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Abstract

We applied the systematic and simulation-free strategy proposed in our previous

work (D. Yang and Q. Wang, J. Chem. Phys., 2015, 142, 054905) to the relative-

entropy-based (RE-based) coarse graining of homopolymer melts. RE-based coarse

graining provides a quantitative measure of the coarse-graining performance and

can be used to select the appropriate analytic functional forms of the pair potentials

between coarse-grained (CG) segments, which are more convenient to use than the

tabulated (numerical) CG potentials obtained from structure-based coarse graining.

In our general coarse-graining strategy for homopolymer melts using RE framework

proposed here, the bonding and non-bonded CG potentials are coupled and need

to be solved simultaneously. Taking the hard-core Gaussian thread model (K. S.

Schweizer and J. G. Curro, Chem. Phys., 1990, 149, 105) as the original system,

we performed RE-based coarse graining using the polymer reference interaction site

model theory under the assumption that the intrachain segment pair correlation

∗E-mail: q.wang@colostate.edu.
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functions of CG systems are the same as those in the original system, which de-

couples the bonding and non-bonded CG potentials and simplifies our calculations

(that is, we only calculated the latter). We compared the performance of various an-

alytic functional forms of non-bonded CG pair potential and closures for CG systems

in RE-based coarse graining, as well as the structural and thermodynamic properties

of original and CG systems at various coarse-graining levels. Our results obtained

from RE-based coarse graining are also compared with those from structure-based

coarse graining.
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1 Introduction

Coarse graining of polymeric systems1 is an active research area, because full atomistic

simulations of many-chain systems used in experiments are in most cases not feasible

at present due to their formidable computational requirements. Various coarse-graining

methods have been proposed in the literature,2–11 in most of which many-chain molecular

simulations (i.e., molecular dynamics or Monte Carlo simulations) are used to obtain the

structural and/or thermodynamic properties of both original and coarse-grained (CG)

systems that need to be matched. In Ref. [12] (referred to as Paper I hereafter), we

proposed a systematic and simulation-free strategy and applied it to structure-based

(st-based) coarse graining of homopolymer melts, where we used integral-equation theo-

ries,13–15 instead of many-chain simulations, to obtain the structural and thermodynamic

properties of both original and CG systems, and quantitatively examined how the

effective pair potentials between CG segments and the properties of CG systems vary

with the coarse-graining level. Our systematic and simulation-free strategy is much

faster than those using many-chain simulations, thus effectively solving the transferability

problem in coarse graining,16 and provides the quantitative basis for choosing the

appropriate coarse-graining level. It also avoids the problems caused by finite-size effects

and statistical uncertainties in many-chain simulations.12

The widely used st-based coarse graining matches the segment radial distribution

functions between original and CG systems.3–5 As expected, it cannot give the thermo-

dynamic consistency between original and CG systems due to the information loss of

coarse graining.12,17 In this work, we apply our systematic and simulation-free strategy

to the recently proposed relative-entropy-based (RE-based) coarse graining,9,18,19 which

minimizes the information loss quantified by RE. As shown by Shell, RE-based coarse

graining provides a general framework and can be reduced, under further constraints,

to the various coarse-graining methods previously proposed.19 For example, when pair

potentials are used between CG segments (which is the common practice in molecular

simulations), RE-based coarse graining becomes equivalent to st-based coarse graining if

the functional form of CG potentials is unconstrained (i.e., contains an infinite number of

parameters).19 It can therefore be used to parameterize CG potentials with given analytic
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functional forms containing finite number of parameters, which are more convenient to

use in molecular simulations than the tabulated (numerical) CG potentials obtained

from st-based coarse graining. The values of minimized RE obtained from RE-based

coarse graining with different CG potential functional forms can further be compared to

determine the appropriate functional form or number of parameters.

To the best of our knowledge, RE-based coarse graining has not yet been applied

to polymeric systems. In this work, we first describe our systematic and simulation-free

strategy for RE-based coarse graining of homopolymer melts using the polymer reference

interaction site model (PRISM) theory,14 then present our numerical results with the

hard-core Gaussian thread model20 (referred to as the hard-core CGC-δ model below)

solved by PRISM theory with the Percus-Yevick closure21 as the original system, which

was also used in Paper I.12 We compare the performance of various analytic functional

forms of non-bonded CG pair potential and closures for CG systems in RE-based coarse

graining, as well as the structural and thermodynamic properties of original and CG

systems at various coarse-graining levels. Our results obtained from RE-based coarse

graining are also compared with those from st-based coarse graining presented in Paper

I.12 Finally, we elucidate in Appendix the relation between minimization of RE and the

least-squares fitting of the CG potential to that obtained from st-based coarse graining.

2 Models and Methods

2.1 A general coarse-graining strategy for homopolymer melts

using RE framework

We consider an original system of homopolymer melts, which consists of n chains each

of Nm monomers at a chain number density ρc ≡ n/V with V being the system volume.

The invariant degree of polymerization N̄ ≡ (ρcR
3
e,0)

2 controls the system fluctuations

with Re,0 being the root-mean-square end-to-end distance of an ideal chain.22

For coarse-graining purpose, similar to Paper I12 we divide each original polymer

4
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chain into N subchains (segments) each containing l consecutive monomers, such that

Nl = Nm. Let rα,t be the spatial position of the tth monomer on the αth chain in the orig-

inal system, and Rα,s =
∑sl

t=(s−1)l+1 rα,t/l the spatial position of the sth segment (which

corresponds to the center-of-mass of its monomers) on the αth chain in the coarse-grained

(CG) system; this defines the mapping operator M that gives R = M(r), where r and R

denote a configuration of the original system and the corresponding configuration of CG

system, respectively. Furthermore, let Zm =
∫
dr exp(−βHb

m−βHnb
m ) be the configuration

integral of the original system, where Hb
m(r) and Hnb

m (r) are its Hamiltonian due to chain

connectivity and non-bonded interactions, respectively, and β ≡ 1/kBT with kB being

the Boltzmann constant and T the thermodynamic temperature. Similarly, we have the

configuration integral of the corresponding CG system, Z =
∫
dR exp(−βHb − βHnb),

where Hb(R) and Hnb(R) are its Hamiltonian due to the effective connectivity and

non-bonded interactions, respectively, between CG segments.

Coarse graining using RE framework9 minimizes RE, which can be defined as23

S ≡ −
∫

drPm(r) lnP(M(r)) =
⟨
βHb

⟩
m
+
⟨
βHnb

⟩
m
+ln

∫
dR exp(−βHb−βHnb), (1)

where the configurational probabilities Pm(r) ≡ exp(−βHb
m − βHnb

m )/Zm and P(M(r)) ≡
exp(−βHb − βHnb)/Z are for the original and CG systems, respectively, and ⟨⟩m denotes

the ensemble average of the original system (e.g.,
⟨
Hb

⟩
m

≡
∫
drPm(r)H

b(M(r))). Pa-

rameterizing the bonding and non-bonded potentials of the CG system to be dependent

on λb and λ, respectively, where λ = {λj} with j = 1, . . . , np, for example, denotes the

parameters to be solved and np the total number of these parameters, minimizing S is

then equivalent to solving ⟨
∂(βHb)

∂λb
i

⟩
m

=

⟨
∂(βHb)

∂λb
i

⟩
CG

(2)

and ⟨
∂(βHnb)

∂λj

⟩
m

=

⟨
∂(βHnb)

∂λj

⟩
CG

(3)

for all the parameters, where the operator ∂/∂λj, for example, denotes the partial

derivative with respect to λj while keeping all other parameters constant, and ⟨⟩CG

5
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denotes the ensemble average of CG system. Because the ensemble averages of CG

system depend on both its bonding and non-bonded potentials, λb and λ are coupled

and need to be solved simultaneously.

Here we consider isotropic pair potentials for the effective interactions in

the CG system. In particular, its bonding Hamiltonian is given by βHb =∑n
α=1

∑K
k=1

∑N−k
s=1 βvbk(|Rα,s+k − Rα,s|;λb

k), where βvbk(r) is the bonding potential

acting on two segments with k − 1 segments between them (excluding the two seg-

ments) on the same chain and is parameterized by a set of parameters λb
k (i.e.,

λb = {λb
k} with k = 1, . . . , K < N), and its non-bonded Hamiltonian is given by

βHnb =
[∑n

α=1

∑n
α′=1

∑N
s=1

∑N
s′=1 βv(|Rα,s −Rα′,s′|;λ)− nNβv(0;λ)

]/
2, where βv(r)

is the non-bonded potential between two segments and is parameterized by λ. Eqs. (2)

and (3) then become

N−k∑
s=1

∫ ∞

0

dr
[
ωss
s,s+k(r)− ωs,s+k(r;λ

b,λ)
]
r2
∂βvbk(r)

∂λb
k,i

= 0 (k = 1, . . . , K) (4)

and

N∑
s=1

N∑
s′=1

∫ ∞

0

dr
r2

R3
e,0

{
R3

e,0

[
ωss
s,s′(r)− ωs,s′(r;λ

b,λ)
]
+
√

N̄
[
gsss,s′(r)− gs,s′(r;λ

b,λ)
]}

×∂βv(r)

∂λj

= 0, (5)

respectively, where ωss
s,s′(r) and gsss,s′(r) are the normalized (i.e., 4π

∫∞
0

drr2ωss
s,s′(r) = 1)

intrachain pair correlation function (PCF) and the interchain radial distribution function,

respectively, between segments s and s′ in the space of M(r) in the original system

(denoted by the superscript “ss”), and ωs,s′(r) and gs,s′(r) are the normalized intrachain

PCF and the interchain radial distribution function, respectively, between segments s

and s′ in the CG system. Note that ωs,s′(r) and gs,s′(r) depend on all βvbk(r) (thus λb)

and βv(r) (thus λ), while ωss
s,s′(r) and gsss,s′(r) do not; in particular, many-chain molecular

simulations or the self-consistent integral-equation theories24,25 of the CG system are

needed to obtain ωs,s′(r;λ
b,λ).

6

Page 6 of 36Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Finally, neglecting the chain-end effects, i.e., assuming that both ωss
s,s′(r) and ωs,s′(r)

depend only on |s − s′|, gsss,s′(r) = gss(r), and gs,s′(r) = g(r) for all s and s′, we can

simplify Eqs. (4) and (5) as∫ ∞

0

dr
[
ωss
1,k+1(r)− ω1,k+1(r;λ

b,λ)
]
r2
∂βvbk(r)

∂λb
k,i

= 0 (k = 1, . . . , K) (6)

and∫ ∞

0

dr
r2

R3
e,0

{
R3

e,0

[
ωss(r)− ω(r;λb,λ)

]
+
√
N̄

[
gss(r)− g(r;λb,λ)

]} ∂βv(r)

∂λj

= 0, (7)

respectively, where ωss(r) ≡
∑N

s=1

∑N
s′=1 ω

ss
s,s′(r)/N

2 and ω(r) ≡
∑N

s=1

∑N
s′=1 ωs,s′(r)/N

2.

Eqs. (6) and (7) are for RE-based coarse graining of homopolymer melts and can be

compared with st-based coarse graining, which gives ωs,s′(r) = ωss
s,s′(r) and g(r) = gss(r)

at all r by adjusting an infinite number of parameters.

2.2 Coarse graining of hard-core CGC-δ model using PRISM

theory

To demonstrate our general coarse-graining strategy described above, as in Paper I12

we take the hard-core CGC-δ model20 as the original system, which consists of continu-

ous Gaussian chains each of Nm → ∞ monomers interacting with the non-bonded pair

potential βum(r) = (κ̄/ρcN
2
m)δ(r) with κ̄ → ∞. This simple model system is solved us-

ing PRISM theory with the Percus-Yevick (PY) closure21 and ideal-chain conformations,

which then results in ωss
s,s′(r) and gss(r) for given N according to Eqs. (A11) and (19) in

Paper I,12 respectively, as well as its structural and thermodynamic properties; for more

details, we refer the readers to Paper I.12 Note that, to simplify our calculations by avoiding

the aforementioned many-chain simulations or the self-consistent integral-equation theo-

ries24,25 of the CG system, in this work we assume ωs,s′(r) = ωss
s,s′(r), which de-couples λb

and λ; in other words, we only solve βv(r) (i.e., λ) from Eq. (7), which now becomes∫ ∞

0

dr
r2

R3
e,0

[gss(r)− g(r;λ)]
∂βv(r)

∂λj

= 0 (j = 1, . . . , np). (8)

7
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For the CG system at given N , PRISM theory gives

ĥ = N2ω̂ĉ(ω̂ + ρcĥ), (9)

where h(r) ≡ g(r) − 1 and c(r) are the interchain total and direct PCFs between CG

segments, respectively, and we use the short-hand notation f̂ = (4π/q)
∫∞
0

drf(r)r sin(qr)

to denote the 3D Fourier transform of a radial function f(r) with q being the wavevector

length. With ω(r) = ωss(r) given by the our assumption above, we numerically solve

Eq. (9) for given βv(r;λ) with various closures, written in general as

c(r) = exp[−βv(r) + γ(r) + b(r)]− [γ(r) + 1], (10)

where γ(r) ≡ h(r) − c(r) is the interchain indirect PCF and b(r) the bridge function.

In particular, we consider three commonly used closures in this work: b(r) = 0 for

the hypernetted-chain (HNC) closure,26 ln[γ(r) + 1] − γ(r) for PY closure,21 and

ln[h(r) + 1]− h(r) for the random-phase approximation (RPA) closure;27 for the relation

among these closures, we refer the readers to Paper I.12

Note that RPA closure can be written as c(r) = −βv(r), which directly leads to

c(r) for given βv(r;λ). On the other hand, to solve Eq. (9) with HNC and PY closures,

we first re-write it as

γ̂ = ω̂2ĉ/(N−2 − ρcω̂ĉ)− ĉ, (11)

from which we obtain γ̂ (and thus γ(r)) for given c(r). We then obtain the new direct

PCF from Eq. (10), and use the Anderson mixing method28,29 to converge c(r) till the

maximum absolute residual error of Eq. (10) at all r is less than 10−14. Note that c(r)

approaches 0 when r is on the order of the interaction range of βv, while h(r) (and γ(r))

approaches 0 when r is on the order of Re,0. We therefore use a cut-off length rc = 30Re,0

for h(r) with [0, rc] uniformly discretized into 3 × 104 subintervals, and a cut-off length

of rc/
√
N for c(r); our cut-off and discretization give negligible numerical errors. We

also use FFTW30 to perform the Fourier transforms of PCFs with the above cut-off and

discretization, where rc determines the discretization of q-space and the subinterval size

determines the cut-off in q-space.

8
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Finally, we use the Newton’s method combined with a globally convergent strat-

egy31 to solve for λ from Eq. (8) till the maximum absolute value of its left-hand-side

is smaller than 10−12, where the Romberg integration31 is used to evaluate the integral

with the cut-off rc. We then calculate the minimized RE, as well as the structural and

thermodynamic properties of the CG system at given N (see Sec. 2.4 below).

2.3 Parameterization of CG pair potential

In this work, we take the functional form of βv(r) as suggested by the effective pair poten-

tial between CG segments βvst(r) obtained from our st-based coarse graining reported in

Paper I.12 As shown there, βvst(r) can be approximated by a Gaussian function at small

r (where βvst(r) > 0). Our first way of parameterizing βv(r) is therefore to represent it

as a summation of nG Gaussian functions, i.e.,

βvI,nG
(r;λ) =

nG∑
i=1

Ai exp
(
−Bir̃

2
)

(12)

with np = 2nG parameters Ai > 0 and Bi > 0 (i = 1, ..., nG), where r̃ ≡ N3/4r/Re,0 is

used to take into account theN−3/4 scaling of the CG potential range found in Refs. [12,32].

On the other hand, βvI,nG
(r;λ) cannot capture the attractive well of βvst(r) < 0

at large r̃, which has significant effects on both structural and thermodynamic properties

of CG systems, especially at small N , as shown in Secs. 3.1 and 3.3 below. We therefore

propose another way of parameterizing βv(r) as

βvII(r;λ) = A exp
(
−Br̃2

)
W (r̃) + C

sin(Dr̃)

Dr̃
exp(−Er̃) [1−W (r̃)] , (13)

where the weighting function W (r̃) = exp(−F r̃2) is used to combine the two terms on the

right-hand-side of Eq. (13) dominating at small and large r̃, respectively. This leads to

np = 6 parameters: A, B, C, D, E, and F , all of which are positive.

9
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2.4 Calculation of structural and thermodynamic properties of

CG systems and the minimized RE using PRISM theory

Once the optimized pair potential βv(r) is obtained for the CG system at given N , its

normalized isothermal compressibility12 is calculated as κT = 1 +
√
N̄ ĥ(0)/R3

e,0, where

ĥ(0) is solved from Eq. (9) with a closure, and its interchain internal energy per chain and

interchain virial pressure are calculated as

βuc =2πN2
√
N̄

∫ ∞

0

dr
r2

R3
e,0

g(r)βv(r), (14)

βR3
e,0P =−2πN2N̄

3

∫ ∞

0

dr
r2

R3
e,0

g(r)
dβv(r)

d ln r
, (15)

respectively, where the integrals are numerically evaluated using Romberg integration31

with the aforementioned cut-off and discretization.

In general, the minimized RE per chain can be written as sc ≡ S/n =⟨
βHb + βHnb

⟩
m
/n − β∆fc, where ∆fc denotes the difference in the Helmholtz

free energy per chain of the CG system (where ϵb = ϵ = 1) from the reference state of an

ideal gas of CG segments (where ϵb = ϵ = 0) and can be calculated via thermodynamic

integration (over ϵb = 0 ∼ 1 at ϵ = 0 and then over ϵ = 0 ∼ 1 at ϵb = 1); we therefore

have

sc =4π
K∑
k=1

(N − k)

∫ ∞

0

dr

[
ωss
1,k+1(r)−

∫ 1

0

dϵbω1,k+1(r; ϵ
b, ϵ = 0)

]
βvbk(r)

+2πN2

∫ ∞

0

dr
r2

R3
e,0

{
R3

e,0

[
ωss(r)−

∫ 1

0

dϵω(r; ϵb = 1, ϵ)

]
+

√
N̄

[
gss(r)−

∫ 1

0

dϵg(r; ϵb = 1, ϵ)

]}
βv(r), (16)

where ω(r; ϵb, ϵ) and g(r; ϵb, ϵ) are, respectively, the intrachain and interchain segment

radial distribution functions of the CG system with the bonding potentials ϵbvbk(r) (after

βvbk(r) for k = 1, . . . , K are obtained from the RE minimization) and the non-bonded

potential ϵv(r).

10
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In this work, our assumption of ωs,s′(r) = ωss
s,s′(r) reduces Eq. (16) to

sc = 2πN2

∫ ∞

0

dr
r2

R3
e,0

{√
N̄

[
gss(r)−

∫ 1

0

dϵg(r; ϵ)

]}
βv(r), (17)

and we obtain g(r; ϵ) from PRISM theory with a closure. We use Romberg integration31

to evaluate the integrals, where the cut-off rc is used for the integration over r, and

uniformly discretize the integration over ϵ into enough subintervals so that the accuracy

of calculated sc is on the order of 10−7 (for N = 1) to 10−5 (for N = 100). sc provides

a quantitative measure of the overall quality of coarse graining,19 and can be compared

for various closures of CG systems and various ways of parameterizing βv(r). Finally, we

note that Eq. (17), with g(r; ϵ) calculated at ϵvst(r) and v(r) replaced by vst(r), can also

be used to calculate sc for our st-based coarse graining reported in Paper I.12

3 Results and Discussions

In this work we set N̄ = 104; other values of N̄ do not qualitatively change our results. We

examine first in Sec. 3.1 the non-bonded CG pair potential βv(r) obtained from RE-based

coarse graining with various closures and parameterization, then in Sec. 3.2 the minimized

RE, and finally in Sec. 3.3 the structural and thermodynamic properties of CG systems.

Our results obtained from RE-based coarse graining are also compared with those from

st-based coarse graining.12

3.1 CG potentials

Our results of st-based coarse graining were presented in detail in Paper I, so here we

mainly focus on the difference between βv(r) and the CG pair potential βvst(r) from

st-based coarse graining, both obtained at the same N and with the same closure for the

CG system. Fig. 1(a) shows the CG potentials obtained with HNC closure, where various

N and parameterization of βv(r) are used. We see that βvI,2(r) is overall smaller than

βvst(r), especially at small N ; note that βvI,1(r) is even much smaller than βvI,2(r) (data

not shown). We attribute this mainly to the absence of the attractive well in βvI(r). As

11
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N increases, βvI(r) approaches βvst(r) because the attractive well of βvst(r) becomes

relatively (compared to βvst(r = 0)) small as shown in Figs. 4 and 5 of Paper I.12 βvII(r),

on the other hand, is much closer to βvst(r) than βvI(r). As shown in Fig. 1(a), βvII(r)

and βvst(r) are almost indistinguishable at small N ; as N increases, βvII(r) slightly

deviates from βvst(r) at small r̃. Note that βvII(r) can well capture the attractive well

of βvst(r) as shown in the inset of Fig. 1(a), although the attractive well of βvII(r) is

shallower than that of βvst(r).

To highlight the importance of the attractive well, which occurs at large r and

cannot be captured by βvI(r), we note that Eq. (14) can be re-written as

βuc = 2π
√

N̄
∫ ∞

0

dr̃
r̃2βv(r̃)

N1/4
g(r̃), (18)

which indicates that it is r̃2βv(r̃) that determines the internal energy; similarly, Eq. (15)

can be re-written as

βR3
e,0P = −2πN̄

3

∫ ∞

0

dr̃
r̃3

N1/4

dβv(r̃)

dr̃
g(r̃), (19)

which indicates that it is r̃3(dβv/dr̃) that determines the pressure. In accordance with

Fig. 1(a), Figs. 1(b) and 1(c) show r̃2βv(r̃)/N1/4 and −r̃3(dβv/dr̃)/N1/4, respectively,

which exhibit qualitatively the same behavior. Quantitatively, however, the attractive

well is shifted to larger r̃ in Fig. 1(c) and thus more important in determining the pressure

than the internal energy. We therefore clearly see that the seemingly negligible attractive

well in Fig. 1(a) is actually needed for closely reproducing the thermodynamic properties

of the original system; this is supported by our results shown in Sec. 3.3 below. We also

note that similar results are found for RPA and PY closures for CG systems (data not

shown).

To quantify the deviation between βvst(r) and βv(r) obtained at given N , we de-

fine χ2
v ≡ (4π/R3

e,0)
∫∞
0

drr2[βvst(r) − βv(r)]2. Fig. 1(d) shows χ2
v vs. N for various

parameterization of βv(r) obtained with HNC closure. Consistent with Fig. 1(a), we

see that χ2
v decreases with increasing np and with increasing N (except for βvII(r) at
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N ≥ 59). Similar results are found for RPA and PY closures (data not shown).

Fig. 1(e) shows βv(r = 0) as a function of N for st- and RE-based coarse graining

obtained with HNC and RPA closures. In all cases, we see that the corresponding HNC

and RPA results are close at small N but deviate at large N . In particular, while all HNC

results of βv(r = 0) monotonically increase with increasing N as expected (the same is

found for PY results; data not shown), all RPA results of βv(r = 0) exhibit a maximum

around N = 40, indicating the qualitative failure of RPA closure for CG systems at larger

N ; for st-based coarse graining this failure was explained in Sec. IVA of Paper I,12 and

the same reason holds for RE-based coarse graining.

For both HNC and RPA closures, we see that βvst(r = 0) is the largest and that

βvII(r = 0) is only slightly smaller than βvst(r = 0) with βvst(r = 0) − βvII(r = 0)

monotonically increasing with increasing N . In particular, both βvII(r = 0) and

βvst(r = 0) obtained from HNC closure scale approximately with N0.18. βvI,2(r = 0),

however, is significantly different from (smaller than) βvst(r = 0) at small N . 10; as N

increases, βvst(r = 0)−βvI,2(r = 0) monotonically decreases for RPA closure but exhibits

a minimum at N = 27 for HNC closure. While βvII(r = 0) is always larger (i.e., closer

to βvst(r = 0)) than βvI,2(r = 0) for HNC closure, they cross around N = 20 for RPA

closure. Our PY results (data not shown) are qualitatively similar to HNC results. We

conclude that βvII(r) is a better choice for parameterizing βvst(r), which has a non-trivial

attractive well, and that the absence of this attractive well in βvI deceases βvI(r = 0)

(and also βvI(r) at small r̃) even at N = 100.

As shown in Figs. 5(c) and 5(d) of Paper I,12 ṽst(r) ≡ vst(r)/vst(r = 0) for vari-

ous N collapse approximately onto the same curve, if r is normalized by Re,0N
k with

k ≈ −0.73 at N̄ = 104; note that k approaches −3/4 as N̄ → ∞.12,32 Fig. 2(a) shows that

ṽII(r) obtained with HNC closure also exhibits the same behavior, where k = −3/4 is used.

The inset of Fig. 2(a) shows that the attractive well is approximately located around r̃ = 5.

Since ṽII(r) for various N approximately collapse, we expect a rather weak N -dependence
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of all parameters in the functional form of βvII(r); this is examined in Fig. 2(b). Writing

ṽII(r) = exp[−(B + F )r̃2] + (C/A)[sin(Dr̃)/Dr̃] exp(−Er̃)[1 − exp(−F r̃2)], we see that

the parameters C/A, E and D are indeed weakly dependent on N , but B and F have

much stronger dependence. Note that the large value of B + F makes the first term of

ṽII(r) decay very fast with r̃; in other words, this term only affects ṽII(r) at small r̃.

Similarly, the term 1 − exp(−F r̃2) is approximately 1 at large r̃ because of the large

value of F . This explains why ṽII(r) is more collapsed at large r̃ than at small r̃ as

shown in Fig. 2(a). In addition, since the large value of B + F makes the first term of

ṽII(r) negligible at large r̃, π/D approximately gives the first root r̃1, at which ṽII(r) = 0;

our numerical results give the average value (over 3 ≤ N ≤ 100) of D ≈ 0.69 and thus

r̃1 ≈ 4.53, consistent with the inset of Fig. 2(a). We also note that C/A > 1; the second

term in βvII (thus the attractive well) is therefore significant. Finally, similar results are

found for RPA and PY closures (data not shown).

3.2 Relative entropy

Fig. 3(a) compares RE per chain sstc for st-based coarse graining with various closures

for CG systems. Note that, in the calculation of sc, we do not consider the contribution

from the mapping entropy defined in Ref. [19], which is independent of CG potential;

this contribution stems from the degeneracy of different original configurations that map

to the same CG configuration and should decrease with increasing N . We see that sstc
decreases with increasing N for all closures, which is also the case when this contribution

is included; in other words, the information loss due to coarse graining decreases with

increasing N , which is well expected.

We also find that sstc obtained from HNC and RPA closures, denoted by sstc,HNC

and sstc,RPA, respectively, are nearly indistinguishable at small N . Furthermore, sstc,HNC is

always smaller than both sstc,RPA and sstc,PY, and sstc,RPA < sstc,PY for N ≤ 26 and the opposite

occurs for larger N . Compared to Fig. 6 in Paper I,12 we see that the information loss

due to coarse graining quantified by sstc is qualitatively consistent with the deviation

in thermodynamic properties between original and CG systems; that is, for both the

interchain internal energy per chain and the interchain virial pressure of CG systems,
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HNC results are always closer to the original system (i.e., better) than RPA and PY

results, and RPA results are better than PY results for small N and the opposite occurs

for large N . Note that, because RPA closure for CG systems qualitatively fails for large

N & 40 as shown in Fig. 3(a) of Paper I12 and in Fig. 1(e), hereafter we focus only on the

results obtained with HNC closure for CG systems.

Fig. 3(b) compares sc between st- and RE-based coarse graining with various CG

potential parameterization for the latter. We see that the difference in sc between these

two coarse-graining methods sRE
c − sstc > 0 in all cases; in other words, st-based coarse

graining gives less information loss than RE-based coarse graining at the same N . This is

expected according to Ref. [19], where it was shown that st-based coarse graining is equiv-

alent to RE-based coarse graining with an infinite number of parameters in βv(r). We

also find in Fig. 3(b) that sRE
c decreases with increasing N , by noting the variation of sstc

(from 0 to −20 as shown in Fig. 3(a)) and that of sRE
c −sstc (from 0 to 0.5) for 1 ≤ N ≤ 100.

Our st-based coarse-graining results reported in Paper I12 suggest that CG poten-

tials can be approximated by a Gaussian function. Fig. 3(b) shows that using two

Gaussian functions (i.e., βvI,2(r)) gives much less information loss than using just one

(i.e., βvI,1(r)). Furthermore, our results in Paper I12 show that βvst(r) exhibits an

attractive well (i.e., βvst(r) < 0) at large r̃ ≈ 5, which has significant effects on both

structural and thermodynamic properties of CG systems, and Fig. 3(b) shows that

capturing this attractive well with the second term in Eq. (13) (i.e., βvII(r)) gives even

better coarse-graining performance. Finally, Fig. 3(b) shows that sRE
c − sstc increases

with increasing N . In particular, βvII(r) gives the smallest sRE
c − sstc < 3 × 10−4 and is

therefore good enough to analytically represent βvst(r) in the N -range considered in this

paper.

3.3 Structural and thermodynamic properties

In this section we compare the normalized isothermal compressibility κT and the

interchain virial pressure βR3
e,0P between st- and RE-based coarse graining with HNC

closure for CG systems; the behavior of interchain internal energy per chain is similar to
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that of the pressure and thus not shown. Note that the st-based result κst
T is the same

as that of the original system and is independent of N , and that we refer the readers

to Paper I12 for the calculation of these thermodynamic properties of CG systems in

st-based coarse graining.

As aforementioned, RE-based coarse graining using βvI,1(r) gives poor performance. This

is also shown in Fig. 4(a), where we see that κT obtained using βvI,1(r) is significantly

larger than κst
T . κT obtained using βvI,2(r) is closer to κst

T but still overestimates it

for small N . 10. The poor performance of βvI(r) is again due to the absence of the

attractive well in its functional form. On the other hand, using βvII(r) gives better results

than using βvI(r), although κst
T is somewhat underestimated for small N . 10.

Fig. 4(b) shows that using βvI,2(r) always underestimates the pressure of the origi-

nal system, Pm, particularly for N . 30, again due to the absence of the attractive well.

Using βvI,1(r) gives even smaller P (data not shown). Note, however, that the results for

27 ≤ N ≤ 91 obtained from RE-based coarse graining using βvI,2(r) are closer to Pm than

the corresponding st-based results. On the other hand, using βvII(r) gives better results

than using βvI,2(r) at small N . Unlike using βvI,2(r), however, using βvII(r) overestimates

Pm for N . 30. Finally, Fig. 4(b) also shows that using βvI,2(r) gives closer prediction

of βR3
e,0P to the original system than using βvII(r) for N ≥ 36, although the latter

gives smaller sRE
c as shown in Fig. 3(b). Minimizing RE is therefore not equivalent to

matching structural or thermodynamic properties between the original and CG systems.

Similarly, in Appendix we show the relation (difference) between RE minimization and

the least-squares fitting of βv(r) to βvst(r).

4 Conclusions

In Ref. [12] (referred to as Paper I), we proposed a systematic and simulation-free strat-

egy for coarse graining of polymer melts, where we used integral-equation theories,13–15

instead of many-chain molecular simulations, to obtain the structural and thermodynamic

properties of both original and coarse-grained (CG) systems, and quantitatively examined
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how the pair potentials between CG segments and the thermodynamic properties of CG

systems vary with the number of CG segments per chain N . We applied our strategy

to structure-based (st-based) coarse graining in Ref. [12], which matches the structural

correlations of CG segments between original and CG systems. In this work, we have

applied it to the relative-entropy-based (RE-based) coarse graining,9,18,19 which provides

a quantitative measure of the coarse-graining performance and can be used to select the

appropriate analytic functional forms of the CG potentials. Such analytic forms are more

convenient to use than the tabulated (numerical) CG potentials obtained from st-based

coarse graining.

We have first proposed in Sec. 2.1 a general coarse-graining strategy for homopoly-

mer melts using RE framework, where the bonding and non-bonded CG potentials are

coupled and need to be solved simultaneously. Taking the hard-core Gaussian thread

model20 (referred to as the hard-core CGC-δ model) solved by the polymer reference inter-

action site model (PRISM) theory14 with the Percus-Yevick (PY) closure21 as the original

system, which was also used in Paper I,12 we have then performed RE-based coarse

graining under the assumption that the intrachain segment pair correlation functions of

CG systems are the same as those in the original system (i.e., ωs,s′(r) = ωss
s,s′(r)), which

de-couples the bonding and non-bonded CG potentials and simplifies our calculations

(that is, we have only calculated the latter). We have used three functional forms of the

non-bonded CG pair potential βv(r) [i.e., βvI,1(r), βvI,2(r), and βvII(r) given by Eqs. (12)

and (13), which contain np = 2, 4, and 6 parameters, respectively] and three commonly

used closures [i.e., the random-phase approximation (RPA),27 the hypernetted-chain

(HNC),26 and PY21 closures] for CG systems, and compared our results [including

βv(r), the minimized RE per chain sc, the normalized isothermal compressibility κT , the

interchain internal energy per chain, and the interchain virial pressure P of CG systems

at various N ] with those of st-based coarse graining.12

Due to the absence of the attractive well in βvI(r), βvI,2(r) is overall smaller than

the CG pair potential βvst(r) obtained from st-based coarse graining, and βvI,1(r) is even

much smaller than βvI,2(r). βvII(r), on the other hand, can well capture the attractive
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well of βvst(r) and is therefore much closer to it. The deviation between βvst(r) and βv(r)

obtained with the same closure for CG system, χ2
v ≡ (4π/R3

e,0)
∫∞
0

drr2[βvst(r)− βv(r)]2,

in general decreases with increasing np and with increasing N . With HNC and PY

closures for CG systems, βv(r = 0) monotonically increase with increasing N as expected,

and both βvst(r = 0) and βvII(r = 0) scale approximately with N0.18. With RPA closure,

however, βv(r = 0) exhibit a maximum around N = 40, indicating the qualitative failure

of RPA closure for CG systems at larger N . Similar to ṽst(r) ≡ vst(r)/vst(r = 0), ṽII(r)

for various N collapse approximately onto the same curve if r is normalized by Re,0N
−3/4.

sc provides a quantitative measure of the information loss due to coarse graining,

and decreases with increasing N as expected. For st-based coarse graining, sstc,HNC is

always smaller than both sstc,RPA and sstc,PY, which is qualitatively consistent with the

deviation in thermodynamic properties between original and CG systems reported in

Paper I.12 On the other hand, with HNC closure for CG systems (used hereafter) we find

that sRE
c > sstc at the same N , consistent with the fact that st-based coarse graining is

equivalent to RE-based coarse graining with unconstrained functional form of βv(r) (i.e.,

in the limit of np → ∞), and that sRE
c − sstc increases with increasing N . Furthermore,

βvI,2(r) gives much less information loss (thus better coarse-graining performance) than

βvI,1(r), and βvII(r) gives even better coarse-graining performance and is good enough to

analytically represent βvst(r) in the N -range considered in this paper.

Due to the absence of the attractive well in βvI(r), κT obtained from RE-based

coarse graining using βvI,1(r) is significantly larger than κst
T from st-based coarse graining

(which is the same as κT of the original system), and that using βvI,2(r) is closer to κst
T

but still overestimates it for small N . 10. Using βvII(r) gives better results than using

βvI(r), although κst
T is somewhat underestimated for small N . 10. On the other hand,

using βvI,2(r) always underestimates the pressure of the original system, Pm, particularly

for N . 30, but gives closer P to Pm than st-based coarse graining for 27 ≤ N ≤ 91.

Using βvII(r) overestimates Pm for N . 30 and gives better results than using βvI,2(r)

at small N , but the opposite occurs for N ≥ 36. Results for the interchain internal

energy per chain are similar to those for P . It is therefore not possible to simultaneously
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minimize sc and the deviation in structural and thermodynamic properties (e.g., κT and

P ) from the original system, as these are not equivalent. We have also compared the

minimization of χ2
v and sc in Appendix.

Finally, we note that, apart from the approximate closures and the assumption

that the interchain total and direct pair correlation functions do not depend on the

monomer/segment position along the chain contour in the original/CG system inherent

in PRISM theory,14 the only two assumptions used in our work here are the ideal-chain

conformations for the original system and the aforementioned ωs,s′(r) = ωss
s,s′(r). These

two assumptions can be eliminated by the self-consistent PRISM (SCPRISM) theory,24,25

which requires single-chain simulations of discrete chain models with nonzero-range

interactions but is still much faster than many-chain simulations commonly used in

the literature. For RE-based coarse graining, SCPRISM calculations of the original

system readily give more accurate results of ωss
s,s′(r), and those of the CG system give

the corresponding ωs,s′(r), which depend on both the bonding and non-bonded CG pair

potentials. RE-based coarse graining using SCPRISM theory, which follows our general

strategy proposed in Sec. 2.1, will be reported in a future publication.
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Appendix: Relation between RE minimization and

least-squares fitting of CG potential

Here we elucidate the relation between minimization of RE and the least-squares fitting

of βv(r) to the CG pair potential βvst(r) obtained from structure-based (st-based) coarse

graining. The least-squares fitting minimizes χ2
v ≡ (4π/R3

e,0)
∫∞
0

drr2[βvst(r)− βv(r;λ)]2
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with respect to the parameters λ ≡ {λj} (j = 1, . . . , np), which is equivalent to solving

∂χ2
v/∂λj = 0, i.e., ∫ ∞

0

dqq2[v̂st(q)− v̂(q;λ)]v̂′j(q;λ) = 0, (20)

where v′j(r;λ) ≡ ∂v(r;λ)/∂λj and v̂′j(q;λ) denotes its 3D Fourier transform.

On the other hand, minimizing RE (i.e., Eq. (8)) is equivalent to∫ ∞

0

dqq2[ĥss(q)− ĥ(q;λ)]v̂′j(q;λ) = 0, (21)

where ĥss(q;λ) is obtained from st-based coarse graining and ĥ(q;λ) from solving the CG

system at λ using PRISM theory with a closure. From PRISM equation (i.e., Eq. (9)),

we have ĥ = N2ω̂2ĉ/(1− ρcN
2ω̂ĉ), which still holds when ĥ and ĉ are replaced by ĥss and

ĉss, respectively, with ω̂ = ω̂ss. Eq. (21) then becomes∫ ∞

0

dqq2[ĉss(q)− ĉ(q;λ)]Sst(q)S(q;λ)v̂′j(q;λ) = 0, (22)

where Sst ≡ (1/ω̂ − ρcN
2ĉss)−1 and S ≡ (1/ω̂ − ρcN

2ĉ)−1 are the structure factor of CG

systems obtained from st- and RE-based coarse graining, respectively.

If RPA closure is used for CG systems, i.e., css(r) = −βvst(r) and c(r) = −βv(r;λ),

Eq. (22) becomes ∫ ∞

0

dqq2[v̂st(q)− v̂(q;λ)]Sst(q)S(q;λ)v̂′j(q;λ) = 0. (23)

Comparing Eq. (23) to Eq. (20), we see that RE minimization with RPA closure for CG

systems is equivalent to a specifically weighted (by Sst(q)S(q;λ)) least-squares fitting of

βv(r) to βvst(r).

With HNC closure, i.e., css(r) = −βvst(r) + hss(r)− ln[1 + hss(r)] = −βvst(r) + ∆hss(r)

and c(r) = −βv(r;λ)+h(r;λ)− ln[1+h(r;λ)] = −βv(r;λ)+∆h(r;λ), where ∆hss(r) ≡
hss(r) − ln[1 + hss(r)] ∼ O((hss)2) and ∆h(r;λ) ≡ h(r;λ) − ln[1 + h(r;λ)] ∼ O(h2),
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Eq. (22) becomes∫ ∞

0

dqq2
{
β
[
v̂st(q)− v̂(q;λ)

]
−

[
∆̂h

ss
(q)− ∆̂h(q;λ)

]}
Sst(q)S(q;λ)v̂′j(q;λ) = 0, (24)

which can be compared to Eq. (20).

It is therefore clear that, in general, least-squares fitting of βv(r) to βvst(r) is not

equivalent to RE minimization and gives higher RE (thus worse coarse-graining

performance) than the latter.

21

Page 21 of 36 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



References

[1] See, for example, J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K.

Kremer, W. L. Mattice, F. Muller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter

and V. Tries, Adv. Polym. Sci., 2000, 152, 41; F. Muller-Plathe, Chem. Phys. Chem.,

2002, 3, 754; F. Muller-Plathe, Soft Mater, 2003, 1, 1; C. Peter and K. Kremer, Soft

Matter, 2009, 5, 4357; C. Peter and K. Kremer, Faraday Discuss., 2010, 144, 9; E.

Brini, E. A. Algaer, P. Ganguly, C. Li, F. Rodriguez-Ropero and N. F. A. van der

Vegt, Soft Matter, 2013, 9, 2108; Y. Li, B. C. Abberton, M. Kroger and W. K. Liu,

Polymers, 2013, 5, 751; W. G. Noid, J. Chem. Phys., 2013, 139, 090901; M. G.

Saunders and G. A. Voth, Annu. Rev. Biophys., 2013, 42, 73; R. Potestio, C. Peter

and K. Kremer, Entropy, 2014, 16, 4199; and references therein.

[2] F. Ercolessi and J. B. Adams, Europhys. Lett., 1994, 26, 583.

[3] A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E, 1995, 52, 3730.

[4] A. K. Soper, Chem. Phys., 1996, 202, 295.

[5] D. Reith, M. Putz and F. Muller-Plathe, J. Comput. Chem., 2003, 24, 1624.

[6] S. Izvekov and G. A. Voth, J. Phys. Chem. B, 2005, 109, 2469.

[7] S. Izvekov and G. A. Voth, J. Chem. Phys., 2005, 123, 134105.

[8] W. G. Noid, J. W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das

and H. C. Andersen, J. Chem. Phys., 2008, 128, 244114.

[9] M. S. Shell, J. Chem. Phys., 2008, 129, 144108.

[10] A. P. Lyubartsev, A. Mirzoev, L. J. Chen and A. Laaksonen, Faraday Discuss., 2010,

144, 43.

[11] A. J. Clark and M. G. Guenza, J. Chem. Phys., 2010, 132, 044902.

[12] D. Yang and Q. Wang, J. Chem. Phys., 2015, 142, 054905.

22

Page 22 of 36Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



[13] D. Chandler and H. C. Andersen, J. Chem. Phys., 1972, 57, 1930.

[14] K. S. Schweizer and J. G. Curro, Phys. Rev. Lett., 1987, 58, 246; J. G. Curro and K.

S. Schweizer, Macromolecules, 1987, 20, 1928.

[15] E. F. David and K. S. Schweizer, J. Chem. Phys., 1994, 100, 7767; ibid., 1994, 100,

7784.

[16] A. A. Louis, J. Phys.: Condens. Matter, 2002, 14, 9187.

[17] M. E. Johnson, T. Head-Gordon and A. A. Louis, J. Chem. Phys., 2007, 126, 144509.

[18] A. Chaimovich and M. S. Shell, Phys. Rev. E, 2010, 81, 060104.

[19] A. Chaimovich and M. S. Shell, J. Chem. Phys., 2011, 134, 094112.

[20] K. S. Schweizer and J. G. Curro, Chem. Phys., 1990, 149, 105.

[21] J. K. Percus and G. J. Yevick, Phys. Rev., 1958, 110, 1.

[22] G. H. Fredrickson, E. Helfand, F. S. Bates, and L. Leibler, Chem. Phys., 1989, 51,

13.

[23] In our definition of RE, we do not consider the mapping entropy defined in Ref. [9],

which does not depend on CG potential.

[24] K. S. Schweizer, K. G. Honnell and J. G. Curro, J. Chem. Phys., 1992, 96, 3211.

[25] D. R. Heine, G. S. Grest and J. G. Curro, Adv. Polym. Sci., 2005, 173, 209.

[26] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London,

1976.

[27] A. A. Louis, P. G. Bolhuis and J. P. Hansen, Phys. Rev. E, 2000, 62, 7961.

[28] R. B. Thompson, K. Ø. Rasmussen and T. Lookman, J. Chem. Phys., 2004, 120, 31.

[29] M. W. Matsen, Eur. Phys. J. E, 2009, 30, 361.

23

Page 23 of 36 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



[30] http://www.fftw.org.

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes

in C, Cambridge University Press, New York, 2nd Ed., 1992.

[32] A. J. Clark, J. McCarty, I. Y. Lyubimov and M. G. Guenza, Phys. Rev. Lett., 2012,

109, 168301.

24

Page 24 of 36Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



List of Figures

Figure 1. (a) Non-bonded CG pair potentials βv(r), (b) r̃2βv, and (c) r̃3dβv/dr̃ obtained

from st- and RE-based coarse graining at various N (number of CG segments per chain)

with various parameterization in the latter, where r̃ ≡ N3/4r/Re,0 with Re,0 denoting the

root-mean-square end-to-end distance of an ideal chain in the original system. (d) Devia-

tion χ2
v between βvst(r) obtained from st-based coarse graining and βv(r) from RE-based

coarse graining with various parameterization. (e) βv(r = 0) obtained from st- and

RE-based coarse graining with various closures for CG systems and parameterization in

the latter. HNC closure for CG systems is used in Parts (a)∼(d), and N̄ = 104 in all cases.

Figure 2. (a) Normalized CG potential ṽII(r) obtained from RE-based coarse

graining at various N . (b) Corresponding parameters of ṽII(r). HNC closure for CG

systems is used and N̄ = 104.

Figure 3. (a) Relative entropy per chain sstc for st-based coarse graining with

various closures for CG systems. (b) Difference in sc between RE- and st-based coarse

graining with various parameterization in the former and HNC closure for CG systems.

N̄ = 104.

Figure 4. Comparisons of (a) the normalized isothermal compressibility κT and

(b) the interchain virial pressure P of CG systems obtained from RE-based coarse

graining with various parameterization, those from st-based coarse graining, and those

of the original system (represented by the black horizontal line). HNC closure for CG

systems is used and N̄ = 104.
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