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Abstract 

Flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested 

by the yield stress property of the fluid, which is a function of applied electric field and 

concentration of the suspended solute phase within the dielectric medium. This property of 

electrorheological fluids generally hinders flow through a capillary, if the imposed shear stress is 

lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus, 

granting the fluid a Bingham-plastic behavior. In the present work, we study such influences of 

the yield stress on the capillary filling dynamics of an electrorheological fluid, by employing 

rheologically consistent reduced order formalism. One important feature of the theoretical 

formalism is addressing an intricate interplay between the surface tension and viscous forces, 

both of which depend sensitively on the electric field. Our analysis reveals that the progress of 

the capillary front is hindered at an intermediate temporal regime, as attributable to the increase 

of the span of the plug-zone across the channel width with time. With preliminary understanding 

on the cessation of capillary front advancement due to the yield stress property of the 

electrorheological fluids, we further strive to achieve a basic comparison with an experimental 

study made earlier. Reasonable agreements with reported data support our theoretical 

framework. Comprehensive scaling analysis brings further insight to our reported observations 

over various temporal regimes. 
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1. Introduction 

Electrorheological fluids (ERFs) are amongst those smart fluids whose flow characteristics can 

be controlled and manipulated on-the-fly with variations in electric field, since the response of 

the fluid rheology to this electric field variation is highly spontaneous and reversible 
1–5

. ERFs 

instantly increase their apparent viscosity subject to the application of an external electric field. 

This apparent increase in viscosity is termed as the ER effect or Winslow effect 
6
 (after the name 

of W. Winslow, who first discovered and attempted to describe the effect on the basis of 

fibrillation due to chain formation). ERFs have been a subject of ardent interest and have been 

thoroughly investigated and studied by experimental, theoretical and numerical methods 
1,5,7–13

. 

ER fluids are generally colloidal suspensions which comprise of two phases; a solvent phase 

which is basically a dielectric medium and a suspended solute phase of particles whose size 

ranges from micrometer to tens of nanometers 
1,6

. The basis of the ER effect, which is attributed 

to the columnar chains formed by the particulate phase on application of an electric field, is 

described in details in the reviews 
1,4,14

 and references therein. The ER effect, in essence, holds 

immense potential towards modulating the dynamics of capillary flows for on-chip applications, 

in a rather non-intuitive manner, as attributed to a simultaneous influence of the applied electric 

field on the driving interfacial tension and opposing viscous resistance. 

 Over the years, numerous studies have been reported on the capillary filling dynamics of 

various fluids, which include analytical, semi-analytical as well as experimental investigations 

15–24
. Flow actuation and transport phenomena due to capillary action finds its use in various 

fields of science and engineering, namely groundwater movement, heat pipes, candle wicks, 

marker pens, lab-on-a-chip micro-devices, micro-total analysis systems, optical switches, to 

name a few 
19,25–28

. A basic model governing the transients of the capillary filling and meniscus 

advancement essentially follows from an interplay of inertial, viscous, surface tension, and 

gravity forces, leading to a reduced order based mathematical formalism 
18,26

. Extensive studies 

on different regimes (early inertial regimes, viscous Washburn regimes, etc.) of capillary filling 

that arise due to the interplay of inertial, viscous and gravitational effects
29–31

 have also been 

reported. Recently, the effects of entrance pressure and unsteady flow effects have been studied, 

extending the applicability of the lumped model approach
32

. Although such models cannot 
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capture the meniscus shape explicitly, their predictions have been shown to agree well with 

experiments 
25,33,34

.  

Despite the fact that majority of the literature on capillary action is focused on Newtonian 

fluids, capillary filling dynamics of Non-Newtonian fluids has also been studied by a number of 

researchers 
21,27,34,35

, due to their practical applications in fluids such as polymer solutions and 

biofluids 
19,26,27,36

. Experiments on capillary filling of ER fluids 
35

 have also been executed in 

recent years, which demonstrate several non-intuitive trends in the meniscus displacement 

characteristics. However, a close review of the literature suggests that no suitable theoretical 

analysis exists, to the best of authors' knowledge, which take ER fluids as the filling medium.  

 In this work, we focus on theoretical study of capillary filling of an electrorheological 

fluid through a parallel plate channel. To this end, we apply a reduced order approach to 

determine the dynamic evolution of the fluid height as function of electric field and particle 

concentration. We also take into account the effects of electro-capillarity. We consider the 

classical Bingham model for the ERFs, which finds diverse use for modeling of 

electrorheological flows 
1,37

 and successfully matches with experimental findings. We compare 

our results with the previously reported experiments on capillary filling of ERFs and show that 

reasonably good agreement is observed between the two, within the constraints of lumped 

parameter based approximations. We further offer a comprehensive scaling analysis, in an effort 

to establish the characteristics of various temporal regimes of the capillary filling dynamics.  

2. Mathematical formulation 

Figure 1 describes a conceptual schematic of the capillary advancement and figurative details of 

the present study. We consider the parallel plates to act as electrodes, when an electric field is 

applied. Since the ER fluid is itself a dielectric medium, it does not require a dielectric layer for 

insulation from the electrodes. The axial direction of the parallel plates is considered to run along 

the x direction, while the perpendicular direction is considered to run along the y direction. It 

must, however, be noted that ER fluids, as considered in the present study, generally comprise 

dielectric particles suspended in an organic medium. Since the medium has an extensively low 

conductivity, the presence of any electrical double layer (EDL)
38,39

 and their effects on the 

capillary dynamics may be safely ruled out. Nevertheless, studies have been reported in the 
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literature where influence of the association of EDL with the capillary transport has been looked 

into 
40

, albeit for Newtonian fluids. 

As mentioned earlier, description of the capillary filling dynamics heavily relies on a 

description of the viscous resistance, which in turn depends on the flow field under 

consideration. Before attempting to solve for the flow dynamics, we shall first find an 

appropriate relationship of the resulting yield stress as a function of the applied electric field and 

particle concentration.  

 

Fig 1. The schematics of the capillary rise of the ERF through the parallel channel 

2.1. The yield stress 

The phenomena of Bingham-like nature of ER fluids with a characteristic yield stress are 

specifically attributed to the formation of columnar chain-like structures of the solute particles 

across the electrode in presence of an external electric field 
1,2,14

. The strength of the yield stress 

depends on the field strength and solute concentration. Various studies have been put forward to 

quantify this parameter in the scope of mean-field approximation 
1,41–43

. While the Dielectric 

Electrorheological (DER) fluids show a quadratic dependence of yield stress on the electric field, 

Giant Electrorheological (GER) fluids have a linear variation of the same 
1,3,4,44

. Alongside the 

field-dependant yield stress, it has also been seen that the solute concentration has a drastic 
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influence on the yield-like nature of the ER fluids 
1,41

. The yield stress generally increases with 

particle concentration and attains a maximum at large concentrations
1
. These observations have 

led to many theories quantifying the yield stress with experimental verification. One such 

popular generalized theory accounts for both the field and particle concentration dependency and 

is given by the form (
1,41

): 

 ( ) ( )
( )

1 2

2 2

0 0 1 2

6
18 Re 1

tan
c m

m

E f
l a

π
τ φ ε ε β

θ φ

 
= − 

 
 

 (1) 

where 0τ  denotes yield stress of the ER fluid, φ  is the solute volume fraction, 
pε  and cε  denote 

the complex effective permittivity of the particular and continuous phase, respectively; ( )Re cε  is 

the real part of the effective permittivity (dielectric constant) of the medium, E  is the electric 

field, 2H  is the channel height, 0ε  is the absolute permittivity of the vacuum and a  is the 

particle radius. β  is the Clausius-Mossotti factor which is given by ( ) ( )2p c p cβ ε ε ε ε= − + , 

while mf  and mθ  are the maximum dimensionless restoring force during the rupture of columnar 

chains, and the angle at this maximum, respectively. The value range of the CM factor is 

0.5 1β− < < . The values of mf  and mθ  have been evaluated in reference 
41

. The above 

formulation, derived considering a DER fluid, holds good for low to moderate volume fractions 

(between 0.1 and 0.3) of particles.  

 It is a well established fact that the polarization force between two particles in an electric 

field is governed by the mismatch of the effective permittivity of the particles and the suspending 

medium 
4,45,46

. This is one of the most significant mechanisms that governs the electrorheological 

effect in any particulate suspension. The effective permittivity, in general, consists of three 

quantities, a real permittivity ε ′ , an imaginary frequency-dependent dielectric constant 

(responsible for the dielectric loss) ε ′′  and an imaginary conductivity part which is also 

frequency dependent 
0σ ε ω′ , where ω  is the angular frequency of the applied electric field and 

σ ′  is the conductivity 
45

. Therefore, the effective permittivity eventually has the form 

0j jε ε ε σ ε ω′ ′′ ′= − + , where j is 1j = − . The effective permittivity is generally applied to 
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construct the Classius-Mossotti (CM) factor given by 
2

p f

p f

ε ε
β

ε ε

−
=

+
, where pε  is the effective 

permittivity of the particulate medium and fε  is the effective permittivity of the fluid medium.  

In general, the CM factor is a complex number and describes the real and imaginary contribution 

of the overall permittivity tensor on the induced dipole moment. This effective dipole moment 

due to the induced polarization among the particles is given by the expression 
45

 

( ) 3

04 Re cp a Eπ ε β= , where "a" is the particle radius and ε  is the absolute real part of the 

effective permittivity of the fluid medium. It has been shown in previous studies that when the 

applied electric field is in DC (no frequency is associated with the field) or low frequency AC 

mode, the conductivity in the imaginary part of the effective dielectric constant governs the CM 

factor 
47

, and thereby, the induced dipole moment. In such cases, the dipole moment thus takes 

the form: ( ) 3

04 Re
2

P C
c

P C

p a E
σ σ

π ε
σ σ

 ′ ′−
=  ′ ′+ 

. On the other hand, for a high frequency alternating 

field (AC), the real part is more dominant in governing the induced dipole moment magnitude. It 

must be noted that since our study is carried out in the DC field paradigm, we should consider 

the effects of the medium conductivities to dominate the polarization effects among the particle 

chains. 

In the present study, the columnar chains are further assumed to be one particle thick for 

the derivation. Although these approximations are quite gross, they were successful in predicting 

the yield stress when compared with experimental values 
1,41

.  

2.2. The hydrodynamic equations 

We shall use the form in (1), for quantifying the yield stress as a function of the applied field and 

suspended particulate concentration in the ER media. Following these observations, the 

generalized stress-strain relationship for an ERF accounting for the yield-like nature is given by 
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0

0

0

0

; 0

, if 

; 0

0,  if 

du du

dy dy

du du

dy dy

du

dy

τ τ µ
τ τ

τ τ µ

τ τ

= − + < 
>

= + >


= ≤

 (2) 

The yield stress τ0 in (2), can be expressed in the mathematical form, as given in (1). In the 

present work, we have chosen a fluid which comprises micro-particles suspended in an organic 

medium
1,37,41

. Such fluids tend to give rise to an yield stress which can closely be described by 

(1) 
1,41

. It has been shown in various studies that these particulate suspensions also approximately 

follow the classical Bingham plastic like model (which has been widely adopted for such class of 

fluids), and exhibit a Newtonian nature after the yield-point is overcome 
41

. In order to delineate 

the coupled effects of electro-capillarity and rheological variation in the capillary dynamics of 

ER fluids, we have proceeded with the classical Bingham model, where the shear viscosity is 

only considered as the function of the particle concentration. This, in effect, simulates the zero-

field Newtonian-type suspension viscosity at high shear regions 
48,49

. The primary motivation for 

employing such a model is to carry out a simple analysis that could bring out the basic non-

linearity and trends in the capillary filling of ER fluids, without sacrificing the essential physics 

in the problem. In the scope of lumped parameter model 
18,21,34

, we first seek to obtain the 

velocity profile for a fully developed flow within the parallel plate channel. This velocity profile 

is essentially needed to describe the viscous resistance during capillary motion. The Cauchy's 

equation of motion for a steady, laminar pressure driven flow within a parallel microchannel has 

the form 

 
dp d

dx dy

τ
=  (3) 

where 
xyτ τ=  is the shear stress in the xy-component of the stress tensor. Integrating equation (3) 

with a boundary condition of vanishing shear stress at the channel centerline, we arrive at the 

following equation 

 
dp

y
dx

τ =  (4) 
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Now, inserting equation (2) into equation (4) and using the no-slip boundary condition at the 

walls ( ) 0u y H= = , we solve for the velocity profile, which takes the form 

 ( ) ( )2 2 01

2

dp
u H y H y

dx

τ
µ µ

= − − − −  (5) 

However, there will be a region within the domain cross-section where the shear stress will be 

less than the yield stress and the velocity profile will experience a plug-like zone. This region 

can be found with the aid of equations (2) and (4), resulting in an equation of the form 

0

du dp
y

dy dx
τ µ− + = . Since 0

du

dy
=  at the boundary of the plug zone, the span of the plug-zone 

from the centerline (denoted by 1y ) is simply given by: 1 0

dp
y

dx
τ= − , wherein we notice that the 

span of the plug zone across the domain is 1 1y y y− ≤ ≤ . Within the plug zone, the velocity 

remains constant and has the value 

 ( ) ( )2 2 0
1 1 1

1

2

dp
u H y H y

dx

τ
µ µ

= − − − −  (6) 

From equation (5) and (6) the average velocity over the cross section of the parallel channel can 

be found suing the expression 

1

1

1

0

2

2

y H

y

u dy udy

u
H

 
+  

 =
∫ ∫

 which reads: 

 
( ) ( )3 3 2 2

1 1

0
3 2

H y H ydp
u

dx H H
τ

µ µ

− −
= − −  (7) 

Two important points can be noted from the above equations. Straightaway, we can see 

that the average velocity across the channel shows that it is less than that for Poiseuille flow, due 

to the presence of the plug-zone near the channel centerline, and thus, the maximum velocity for 

a parabolic profile is not attained. The second but a more subtle nature is that with a decrease in 

the pressure gradient (or imposed actuation force on the flow), the average velocity does not 

depict a linear decrease. This is due to the fact that the width of the plug zone 1y  increases with a 
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decrease in the pressure according to 1 0

dp
y

dx
τ= −  as discussed above. Therefore, a decrease in 

pressure gradient increases the effect of the second term on the right hand side of equation (7), 

thereby decreasing the average velocity further. This intricate nature of the flow will be used in 

the following discussion of the capillary filling dynamics and its influence on the capillary front 

cessation.  

2.3. The surface tension force: Electro-capillary effect 

It has been shown in numerous earlier studies 
50–53

 that the surface tension depends on a number 

of external parameters, such as the electric field, and presence of external particles in the liquid 

phase, both of which alter the interfacial energy, finally resulting in a change in the equilibrium 

Jurin height. This effect, in presence of an applied electric field, is known as electro-capillary 

effect, which is quantified by the change in the contact angle at the fluid-fluid-wall interface. 

Various analytical and experimental studies 
50,54–57

 have shown that with an applied electric field, 

interfacial free energy alters, resulting in a change in the apparent contact angle.  

 The theory of electrowetting and electrocapillarity has been the topic of numerous studies 

in the past. Electrowetting effect refers to the apparent decrease in the contact angle the liquid 

makes with the solid surface. On the other hand, the phenomenon where a net electrochemical 

force is exerted on a liquid mass by applying an external voltage in a suitable arrangement is 

sometimes referred to as electrocapillarity 
50

. Although these two phenomena are usually 

grouped together and follow a similar mechanism, they have been distinguished in few recent 

studies 
50,58

. Although the electrowetting term is restricted to the observable change in the 

contact angle, the prediction of the electromechanical force responsible for the electrocapillary 

effect, is consistent with the Young-Lippmann electrowetting theory when Laplace equation is 

augmented with the electrowetting phenomenon to estimate the net height-of-rise of the liquid. In 

other words, when we consider the change in contact angle due to the application of electric field 

according to Young-Lippmann equation, the electrocapillary force automatically gets included in 

the formulation. To this end, we consider the change in the contact angle, which follows from the 

basic mechanism of the electrowetting scenario, instead of incorporating the two cumulative 

surface tension and electrochemical forces in the formulation.  Accordingly, with an assumption 

of absence of any dielectric coating layer and electric field independent liquid-vapor surface 
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tension coefficient, the Young-Lippmann equation describing the electric field driven wetting 

characteristics reads,  

 
2

0cos cos
HE

w

ε
θ θ

σ
= +  (8) 

where w  is the contribution factor of the capacitive energy term, H  is the capillary half-width, 

E  is the applied electric field and lvσ σ=  is the surface tension at the liquid-vapor interface. The 

factor w has been included in equation (8), in an effort to keep the value of the quantity on the 

right hand side less than 1. We have chosen the value of w based on experimental readings, as 

discussed in the comparison with experimental results section. The resultant surface tension 

force actuating the capillary rise through the narrow conduit is given by the form 

 2 cossurfF bσ θ=  (9) 

Since the electric field alters the driving surface tension force and the resistive viscous force 

simultaneously, its implication on the capillary filling dynamics is rather non-trivial, as discussed 

subsequently. 

2.4 Reduced order model 

In the scope of the reduced order analysis 
18,21

, the net shear force per unit axial distance at the 

channel upper-wall is derived from equation (4) with y H=
 
and is given by 

,w v

dp
F bH

dx
= −  , 

with b  being the channel width. Similar viscous hindrance is experienced at the bottom wall at 

y H= − . The total viscous force, thus, experienced by the shearing of the fluid near the channel 

is given by 
,2 2visc w v

dp
F F x bH x

dx
= = − . The pressure gradient is then replaced with the average 

velocity from equation (7) and the resulting viscous force reads:  

 
( )2 2

0 1

3 3

1

2
3visc

H y u H
F bHx

H y

τ µ − +
 =
 − 

 (10) 

The gravitational force on the capillary is simply given by: 
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 2gravF gHxρ=  (11) 

We are now in the position to formulate the governing equation for capillary front advancement, 

which is the balance of inertial, viscous, gravitational and surface tension forces. The lumped 

equation of motion is thus given by: 

 ( )
( )2 2

0 1

3 3

1

3 2

2 ρ 2σ cos θ 2ρ

dx
H y H Hx

d dx dt
H x gHx

dt dt H y

τ µ − +    = − −  − 
 (12) 

where the common factor b , the width of the wall, is cancelled from both sides of the equation 

and the average velocity u  is the replaced by the rate of meniscus rise dx dt . This is actually the 

essence of the reduced order model wherein we approximate the velocity of the advancing 

meniscus by an average velocity u , and replace it with the rate of advancement of the meniscus 

dx dt  in order to obtain the governing equations for advancement of the meniscus
16,21,29

. The 

above equation is now non-dimensionalized using the terms x x H=  and 0t t t=  where 

3

0t Hρ σ=  is obtained from the balance of the inertial and surface tension effects. The final 

non-dimensional form of the governing equation then has the form 

 ( )
( )
( ) ( )

2

1

3 3

1 1

13 3
cos

2 1 1

yd dx Ca dx
x Bo x x x

dt dt dty y
θ ξ

−   = − ⋅ − −   
− −   

 (13) 

where 1y y H=  denotes the non-dimensional span of the plug zone, 
2gH

Bo
ρ

σ
=  is the 

gravitational Bond number, 0
Hτ

ξ
σ

=  denotes a dimensionless number representing the ratio 

between the polarization energy to surface energy and 
0

H
Ca

tH

µ µ
σρσ

= =  denotes the 

characteristic capillary number for the flow.  

              A prior knowledge of the evolution of the plug zone dimension, which is a function of 

the velocity (and thus, a function of time), is necessary for the progressive solution of the 
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problem. The span of the plug zone can be estimated from 1 0

dp
y H

dx
τ= − , which can now be 

recast into the cubic form 

 3

1 1 10 3 6 2
dx

y y y Mn
dt

= − − +  (14) 

where 
0 0

Ca
Mn

t

µ
ξ τ

= =  denotes the modified Mason number for the system. This definition of 

the Mason number ensures that equation (14) is coupled with the dimensionless governing flow 

equation (13). The Jurin height is estimated from equation (12) by substituting the inertial and 

viscous terms to zero, and has the form   

 
( )

2

1
0 3

1

cos

13

2 1

J
y

gH
y

σ θ

ρ τ
=

 −
+  − 

 (15) 

As the value of 1y  approaches 1, the factor 
2

1

3

1

1

1

y

y

 −
 − 

 approaches to a value 
2

3
. Therefore, an 

asymptotic close approximation of the value of the dimensionless equilibrium Jurin height (given 

by J J H= ) can take the form 

 
( )cos

J
Bo

θ
ξ

=
+

 (16) 

The Newtonian counterpart of the capillary rise governing equation and the Jurin height is given 

as 

 

( )

( )

2

0

3
cos

cos
                       N

d dx H g H dx
x x x

dt dt t dt

J
Bo

ρ µ
θ

σ σ

θ

  = − − 
 

=

 (17) 

where a similar non-dimensional scheme with x x H= , 0t t t=  and 
3

0t Hρ σ=  is used.  

3. Results and discussions 
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Equation (13) has been solved numerically using Runge-Kutta method 
59,60

, subject to the 

following initial conditions; ( )0 0x →  and ( ) 60 10
dx

dt

−= . We consider a very small velocity at 

the time of capillary entry to avoid for the plug zone completely spanning the channel. This can 

be justified on the basis that the electric field is applied just after the fluid starts to enter the 

capillary, or else the fluid motion will cease at the entry plane. For representative numerical 

calculations, the height of the channel is assumed in the order of 1mm while the viscosity of the 

particulate medium is assumed to be of the order of 10
-2

 Pa-s. The density of the carrier fluid is 

considered as 1000 kg/m
3
 and the yield stress is assumed to have a value in order of 10 Pa. We 

have considered the value of static contact angle as 30
0
.  

 

 

 

a) 

b) 
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Fig 2. Figure represents the a) development of the dimensionless span of the plug zone 
1y  measured from 

the channel centerline; b) variation of dimensionless average velocity of the capillary front u ; and c) 

capillary front advancement x  as a function of the dimensionless time t  for different values of 

characteristic capillary number Ca . The other dimensionless parameters are Bo = 0.01; ξ = 0.01 

 Figures 2.(a) – 2.(c) depict the variation of span of the plug zone (fig a), the resulting 

meniscus velocity (fig b) and the position of the capillary front as functions of time for different 

values of Ca (fig c), while the other relevant parameters have been mentioned in the caption. 

Figure 2a shows that the plug zone spans nearly across the whole channel at the beginning of the 

capillary filling. This is due to the initial low velocity of the capillary front since the inertial 

effects are dominant in this regime. This lower velocity results in lower shear stresses. Since, this 

stress is lower than the yield stress value in most parts of the channel except near the channel 

walls, a plug zone spanning nearly across the whole channel is observed. As the velocity 

increases with time (see figure 2b), a larger shear rate in induced across the channel decreasing 

the span of the plug zone. With the meniscus penetrating more into the capillary, the viscous 

effects naturally become more dominant. This slows down the flow and hence the plug zone span 

again starts to increase. Once it spans across the whole channel, any further advancement of the 

capillary front is arrested and the meniscus reaches the equilibrium position. As the capillary 

number increases, the effect of the viscous drag on the capillary front increases. This lowers the 

average velocity of the fluid. Thus, the plug zone can span across the channel more quickly 

resulting in a lower equilibrium height, as seen in figure 2c. In Newtonian fluids, as indicated by 

previous studies 
18

, Capillary number (representing the dominance of the viscous forces in 

contrast to the surface tension forces) has absolutely no effect on the final Jurin height attained; it 

c) 
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just influences the time required for the capillary front to attain that final Jurin height.  However 

In ER fluids, the Capillary number has an influence on the development of the plug zone and 

thus, on the Jurin height attained. One more important feature of figure 2a is the fact that 

although for high Capillary numbers, the plug zone spans faster across the channel resulting in a 

lower Jurin height, it also takes a longer time to evolve as compared to the case of lower 

Capillary number flow. This result is in accordance with our discussions, since for higher 

Capillary numbers, the flow is relatively slow and takes longer time to develop. However, owing 

to the lesser height of the liquid column, the effect of gravity is less pronounced. On the other 

hand, for lower Capillary numbers, the front attains relatively larger height over shorter time 

duration (see figure 2c). Therefore, the effect of gravity is more dominant in slowing down the 

flow, as manifested by a plug zone spanning across the channel. Figure 2(c) clearly depicts that 

increase in Ca results in lower Jurin height as well as a longer travel time of the meniscus.  

 

 

a) 

b) 
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Fig 3. Figure represents the a) development of the dimensionless span of the plug zone 
1y  measured from 

the channel centerline; b) variation of dimensionless average velocity of the capillary front u ; and c) 

capillary front advancement x  as a function of the dimensionless time t  for different values of Bond 

number Bo . The other non-dimensional parameters are Ca=0.1 ξ =0.01. 

 Figures 3(a) – 3(c) demonstrate the variation of span of the plug zone (fig a), the resulting 

meniscus velocity (fig b) and the advancement of the capillary front (fig c) with progress of time 

for different values of Bo, while other relevant parameters have been mentioned in the caption. 

The trend in the variation of the plug zone span with time is quite similar to figure 2(a). 

However, with higher Bond number, the span of the plug zone increases faster while the Jurin 

height attained by the capillary decreases as shown in figures 3a and 3c, respectively. Increase in 

Bo simply indicates an increase in the gravitational hindrance, which, as expected, results in 

lower values of Jurin height. The velocity profiles (figure 3b) are also consistent with the flow 

description wherein the velocity is the lowest for the highest value of Bo.  

 

c) 

a) 
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Fig 4. Figure represents the a) development of the dimensionless span of the plug zone 
1y  measured from 

the channel centerline; b) variation of dimensionless average velocity of the capillary front u ; and c) 

capillary front advancement x  as a function of the dimensionless time t  for different values of the 

dimensionless number ξ . Other dimensionless parameters are Bo = 0.01; Ca = 0.1. 

 

 Figures 4(a) – 4(c) depict the variation of span of the plug zone (fig a), the meniscus 

velocity (fig b), and the advancement of the capillary front (fig c) with progress in time for 

different values of ξ , while the other parameters have been mentioned in the caption. Again we 

notice here that the trends of the plots are quite similar to figures 2 and 3. It is observed that an 

increase in ξ  increases the yield stress, which results in a higher span of the plug zone across the 

channel cross-section. As a result of this, the Jurin height also decreases, since the plug zone 

more effectively spans over the whole cross section. One important point to note from figures 

2(a), 3(a) and 4(a) is that during the initial phase of filling, 1y  
remains strongly dependent on Ca 

b) 

c) 
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(fig 2(a)) and ξ ( fig 4(a)), whereas its dependence on Bo is very weak, since the curves 

corresponding to different Bo are nearly overlapped. This can be attributed to the fact that at the 

initial times of filling, higher Ca signifies a higher viscosity which slows down the flow. A 

comparatively slower flow means a larger span of the plug zone. Similarly, a higher value of ξ  

signifies a larger yield stress and a larger span of the plug zone. Thus, variations in Ca and ξ  

significantly alter the span of the plug zone in the initial times. However, variation of Bo has no 

effects on the span of the plug zone in the initial times since in this regime, the surface tension 

and inertial forces are dominant over the gravitational effects.  

3.1. Comparison with experiments 

We attempt to compare our theoretical results with previously reported experiment on capillary 

filling of ERFs, performed in 
35

. The experiments of Korobko et. al. 
35
 were executed with 

transformer oil as the liquid medium whose density, dielectric constant and surface tension are 

3880 kg/mcρ = , 2.5cε =  and 27 mN/mσ = 35
. The conductivity of the continuous phase is 

found from 
61

 in order of 10
-12 

S/m. The density and radius of the suspended particles, as reported 

in 
35

, are 
32000 kg/mpρ =  and 1  µma = . The zero-field contact angle estimated from the height 

data, when no electric field is applied, is 
0 76oθ = . The permittivity of free space is taken as 

12

0 8.85 10  F/mε −= × . The viscosity of transformer oil has the value 0 0.01 Pa-sµ =  while the 

viscosity variation with particle concentration is assumed to be of the form 
0

5
1

2
µ µ φ = + 

 
 

62
. 

The dielectric constant of SiO2 particles is generally considered as 12pε =  in the low frequency 

regime (mimicking a DC bias scenario), considering the results reported in 
63,64

 while the DC 

conductivity is found from 
65

 in order of 10
-14 

S/m. This makes the value of CM factor ~  0.5β , 

estimated based on the conductivity values. We have calculated the yield stress using the 

equation (1) which comes out in the order of 10 Pa. The contribution factor to the capacitive 

energy is considered as 9w = . The significance of this parameter lies in the fact that in 

derivation related to electrocapillary effect 
50,51

, a small dielectric layer is considered near the 

interface where the electric field is concentrated and therefore the phenomenon of contact angle 

saturation occurs 
55

. Towards this, we have assumed the correction factor (w) so that the right 

hand side of equation (8) does not overshoot from unity. It is seen that with this fitting 
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parameter, the CM, as calculated using the conductivities of the two phase, better predicts the 

experimental findings as compared to the calculation made by the dielectric constant.  

 The experiments were conducted by introducing silicon dioxide particles, which alter the 

surface tension of the fluid medium as well as its density. Therefore, we have assumed the 

density of the medium to vary in the following way, as a function of particle 

concentration: ( )1 c pρ φ ρ φρ= − + . The variation of the surface tension with particle 

concentration and particle wetting in presence of an electric field is a complicated study in itself. 

For the sake of simplicity, we have interpolated the reported values of the surface tension in 
35

 as 

a linear function of the particle concentration. 

 

Fig 5. Figure depicts the final Jurin height J  (in mm) attained by the capillary front for different particle 

concentrations φ  (in % volume fraction of particles) in the suspended medium as obtained from the 

present theoretical model and a comparison with the experimental results as obtained in 
35

. 

 Figure 5 depicts the comparison of the proposed model and experimental findings for the 

present study. It can be seen that the model predicts the final Jurin height of the ERF capillary 

rise to a close approximation. For the model, we see that with increase in volume fraction of 

particles, the effective density of the fluid increases, thereby decreasing the height of the ERF. 

However, in a counteracting effect, the electric field induced particle wetting increases the 

effective surface tension, which tends to increase the Jurin height. These two balancing effects 

determine the equilibrium Jurin height of the ERF within the capillary. It is observed that the 

influence of particle concentration on the Jurin height is reduced as the volume fraction of the 

particle in the suspending medium is increased. At higher volume fraction, 0.1 0.15φ > − , the 
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effect of particle-particle interaction is enhanced while the yield stress cannot be accurately 

predicted resulting in a deviation of our results from the experimental values 
41

. The prediction of 

the model can be improved with proper analysis of the particle concentration influence on the 

surface tension and contact angle while accounting for the variations in density and viscosity 

induced by the interactions among the particles. 

3.2. Scaling Analysis  

A: Different Regimes of Capillary Filling  

The existence of different regimes due to the effect of the plug zone development over and above 

the other effects of different forces involved during the capillary front advancement can be 

qualitatively studied by a thorough scaling analysis of the governing equation. To this end, we 

note that a sustained capillary filling for a long time would ensure a proper demarcation of the 

flow regimes attained. For this cause, the effect of gravity is neglected by considering a 

horizontal channel which ensures a sustained capillary filling for a longer time. The form of the 

governing equation thus reduces to 

 ( )
( )2 22

0 1

3 3 3 3

1 1

2
1 3 4

36
2 ρ 2σ cos θ

H H yd dx H dx
H x x x

dt dt H y dt H y

τµ − −−  = + +  − − 
Λ

Λ Λ Λ

14243
1442443 1442443 144424443

 (18) 

The regime at the start of the filling process is a balance between the inertial and surface tension 

force, i.e. ~x t . This regime has been pointed out in many studies 
17,18,66

 and remains valid at 

early stages of the filling, irrespective of the fluid rheology, as can be seen by balancing the 

terms 1Λ  and 2Λ  of equation (18). Over this regime, 
1y  can be scaled using the equation (14). 

We notice that since ~x t , the velocity scales as unity and thus, from this equation we find that 

the value of 1y  as obtained from ( )3

1 13 6 2 ~ 0y Mn y− + + , remains almost constant at the initial 

times which is evident from figure 6.  

 The next regime is where the surface tension force is balanced by the viscous effects. 

Here the terms 2Λ  and 3Λ  come into prominence. The effect of the term 4Λ  is not yet felt since 

the plug zone is confined near the channel centre, which means 1 (1)y O<< . Over this regime, it 
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can be seen that the fluid closely follows the scaling for that of a Newtonian fluid, since the yield 

stress is less than the shear stress in most of the flow domain. Over this regime, considering 

1y H� , ~x t  from ( )
2 2

3 3

1

6
2σ cos θ ~

H x

H y t

µ  
 −  

 as found by equating term 2Λ  and term 3Λ . 

Thus, the velocity scales as ~ 1 t . Now in this region, equation (14) can be recast by 

substituting 11y y= −  in 

 
2 33 6 6 0y y u Mny u Mn− + − =  (19) 

where 
1

~ ~
x

u
t t

. We note that, at higher times, 1 1y → , 0y → . Accordingly, neglecting 
3y , 

the reduced form of  equation (19) reads as 

 2 6 6
3 0

Mn Mn
y y

t t
+ − =  (20) 

The solution of the above equation has the form 
2

1 1
Mn t

y
Mnt

 
 = + −
 
 

. At higher times 1t �  

and ~ (1)Mn O , we approximate 
2 2

1
t t

Mn Mn
+ ≈  and obtain the final scale of 

2
~

Mn Mn
y

t t
− . 

Therefore, the dimensionless span of the plug zone scales as 
1

2
~ 1

Mn Mn
y

t t
− + . The scaling 

with this equation is plotted in figure 6. 
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Fig 6. Scaling analysis for the case when 1Mn = , 0.1Ca =  and 0Bo = . The two regimes for the 

development of the plug zone with progress of time are shown. (Inset) The scaling of the advancement of 

the capillary front is shown with progress of time for the initial and large time regimes.  

Figure 6 depicts the scaling analysis of plug zone span with progress of time. In the inset 

of figure 6, classical inertial regimes ~x t  and Washburn regimes ~x t  are depicted in 

comparison to numerical solutions of ER fluids. In the scaling analysis, the effect of inertia on 

initial time regime shows that the span of the plug zone 1y  remains constant as the fluid 

maintains its maximum velocity for small duration after initial acceleration. Over this regime, the 

capillary rise x  scales linearly with t , which approximately predicts the capillary height at the 

initial times, as shown in the figure inset. After the initial transience, the viscous effects come 

into play and slow down the velocity. The Newtonian part of the flow, where no plug zone has 

occurred, follows the Washburn regime ~x t . However, the average velocity includes the 

plug zone which does not follow this regime. Thus, at very large times, there is a deviation from 

the Washburn regime. Nevertheless, the plug zone span, as predicted from the Washburn regime 

(equation (20)), seems to accurately predict the profile for plug zone development. This is due to 

the fact that the scaling for Washburn regime holds till the beginning of the plug zone. Thus, 

exploiting these scaling regimes, one can properly explore how the plug zone develops across the 

channel height.  

B: Capillary entry and Capillary front oscillation  

 Another important aspect of ER capillary filling would be to predict the conditions under 

which negligible amount of capillary rise is witnessed by the fluid. In order to estimate such a 

situation, we have to obtain the yield strength criteria which would obstruct the capillary 

advancement at very early stages (simulating negligible capillary filling), by balancing the 

surface tension forces to polarization forces at the capillary entry. It must be appreciated that if 

the flow has to cease at the entry, the parameter ξ  should be the dominating factor, irrespective 

of the magnitudes of other factors. We assume that an entry length of 10x H=
(

 can be 

considered as the scenario where the fluid practically does not enter the capillary (the flow is 

ceased just at the entrance). For the flow cessation to occur at the entrance, the polarization 

forces must dominate over the surface tension forces even from the initial stages. Therefore 
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balancing their contributions we find 0b bxσ τ≤
(

, which reduces to the form ξ ≥10 . This can be 

considered as the criteria for flow cessation.  

 

Fig 7. The advancement of the capillary front x  with dimensionless time for different dimensionless 

number ξ . The other parameters in this figure are 0.1Bo =  and 0.1Ca = . 

Figure 7 depicts the capillary front dynamics with the passage of time for different values of the 

dimensionless ξ . ξ  signifies the ratio of polarization and surface tension forces. With the above 

condition we see that for θ = 0  and 0.1Ca = , the value of ξ =10  will closely simulate a 

situation where the filling is completely hindered at the entry of the capillary. As can be seen in 

the figure, the flow has completely ceased very close to the entry for ξ =10 . We have observed 

that for the same value of ξ  and by varying other parameters (Bond and Capillary number), the 

entry length becomes independent of the other dimensionless numbers at such high magnitudes 

of ξ  (ξ >10). 

 A vast body of literature 
21,30,31

 on capillary filling dynamics discusses the topic of capillary 

front oscillations about the Jurin height. However, for the case of ER fluids, the capillary front 

dynamics near the Jurin height has a subtle and distinctive difference in comparison to a classical 

capillary front dynamics for a Newtonian fluid 
31

. For Newtonian fluids, it can be seen that the 

ratio Ohnesorge number to Bond number in the geometry used in the present study has the form 

2

Oh

Bo gHH

µ σ
ρρσ

= 31
, where, this ratio dictates whether the capillary filling transits to a 

viscous (Washburn) regime or oscillatory regime after the initial inertial regime. In the present 
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context, we see that the ratio of viscous forces to inertial forces scales as 
3 1

~ 1
2

visc

grav

F Oh

F Bo Mn

 + 
 

. 

Thus, we conclude that for the case of capillary filling of ER fluid, the transmission of inertial 

regime to oscillatory regime or to the Washburn regime is not straightforward and depends on 

another parameter Mn , known as the Mason number, which signifies the ratio of viscous forces 

to electrostatic polarization induced forces. For ER fluids, the polarization induced forces are 

dominant signifying a low Mn; thus, the fluid is hindered by this additional obstructive effect. 

This ensures that the dynamical regime of the capillary filling leads directly to the viscous 

regime from the initial inertial regime due to high viscous forces that are generally associated 

with ER fluids. In fact an oscillatory regime cannot be observed in capillary filling dynamics of 

ER fluids. This can be explained based on the simple fact that the particle chains, formed across 

the capillary gap as soon as the fluid stops completely, would make it impossible for any 

oscillation to take place (since, for oscillatory mode, the front has to stop and then fall down). 

However, with very high Mn, the dominant factor of this regime transition is 
Oh

Bo
 as has been 

discussed in previous studies

 

31
. Such a physical paradigm would then lead to a Newtonian like 

behavior of the front, which can indeed undergo oscillation near the Jurin height. In fact, for 

short channel length (channel length comparable to Jurin height), the classically observed 

bulging and oscillation of the fluid near the channel open end for Newtonian rheology, which is 

dominated by the parameter We (Weber number 

2

8

dx
We x

dt

ρ
σ

 =  
 

)
30

, is also absent for the case 

of ER fluids. In the context of capillary filling of ER fluids, it must be noted that its filling 

dynamics is generally associated with high contact angle and high viscous effects and, therefore, 

low filling rates. From the definition of We, we find that the damping in the capillary rise of ER 

fluids is very high due to viscous effects. In fact, the final height attained will actually be smaller 

as a result of an additional yield stress associated with such ER flows. The plug zone that will be 

developed at the channel centerline for the yield stress property of the fluid will not allow the 

bulging of the fluid in the channel centerline. As a result, a flow with low We signifies that there 

will not be any vibration in case of short tubes where the capillary front approaches the tube end. 

 

Page 25 of 30 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



 26

4. Conclusions 

In this study, we have investigated the capillary filling dynamics of an Electrorheological Fluid 

having different concentrations of suspended particles and exposed to different values of the 

electric field. We have henceforth proposed a theoretical model following reduced order 

formalism for the capillary front advancement, where the effect of yield stress of the 

electrorheological fluid and the resulting plug-like zone has been taken into consideration. One 

critical feature of the theoretical formalism is addressing a non-trivial and complicated interplay 

between the surface tension and effective viscous forces, both of which depend on the electric 

field. Another interesting feature of the flow dynamics is the development characteristics of the 

plug zone and its influence on the final height reached by the capillary front. In this regard, we 

have demonstrated that the viscosity plays an important role in deciding the final height attained, 

since a reduction of velocity due to higher viscosity results in augmented development of the 

plug zone, which in turn, results in a smaller rise of the capillary front. We have also compared 

our theoretical predictions with previously reported experiments, with reasonable predictive 

capability. A scaling analysis is also performed for the different regimes of the capillary flow. 

This analysis reveals that the Washburn regime is shortened due to the yield like action of the 

fluid. This action may eventually arrest any motion when the whole fluid domain has a shear rate 

that is less as compared to the yield stress of the fluid for the corresponding electric field. A 

similar dynamical phenomenon may occur in another class of smart fluids known as 

magnetorheological fluids. The fluid mainly constitutes of magnetic particles that orient 

themselves and chain along the magnetic field direction 
67,68

. Magnetorheological fluids can also 

exhibit capillary filling and the trends can be quite similar to the dynamics of ER fluids. 

Nevertheless, the mechanism behind its rheological variation is different and holds a merit for an 

independent investigation. We believe that our results may be of importance towards designing 

smart capillary filling systems in which electric field and flow rheology may simultaneously act 

as modulating parameters. 
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