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A minimal description of morphological hierarchy in two-dimensional aggregates

Tamoghna Das,a T. Lookman,b and M. M. Bandi∗c

A dimensionless parameter Λ is proposed to describe a hierarchy of morphologies in two-dimensional (2D) aggregates formed due to varying
competition between short-range attraction and long-range repulsion. Structural transitions from finite non-compact to compact to percolated
structures are observed in the configurations simulated by molecular dynamics at a constant temperature and density. Configurational ran-
domness across the transition, measured by the two-body excess entropy S2, exhibits data collapse with the average potential energy Ē of the
systems. Independent master curves are presented among S2, the reduced second virial coefficient B∗2 and Λ, justifying this minimal description.
This work lays out a coherent basis for the study of 2D aggregate morphologies relevant to diverse nano- and bio-processes.

1 Introduction

Aggregates, due to their finite spatial correlations, are struc-
turally intermediate between completely random (liquid) and
ordered (crystalline) states. Formation of these aggregates
requires competition1,2 between very short range attraction
and long-range repulsion together with suitable thermody-
namic conditions (low temperature and density). The struc-
ture of aggregates may assume different shapes with varied
degrees of randomness controlled by the competition3. This
self-assembly of particles is generic and has been observed in
systems including polymer-coated colloids4,5, globular pro-
teins in weakly polar solvents6–9, quantum dots and nano-
particles10–12. In addition, the competition can be tuned in
several ways for a specific system which is advantageous
from the perspective of industrial applications. For example,
the range of attraction in a colloidal system can be modified
by suitable chemical treatment or choice of polymer coating,
whereas changing the salt concentration or pH balance of sol-
vent controls the effect of repulsion in the same system13. The
diversity of systems and the flexibility of control have, how-
ever, barred a generic account of aggregate morphologies re-
quired for further progress in developing nano- and bio-metric
functional materials14–19. Here we propose a minimal descrip-
tion based on a single dimensionless parameter.

The descriptor Λ is a ratio of two effective lengths com-
puted from the competing parts of pair interactions. Tuning
the interactions, a set of configurations is simulated by using
molecular dynamics. A structural hierarchy within the gener-
ated configurations is then characterised by employing stan-
dard statistical diagnostics. Next, the degree of positional ran-
domness governing the hierarchy is quantified by two-body
excess entropy S2. This enables us to describe all observed
morphologies in terms of the average potential energy Ē and
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Λ, independently. Collapse of the reduced second virial B∗2,
computed for all morphologies, onto a master curve as a func-
tion of Λ provides experimental access to this description. The
organisation of the rest of the paper is as follows. In section
2 we introduce the competing interactions and their control
parameters including the morphological variations that result
from tuning the competition with a brief description of simu-
lation details. The spatial correlations for the simulated con-
figurations and several statistical characterisations of the same
are presented in section 3. The descriptor Λ is introduced in
section 4. In section 5, we quantify the structural randomness
of observed aggregates and relate it with their respective mean
energy. We discuss further implications of our findings in sec-
tion 6 followed by a brief concluding summary.

2 Competing interactions and variations in
morphology

We consider a 2D system of interacting mono-disperse parti-
cles at fixed density ρ and temperature T . The particles inter-
act pair-wise via a short-range attraction, modelled by gener-
alised Lennard-Jones potential20,

φSA=4ε[(σ/r)2α − (σ/r)α ]. (1)

The length and energy scales of the problem are set by σ and
ε respectively. The range of attraction can be tuned from a
few times of σ to an arbitrary small fraction of it by increas-
ing α . For example, the range is 2.5σ and 0.2σ for α =6 and
α=18, respectively. However, the thermodynamics of the sys-
tem does not change for α≥1821. The long-range repulsion
experienced by the particles from their surrounding media is
considered implicitly by two-body Yukawa potential,

φLR=(Aσ/r)exp(−r/ξ ) (2)

The strength of repulsion A and the screening length ξ is ex-
pressed in units of ε and σ , respectively. The effective centro-
symmetric potential φ =φSA +φLR (Fig.1(a) inset) bears an at-
tractive minimum in between a steep hard-core like repulsion
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Fig. 1 (color online) (a) Variation of the effective potential profile φ (defined in text) with ξ is plotted for A=4.0 and α =18. Note that the
attractive minimum goes from global to local as a function of increasing ξ . Inset shows the attractive φSA and repulsive φLR part of φ

separately for ξ =0.5 and same values of α,A. Representative morphologies are shown for ξ = (b) 0.8, (c) 0.7, (d) 0.6, and (e) 0.5,
respectively. While strong repulsion results in highly anisotropic string-like clusters, the morphology changes continuously to more compact
shapes as attraction wins over. Further dominance of attraction leads to spanning clusters or gels. Only a part (1/36th) of the simulation box is
shown for visual clarity.

and a finite positive repulsive barrier decaying exponentially
to zero at large r. {α,A,ξ} are then three independent param-
eters that tune φ . The variations of φ is shown in Fig.1(a) as
a function of ξ for fixed values of A= 4.0 and α = 18. We
note that the global attractive minimum for ξ =0.5 becomes
a local minimum and comparable with long-range repulsive
minimum for ξ = 0.8. Varying A for a fixed value of ξ and
suitably chosen α yield similar variations of φ . The results
presented next are for α = 18 unless otherwise stated. This
choice of demonstration is, albeit arbitrary, a reasonable ap-
proximation for depletion attraction in globular proteins22–24

and some polymer-coated colloids25–27.
A system of fixed density ρ =0.4 is used with 56000 parti-

cles in a 376.0σ×372.0σ box with periodic boundary con-
ditions along all directions. Time is measured in units of
τ =

√
σ2/ε for unit mass. Starting from a random configu-

ration of particles equilibrated at high temperature Ti = 1.0,
particle trajectories are generated using molecular dynamics
(implemented by LAMMPS28) as the system temperature is
linearly ramped down to Tf = 0.05 over a period of time
104τ . Temperature is measured in ε units and maintained by
a Langevin thermostat29. The equation of motion for the i-th
particle with position vector ri reads as,

r̈i =−∑
j 6=i

∇φ(r)−ν ṙi +ζi (3)

considering the force due to interaction φ(r) and frictional
drag ν ṙi from implicit media experienced by the particle. ζi
is a random force with zero mean and Gaussian variance,
〈ζi(t0)ζ j(t + t0)〉 = 2kB(T/ν)δi, jδ (t). Boltzmann constant,

kB, is chosen to be unity throughout the calculations. Numer-
ical integration of the equation of motion is performed by us-
ing velocity Verlet algorithm with time steps δ t =10−3τ . We
specify that our choice of Tf and ρ is lower than the critical
values Tc = 0.18± 0.01 and ρc = 0.6± 0.1 for purely attrac-
tive systems30. Aggregation sets in during cooling as soon
as the system temperature goes below Tc. The linear cooling
protocol adapted in this work is very slow compared to the
typical diffusion timescale (∼ τ) of the system. The cooling
achieved over a time period four orders of magnitude larger
than the diffusion timescale of the equilibrium system is in
contrast to the quench protocol traditionally followed in ex-
periments. With Tf = 0.05 (standard deviation ∼ 10−4), we
analyse only the part of the trajectories where the number
of aggregates does not change over the observation period
(103τ). The potential energy, however, continues to decay
non-exponentially over this observation time. Quantification
of such non-ergodic behaviour and other anomalous features
of the microscopic dynamics of the system are described else-
where31 in detail. Here, our main focus is on the local struc-
tural properties of the system and its variation with competing
interactions. Highly anisotropic non-compact clusters of lat-
eral width σ (Fig.1(b)) are observed for strong repulsion over
attraction (large {A,ξ}). As a function of increasing attrac-
tion, with decreasing A and/or ξ , cluster width increases by
sidewise aggregation of particles and compact crystalline is-
lands appear in increasing sizes (Fig.1(c)-(e)). For even higher
attraction and near negligible repulsion (small {A,ξ}), the
system consists of one large spanning cluster and several tiny
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ones. Such states are often referred to as gels32.

3 Structural characterisation

3.1 Radial and angular correlations

Fig. 2 (color online) (a) Radial distribution g(r) of particles for the
same configurations shown in Fig.1(b) and (e). While compact
structures (ξ =0.5) show symmetric splitting of second peak
characteristic of crystalline order in the system, this feature becomes
considerably less and anisotropic for non-compact aggregates
(ξ =0.8). (b) The distribution of three-body angle P(θ3) is
computed for the same systems as above. In accord with previous
observations, P(θ3) shows three preferred peaks at π/3,2π/3 and π

for compact crystalline arrangement. Illustrations over each peak are
representative of particle arrangements for the three different cases.
Last two peaks (θ3=2π/3,π) become less prominent for
non-compact structures where particles arrange in a variety of
angles to each other, for example, see Fig.1(a).

To characterise the diverse morphologies observed, we now
focus on the microscopic features of particle arrangements in
simulated configurations. The radial distribution function33,

g(r)=1/ρ〈∑δ (r− ri)〉 (4)

computes the probability of finding an i-th particle from an
arbitrary central one as a function of the separation between
them. Whereas the first peak in g(r) (Fig.2(a)) accounts for the
nearest neighbours, splitting of the second peak indicates two
preferential next nearest neighbour distances, typical of crys-
talline (compact) arrangements (Fig.1(e)). For non-compact
aggregates, the peak heights reduce and the second peak be-
comes anisotropic. The long shoulder between the preferential

positions of first and second peaks accounts for the possible
non-crystalline arrangement of particles observed in Fig.1(b).
g(r) for other intermediate structures (Fig.1(c)-(d)) naturally
falls within these two limits with varied peak heights and
anisotropy accordingly. Angular arrangement of particles, be-
ing inaccessible by g(r), is studied using three-body angles θ3.
All triads of particles are considered where each particle is the
nearest neighbour of at least one other particle and the dis-
tribution of three-body angles P(θ3) (Fig.2(b)) is computed.
Three preferential values, π/3,2π/3 and π , assumed by θ3 are
indicative of hexagonal symmetry expected in 2D. Whereas
compact aggregates agree with this, non-compact ones nat-
urally deviate as the hexagonal symmetry breaks down and
more angular arrangements become possible. The radial and
angular features of all percolated configurations are similar to
the compact ones, though enhanced as expected.

3.2 Shape and size statistics

Fig. 3 (color online) (a) Fractal dimension d f of aggregates is
computed from the slope of their size s plotted against radius of
gyration Rg. Here, we plot the values computed for the
representative configurations shown in Fig.1(b)-(e). Long- and
short-dashed lines have slopes 2 and 1 respectively. (b) Size
distribution P(s) of aggregates for different values of ξ at A=4.0.
Power-law behaviour of P(s) is indicative of percolation at ξ =0.4
in contrast with the exponential behaviour for other values. A
dashed line of slope −2 is shown for comparison.

Visually evident structural transition of finite-size aggre-
gates is further characterised by their fractal dimension d f .
Exploiting the relation between the size s of a cluster and its
radius of gyration Rg,

s ∼ R
d f
g (5)

R2
g = 1/2s∑(ri− r j)

2

d f is obtained for different conformations. For the non-
compact (almost linear) and compact (locally crystalline) ag-
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gregates, d f is bounded between 1 and 2 corresponding to lin-
ear and planar shapes respectively (Fig.3(a)). As the transi-
tion occurs seamlessly with varying competition, it is difficult
to define a sharp boundary of structural transition in terms
of d f . We consider all configurations with d f ≥ 1.6 as com-
pact and the rest as non-compact. All these finite-size ag-
gregates appear in exponentially distributed sizes within the
system. These clusters aggregate further as attraction domi-
nates over repulsion and span the system as a single perco-
lating cluster. The size distribution P(s) for the ensemble of
clusters thus changes from exponential to algebraic and be-
comes scale-free34:

P(s)∼s−ν exp(s/s0) (6)

where ν is the Fisher exponent and exponential part is due to
the finite-size effect (Fig.3(b)). Fitting the cluster size distri-
bution with the above mentioned form, we numerically esti-
mate the Fisher exponent ν =1.98± 0.04. This value is very
close to the random percolation (RP) model Fisher exponent,
187/91, in 2D. Within the RP model, ν <2 is spurious as it
implies unphysical divergence of mean cluster size. However,
ν = 1.91± 0.06 has been reported in experiments35 and can
be explained through a simple extension36 of the RP model.
Identification and characterisation of the exact nature of this
geometric transition requires further investigation which we
leave for the future. We mention that the system density
(ρ = 0.4) is lower than the typical critical value, ρc = 0.5,
for the RP model. The exponential cut-off s0 is only very
weakly dependent on repulsion controlled by {A,ξ} and in-
creases with density. Keeping the interaction intact, similar
percolation has also been observed as a function of increas-
ing density. The non-compact aggregates percolate at ρ =0.5,
consistent with typical random percolation.

4 Single descriptor for aggregates’ morphology
phase diagram

We now compute an effective hard-core diameter37,38,

σ1=
∫

∞

0
[1− exp(−βφh)]dr (7)

set by φSA where φh = 4ε(σ/r)2α . σ1 is thus a function of ε

and α . Two control parameters of repulsion, namely, A and ξ

can be similarly encoded into another length scale,

σ2=
∫

∞

0
[1− exp(−βφLR)]dr (8)

where β =1/(kBT ) with Boltzmann constant, kB =1. As the
definitions are not specific to the functional form of the poten-
tial, they can be computed for other forms39–42 of competing

interactions with proper care. For example, it is enough to
compute only σ2 for 2-Yukawa43 or Coulomb-Yukawa44 mod-
els as the extent of hard-disk interaction is fixed in such mod-
els to match the real physical situations at hand. The effective

Fig. 4 (color online) (a) The dimensionless parameter Λ (defined in
text) is plotted against ξ for the same set of A’s with two different
α =18 (open symbol) and 12 (filled symbols). Please note that one
specific value of Λ can be obtained through several combinations of
{α,A,ξ}. (b) Morphology phase diagram: boundaries for different
structures drawn on the map of Λ in A-ξ plane for α =18.
Non-compact to compact transition determined by the fractal
dimension of respective aggregates is marked by the dotted line; the
dashed line denotes percolation transition determined from the size
statistics of clusters.

lengths, σ1 and σ2, project a useful illustration of the system :
consider a system of hard particles with effective diameter σ1,
each having a concentric soft shell of influence circle with di-
ameter σ2. Inclusion of particles within σ2 is possible which in
turn changes the perimeter of influence zone of the combined
particle system in a non-trivial way thus determining the ag-
gregate morphology. The ratio, Λ=σ2/σ1, then encodes all
three control parameters, α , A and ξ and several combina-
tions of these parameters result in the same Λ. Fig.4(a) points
out that small α-large A is equivalent to large α-small A for a
range of ξ (Λ for α=18, A=3.0 almost coincides with α=12,
A=5.0). Larger α(>18) will populate the upper left half of
Fig.4(a), whereas smaller α(< 12) will belong to the lower
right half of the same for the specified range of A and ξ . The
hard disk limit with strict exclusion region45,46 is recovered
for Λ=1. Mapping of {α,A,ξ} space to a single parameter Λ

indicates that the morphologies controlled by the former pa-
rameters can possibly be represented by the latter. Now, we
draw the boundaries of different conformations on a Λ-map of
{A,ξ} parameter space for fixed α =18 (Fig.4(b)). This will
serve as the morphology phase diagram of the present model
system. Following the appearance of power-law size distribu-
tion of clusters, we find that percolated structures or gels are
always formed for parameters giving Λ<1.5. For larger Λ, the
aggregates are finite sized and change from compact to non-
compact shape around Λ∼ 2.0 which was verified from the
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fractal dimension d f of respective aggregates. Taken together
with our previous observation, we suggest that lowering α will
lead to compact and gel structures whereas non-compact ones
are favoured by large α for this system.

5 Structural randomness and mean energy

Fig. 5 (color online) Two-body excess entropy S2 provides a
quantification of positional information. Collapse of S2 with Λ

offers a unified description of aggregate morphologies independent
of their control parameters {α,A,ξ}. Comparing with morphology
phase diagram (Fig.4(b)) for α =18, we can now identify
non-compact (Λ>2.0), compact (1.5<Λ<2.0) aggregates and gels
(Λ<1.5). The dashed and dotted lines are phase boundaries used in
Fig.4(b). As shown, this mapping also holds for α =12.

How are the observed morphologies related to their ener-
gies? Answering this question requires further quantification
of particle arrangements. Positional information of particles
can be appropriately expressed as multi-particle expansion of
the total excess entropy47 (relative to an ideal gas of same
density) truncated at the two-body term,

S2=−ρ/2
∫

dr{g(r) lng(r)− [g(r)−1]}. (9)

This ensemble invariant measure48 of disorder is 0 for maxi-
mal disorder (ideal gas) and goes to −∞ for the ordered (crys-
talline) state. When plotted against Λ (Fig.5), S2 shows three
distinct ranges corresponding to three different morphologies
charted out qualitatively in the previous morphology phase
diagram (Fig.4(b)). The non-compact structures for large Λ

posses higher degrees of randomness close to the random con-
figurations. We note that these structures appear under strong
influence of long-range repulsion. One particle can, however,
come within the large repulsive influence zone (σ2≥2σ1) of

another particle and is unable to escape due to short-range at-
traction. This situation evidently favours a collective unidi-
rectional arrangement and opposes the centro-symmetric fea-
ture of the effective pair-wise interaction. As the repulsion
decreases, particles can not be accommodated within each
other’s repulsive influence zone and the local hexagonal sym-
metry favoured in 2D is recovered. S2 reflects this feature by
showing a sharp drop for Λ<2. As σ2 and σ1 becomes compa-
rable (Λ<1.5) under strong influence of attraction, percolated
conformations appear and S2 assumes even larger negative val-
ues. Collapse of S2, computed for configurations with α =12
(Fig.5) on the same curve as α=18, establishes the robustness
of this mapping against the attraction range. The morphologi-
cal hierarchy of 2D aggregates can then be described in terms
of Λ alone, and independent of the individual control parame-
ters {α,A,ξ}.

Fig. 6 (color online) (a) Average energy Ē versus Λ is linear; the
slopes increase with A. (b) Plotted against average energy Ē , S2
clearly shows three distinct ranges. These ranges with decreasing
energy account for three candidates of morphological hierarchy,
non-compact, compact and percolated structures, respectively.

Since the thermal fluctuations are very small at low temper-
atures, potential energy plays the dominant role in determining
local structures. The average potential energy Ē is defined as:
Ē =(1/N)∑i Ei where Ei is the potential energy of i-th particle
due to all other particles present within a cut-off radius of 10σ .
Ē follows a linear relation with Λ for fixed A and the slope
steepens with increasing A (Fig.6(a)). In other words, as the
soft shell of repulsion increases, it is possible to find a set of
degenerate Λ’s with same energy and vice versa. As measured
by S2, the morphological hierarchies can now be identified by
their distinct ranges of average energy Ē (Fig.6(b)). Highly
disordered non-compact structures (S2∼0) are spread over a
range of Ē . In contrast, compact structures occurring with a
small variance of Ē show large variation of S2. Gels have even
lower values and smaller spread of both S2 and Ē . These ob-
servations certainly call for an in depth understanding which
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we leave for future investigation.

6 Discussion

We note that the knowledge of interactions is necessary for
this description. By relating B2, the second virial coefficient,
with Λ, we relax this requirement and connect the description
with experiments. Experimental estimation of B2 does not re-
quire any prior knowledge of specific potential and/or confor-
mation for a real system. For a simulation study, however, B2
is computed as follows49,

B2=−(1/2T )
∫

drφ
′(r)g(r) (10)

using both potential and radial distribution. The prime over
φ denotes the first order spatial derivative of the same. The
reduced second virial coefficient, B∗2 =2B2/(πσ1)

2, showing
a spread as a function of A and ξ , follows a master curve
when plotted against Λ (Fig.7) for both α = 18 and 12. We
note that most experimental efforts specify the overall nature
of interactions but do not probe the functional form that cor-
responds to a given measurement. While the morphologies
have been described in several ways, g(r) is, in general, not
readily available to calculate B∗2. For example, the existing B∗2
data for globular proteins is inadequate to specify the interac-
tions and/or structures completely. The B∗2-Λ master relation
provides access to the microscopic length scales from thermo-
dynamic measurements. This collapse has further conceptual
implications. B∗2 has already been successfully used50 to find
thermodynamic correspondence among wide range of systems
from the van der Waals limit (simple liquids)53,54 to the Baxter
limit (sticky hard spheres)55. This study shows that B∗2 is ca-
pable of capturing the morphological correspondence as well
and providing a feasible basis for the extension of correspond-
ing states principle56–58 to aggregates.

A formal order parameter approach, mean field59,60 and
beyond61, is often challenging for pattern forming systems
showing wide variations in local density. Quantification of
positional randomness by S2 provides an alternative descrip-
tion capable of relating the local geometry of conformations
to a thermodynamic quantity like Ē . Efforts have been made
to describe the aggregates employing the integral theory ap-
proach62 for simple liquids. However, such an approach con-
sidering the effect of repulsion as a perturbation to attraction
is inadequate for the systems presented here where both of the
competing interactions are comparable in strength. We have
been able to encode the details of competing interactions into
two distinct length scales using standard liquid states theory.
The procedure is valid over a wide range of control parameters
and should also be readily applicable to other model systems
as pointed out earlier. Further, these length scales offer an

Fig. 7 (color online) Second viral coefficient B∗2 computed for the
full {α,A,ξ} parameter space collapses onto a master curve when
plotted against Λ. Same symbols as in Fig.5 have been used. Inset
Please note the spread in B∗2 when plotted as a function of ξ for
three different values of A for α =18.

intuitive grip over the physical situation useful for further the-
oretical developments. The ratio of these length scales, Λ can
successfully identify all three major candidates, non-compact,
compact and percolated structures, forming the morphological
hierarchy of aggregates in 2D. We mention that availability of
more degrees of freedom in three dimensions may potentially
affect the scenario presented here. However, the framework
should be valid and we leave the detailed validation for fu-
ture investigation. Importantly, Λ is experimentally accessible
through the master relation between B∗2 and Λ. Given the S2-Λ
map, the expected morphologies can then be easily predicted.
This can be potentially important for the design of new ma-
terials with desired functionalities. In conclusion, we have
presented a minimal, yet robust description of 2D aggregate
morphologies potentially relevant for the self-organisation of
diverse nano- and bio-processes. The present work provides
the missing information connecting interactions, microscopic
structures and thermodynamics. This should motivate further
studies on complex fluids probing their structural signatures
with higher resolution.
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A single dimensionless parameter is proposed to characterise the morphology of two-
dimensional aggregates by their structural randomness.
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