbed and free density distribu-

tions in the steady state exhibit some spatial variations. Indeed,

on the upstream side of the crenels, when particles desorb the

fluid flow brings them to the downstream side and increases lo-

cally the adsorbed density. There is a local adsorption equilibrium

on each site, between adsorbed and free solutes, so that the ad-

sorbed density is directly proportional to the free density on each

interfacial node of the lattice. This demonstrates an influence of

fluid transport on solute adsorption. The effect increases with

fluid velocity. This effect, predicted here, is somewhat counter-

intuitive and not commonly expected in the adsorption commu-

nity. We present, in supporting information, a simple three-site

model of adsorption in a flow, for which an analytical solution is

available.

In order to provide a quantitative analysis of the influence of

fluid flow on the spatial distribution of adsorbates, we present

in Figure 6 the evolution of the heterogeneity of the adsorbed

Fig. 5 Disparity of the free and adsorbed densities, φfree and φads, due

to the flow rate (see Eq. 11). The colored blue zones represent the

non-interfacial fluid nodes, where the adsorbed density is equal to zero.

Free and adsorbed densities for Fext = 0 (a) and (b), 5.10
−5 (c) and (d),

and 10
−4∆p/∆x (e) and (f).

density as a function of Fa and Fext, defined as:

ξ =
√

〈

φ 2

ads

〉

, (12)

where the average runs over all interfacial nodes. Firstly, we no-

tice that ξ does not depend on Fa, but increases markedly with

Fext (i.e. the fluid velocity). Secondly, the heterogeneity can reach

up to 9% in our simple model geometry, suggesting that it could

have a strong impact on adsorption in more complex and rough

geometries. Finally, we note that in our current adsorption model,

following a Henry’s law with adsorption sites of infinite capacity,

this effect of fluid flow on adsorption creates heterogeneity in the

adsorbed phase, but does not impact the total amount of adsorbed

tracers in the system. The flow favors some adsorption sites com-

pared to others, but does not modify the value of Fa, which is the

6 | Soft Matter, 2015, [vol.], 1–10 This journal is c© The Royal Society of Chemistry 2015

Page 7 of 11 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0.2 0.4 0.6 0.8
Fa

0.001

0.01

0.1

ξ
5.10

-4

10
-4

6.10
-5

2.10
-5

5.10
-6

a

1e-05 0.0001 0.001
Fext

0.001

0.01

0.1

ξ

0.194
0.324

0.545
0.706

0.923
b

Fig. 6 Adsorbed density disparities (see Eq. 11) in crenelated pores,

quantified by the heterogeneity ξ =
√

〈

φ 2

ads

〉

. (a) Effect of the adsorbed

fraction (Fa); colours indicate different external forces (Fext). (b) Effect of

the external force (Fext); colours indicate different adsorbed fractions(Fa).

main observable measured in adsorption experiments.

The observations of Fig. 6 can be rationalized as follows. At

steady state, the advection of free tracers by the fluid flow is bal-

anced by a diffusive flux. As a result, a gradient in the free tracer

concentration builds up across the groove of width w such that

|DbδD f ree/w| ∼ |D f reevy|. Then, local adsorption equilibrium im-

plies that δDads/Dads = δD f ree/D f ree. Since the fluid velocity is

propotional to the applied force, the heterogeneity thus follows:

ξ =
λFext

Db

, (13)

where λ is a geometry-dependent parameter independent of Fa.

As
〈

vy

〉

is proportionnal to Fext , we can notice that ξ ∝ Pe.

With the current adsorption model the heterogeneity have no

influence on Fa. However, one may anticipate that if the satura-

tion of adsorption sites was taken into account, the total amount

of adsorbed tracers may be influenced by the fluid flow and its

velocity, because the downstream sites may not accommodate the

additional tracers liberated from the upstream ones. This would,

in turn, have important consequences for real-life adsorption se-

tups with high concentrations of solutes. In the next section, we

therefore extend the above approach to introduce the saturation

of adsorption sites.

3 Model improvement: adsorbent satura-

tion

3.1 Langmuir adsorption model

We built upon the existing linear adsorption model (following

Henry’s law), which considers solute as infinitely diluted tracers,

by introducing the saturation of adsorption sites. In order to do

so, we use the simplest physical model of saturating adsorbent:

the Langmuir adsorption model. In this model, the adsorbed den-

sity at each interfacial site is dictated not only by the adsorption

and desorption rates, ka and kd , but also by the saturation uptake,

Dmax, which is the maximal density that can be adsorbed at any

given interfacial lattice node. Similar to the classical statistical

physics textbook treatment of the Langmuir model, the propaga-

tion equations for the free and adsorbed densities (Equation 9)

are modified:

Dads(r, t +∆t) =

[

1−
Dads(r, t)

Dmax

]

Dfree(r, t)pa

+Dads(r, t)(1− pd)

Dfree(r, t +∆t) =Dfree(r, t)

[

1− pa + pa
Dads(r, t)

Dmax

]

+Dads(r, t)pd .

(14)

The equations involving the free and adsorbed propagated quan-

tities (Equation 7) are similarly amended:

Pads(r, t +∆t) =

[

1−
Dads(r, t)

Dmax

]

P(r, t)pa

+Pads(r, t)(1− pd)

P(r, t +∆t) =P(r, t)

[

1− pa + pa
Dads(r, t)

Dmax

]

+Pads(r, t)pd .

(15)

These modifications were tested on the slit pore and crenelated

pore geometries by calculating the total adsorbed quantity as a

function of external (free) solute concentration.§ Figure 7 dis-

plays the adsorption isotherms thus obtained: For all geometries,

the isotherms have the same shape and fit perfectly with a Lang-

muir equation:

nads(Cext) =
Qmax

ms

κCext

1+κCext
, (16)

with Cext = Ctot(1−Fa) the concentration of free tracers, Qmax =

DmaxNads the adsorption capacity of the material, κ = ka/kdDmax

and ms =Vsρs the mass of the solid (Vs is the volume of the solid

and ρs is the volumetric mass of the solid). In the following we in-

troduce in the fluid an initial solute concentation Ctot =QmaxSs/Vp

§ We perform simulations in a crenelated pore geometry with ℓ = 100, h = 5, w = 10,

Fext = 3.65.10
13 Pa.m−1, Db = 6.042.10

−8 m2.s−1, ka = 604.2 m.s−1, kd = 6.04.10
9 s−1,

Pmax = 1.88.10
−7 kg.m−2, ∆x = 10

−9 m, ν f luid = 1.007.10
−6m2/s, ρ f luid = 1000 kg.m−3,

ρsolid = 3970 kg.m−3

This journal is c© The Royal Society of Chemistry 2015 Soft Matter, 2015, [vol.], 1–10 | 7
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(with Ss the specific surface area and Vp the pore volume) that

corresponds exactly to the amount of solute that can be adsorbed

on the surface.

In particular, increasing the roughness, r, of the pore surface

leads to higher total adsorption capacity Qmax, due to a higher

specific surface area.

0 50 100 150
Cext(g/L)

0

0.005

0.01

0.015

0.02

0.025

A
ds

or
be

d 
qu

an
tit

y 
(g

/g
)

0

0.5

1

2

Fig. 7 Adsorption isotherm for different crenelated pore geometries

with r = 0 (slit pore, black), r = 0.5 (red), r = 1 (blue) and r = 2 (green).

Diamonds represent numerical data and straight lines correspond to

their fit with Eq. 16.

3.2 Influence on adsorbed density

With the model of saturating adsorption described above, we now

turn our attention to the impact of the saturation uptake and so-

lute concentration on the adsorbed density. We investigated this

on a crenelated pore geometry with h = 5 and w = 10 (r = 0.5).

Figure 8 presents the influence of the adsorption strength (ka/kd)

and fluid flow (which is directly linked to the external force Fext)

on the adsorbed fraction and the adsorbed density. Fig. 8a and 8b

can be compared to simulations on a model without saturation of

adsorption sites (Fig. 6). Introducing saturation in the adsorption

model significantly changes the behavior of ξ as a function of Fa.

When adsorbent saturation is taken into account, the heterogene-

ity is no more independent of the adsorption strength, but rather

diminishes as Fa increases. This is because the adsorption site

“favored” by the fluid flow (the downstream part of the crenel) is

limited in the quantity of solute it can adsorb, leading to smaller

ξ .

The Figure 8c shows the influence of fluid flow (through Fext)

on the adsorbed fraction (Fa). It can be seen that, in the case

of a saturating adsorbent, there is an effect of fluid flow on the

adsorbed fraction: Increasing the fluid velocity leads to less ad-

sorption, because, unlike previously, the sites favourized by the

flow have a saturation level. This effect, however, is quite lim-

ited in practice, with an impact of 4% in the most unfavorable

case simulated for an extremely high fluid velocity. Nevertheless,

the present simulations are performed on a relatively smooth and

regular geometry, and we predict that the impact of fluid flow on

adsorption will be stronger in more complex geometries.

Finally, Figure 9 shows the evolution of the heterogeneity ξ of

the adsorbed density as a function of the external concentration of

solute, for various values of the external force. As seen previously,

0 0.2 0.4 0.6 0.8 1
Fa

0.001

0.01

0.1

ξ

5.10
15

10
15

5.10
14

10
14

5.10
13

a

1e+14 1e+15
Fext (Pa/m)

0.001

0.01

0.1

ξ

10
-11

5,03.10
-9

6,29.10
-7

2,52.10
-8

1,26.10
-7

b

1e+14 1e+15
Fext (Pa/m)

-0.04

-0.03

-0.02

-0.01

0

F
a 

 v
ar

ia
tio

n

10
-11

5,03.10
-9

2,52.10
-8

1,26.10
-7

6,29.10
-7

c

Fig. 8 Adsorbed density heterogeneities due to fluid flow in crenelated

pores. (a) Heterogeneity ξ =
√

〈

φ 2

ads

〉

as a function of the adsorbed

fraction Fa; colors indicate different values of the external force Fext . (b)

Heterogeneity ξ as a function of the external force Fext applied along the

y direction; colors indicate different values of ka/kd . (c) Relative deviation

of Fa compared to its value at Fext = 0, as a function of Fext ; colors

indicate several values of ka/kd . Dmax is equal to 10
−7 Kg.m−3 and the

initial concentration of species in the fluid (Ci) is equal to 9.44 g.L−1.

increases in Fext lead to an increase of the heterogeneity. In addi-

tion, for all values of Fext, the heterogeneity of adsorption shows

two regimes as a function of Cext. At low concentration, i.e. in the

linear adsorption regime, the heterogeneity is constant. At higher

concentration, saturation of the most populated adsorption sites

is reached, and the heterogeneity diminishes rapidly. At very high

concentration, all adsorption sites are saturated and thus equally

populated.

The discussion leading to Eq. 13 also applies to the present

case, but the local adsorption equilibrium is modified by the sat-

uration of adsorption sites as: δDads/Dads = (δD f ree/D f ree)/(1+

κCext), with κ = ka/kdDmax as in Eq. (16). The heterogeneity now
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0.0001
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Fig. 9 Adsorbed density heterogeneities due to fluid flow in crenelated

pores. Heterogeneity ξ =
√

〈

φ 2

ads

〉

as a function of the external

concentration Cext . Colors indicate several values of external forces

(5.10
11,5.10

12,5.10
13,5.10

14,5.10
15 Pa.m−1). Dmax is equal to

10
−7 kg.m−3. Symbols indicate simulation data, while straight lines

correspond to Eq. 17.

satisfies:

ξ (Cext) =
λFext

Db

1

1+κCext
, (17)

in good agreement with the simulation results of Fig. 9.

4 Conclusion

In this study we used a recent Lattice Boltzmann model account-

ing for transport and adsorption. This useful tool allowed us to

show and analyze the interdependence between these two cou-

pled phenomena: Not only the effect of tracer adsorption on

its transport, but also a counter-intuitive effect of transport on

adsorption, in crenelated pores leading to disparities in the ad-

sorbed density. The flow leads to an heterogeneity between the

upstream and the downstream of the crenels. It brings the par-

ticles desorbed on the upstream side to the downstraem side of

the crenels. This effect is shown here for a simple and regular

geometry but we predict it will happen in disordered materials in

the presence of rugosity in any form.

We then extended the model to account for the saturation of the

adsorption sites. This allowed us to explore a wide range of so-

lute concentrations. Taking into account such transport-induced

heterogeneity may improve the design of materials targeted to

specific applications, e.g. by optimizing the distribution of reac-

tive sites at the surface. The results presented here open the way

to the analysis of these effects in more complex geometries, in

particular the impact of rugosity on transport and adsorption. As

the model is based on a 3D Lattice grid the geometry may be di-

rectly applied to real structures, e.g. generated from tomography

imaging.
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