
 

 
 

 

 
 

Self-assembly and crystallisation of indented colloids at a 

planar wall 
 
 

Journal: Soft Matter 

Manuscript ID: SM-ART-05-2015-001043 

Article Type: Paper 

Date Submitted by the Author: 01-May-2015 

Complete List of Authors: Ashton, Douglas; University of Bath, Department of Physics 
Ivell, Samantha; University of Oxford, Department of Chemistry 
Dullens, Roel; University of Oxford, Department of Chemistry 
Jack, Robert; University of Bath, Department of Physics 
Wilding, Nigel B.; University of Bath, Department of Physics 
Aarts, Dirk; University of Oxford, Department of Chemistry 

  

 

 

Soft Matter



Self-assembly and crystallisation of indented colloids at a planar wall

Douglas J. Ashton,a Samantha J. Ivell,b Roel P. A. Dullens,b Robert L. Jack,a Nigel B. Wilding,a Dirk

G. A. L. Aarts∗b

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

We report experimental and simulation studies of the structure of a monolayer of indented (“lock and key”) colloids, on a planar

surface. On adding a non-absorbing polymer with prescribed radius and volume fraction, depletion interactions are induced

between the colloids, with controlled range and strength. For spherical particles, this leads to crystallisation, but the indented

colloids crystallise less easily than spheres, in both simulation and experiment. Nevertheless, simulations show that indented

colloids do form plastic (rotator) crystals. We discuss the conditions under which this occurs, and the possibilities of lower-

symmetry crystal states. We also comment on the kinetic accessibility of these states.

1 Introduction

Self-assembly of colloidal systems is a fast-moving area of

current soft-matter reseach – the synthesis of novel micron-

sized particles with controllable anisotropic interactions has

allowed the assembly of clusters, “colloidal molecules” and

unusual crystals1–6. In some cases, anisotropic interactions

can be realised by chemical patterning or “patches” on the

surface of colloidal particles5,7–9. Alternatively, the interplay

between particle shape and a depletion interaction can drive

self-assembly3,4,10–14. One advantage of the depletion inter-

action is that the strength, range, and specificity of the interac-

tion can be tuned by the properties of the depletant molecules

(usually a non-adsorbing polymer), so even a single synthesis

of a colloidal system already allows access to a wide range of

assembly conditions.

An extra degree of control over self-assembly can be

achieved if it takes place under confinement, or at a surface.

This effect is particularly strong for anisotropic particles in the

presence of depletant, because surfaces can affect the packing

of the colloids15–17, and depletion forces also acquire an extra

orientationally dependent component, associated with binding

of the colloids to the surface. These surface effects lead to new

possibilities for controllable self-assembly.

Here, we consider “indented” or “lock-and-key” col-

loids3,18. These particles have spherical indentations in their

surface, in which similar colloids can fit tightly. This mode

of binding is favoured by the depletion effect11,13,19–21. We

have performed experiments on these particles, and simulated

them by a Monte Carlo method. The particles are localised by

gravity, against the (bottom) hard wall of their container.
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In this setup, simulations and experiments on spherical par-

ticles both reveal crystallisation into a hexagonal lattice – this

is a very simple example of self-assembly in this colloidal

model system. Our main purpose in this paper is to investigate

the effect of the shape of the indented colloids on this assem-

bly process. One possibility is that anisotropic particles can

lead to crystals with new and different structures4,22,23. How-

ever, the non-spherical colloidal shape can also disrupt crystal

formation, due either to thermodynamic or kinetic factors.

Our results reveal several competing effects. The experi-

ments show clearly that the indentations on the particles act

to frustrate crystallisation, and this fact is borne out by the

simulations. Similar frustration has been observed before in

systems of anisotropic particles24–26 but in those cases there

was significant polydispersity in the particle shapes: here, the

experimental polydispersity is small, and the computational

system is strictly monodisperse. Moreover, in cases where

depletion interactions are not too strong or short-ranged, our

simulations do reveal crystallisation of indented particles in a

hexagonal lattice, if the model parameters can be “tuned” ac-

curately to the most favorable conditions27,28. For stronger

interactions, we propose a low-symmetry crystal state that we

expect to be stable, but we find that kinetic effects frustrate the

assembly of this structure.

Overall, our results allow us to disentangle a variety of ef-

fects that impact on the crystallisation of anisotropic colloids.

In particular, we find a subtle interplay between thermody-

namic and kinetic factors that reinforces the conclusions of

previous theoretical studies, that kinetic factors must be borne

in mind when designing systems that self-assemble reliably

into complex ordered structures28.
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2 Methods

2.1 Experiments

The colloidal particles were synthesized following proto-

cols reported in the literature3,4. Some modifications were

made in order to incorporate a fluorescent dye, rhodamine

B isothiocyanate (RITC), for confocal studies17. The in-

dented and the spherical particles were made following similar

steps: In short, both sets of particles were synthesized from

3-methacryloxypropyl trimethoxysilane (TPM; sourced from

Polysciences and used as received). The TPM was hydrol-

ysed under basic conditions, forming a cloudy dispersion of

small droplets, which were subsequently grown to the desired

size by adding more hydrolysed TPM. Modified RITC was

added for fluorescence. At this stage the droplets were either

cross-linked from the outside inwards, by adding potassium

persulfate (Sigma Aldrich), leading to uniformly indented par-

ticles, or, from the inside outwards, by adding azobisisobuty-

ronitrile (BDH Laboratories), which resulted in spherical par-

ticles. Both the indented and the spherical particles were made

from the same batch of hydrolysed TPM droplets, allowing

for a straightforward comparison in the behaviour of both sys-

tems. Both sets of particles had a diameter of σ = 2.56µm

and a polydispersity of 4%, as measured by static light scat-

tering. The indented particles had a dimple of width ∼ 1.3µm

and depth ∼ 200 nm, as determined by scanning electron mi-

croscopy and atomic force microscopy, respectively. Details

of the above synthesis method can be found in reference17.

The particles were suspended in various aqueous polymer

solutions, where the polymers induce a depletion interaction.

Specifically, we used solutions of xanthan (molecular weight

Mw = 3×106 g mol−1 and calculated radius of gyration RG =
222 nm29) and of poly(ethylene oxide) (PEO; Mw = 1×106 g

mol−1 and calculated RG = 57 nm30), with added salt (0.1M

NaCl) to screen the double layer repulsion between the par-

ticles. We will focus here on results for PEO; as explained

below, the smaller polymer leads to a more specific, directed

depletion interaction.

Multiple solutions of colloid-polymer mixtures were pre-

pared in order to study the effect of the concentration of both

colloidal particles and polymer in the system. The gravita-

tional length of the colloidal particles was 0.2µm, so they

form a colloidal monolayer at the base of the container, with

negligible out-of-plane fluctuations. Any fluctuations away

from the wall are also suppressed by the depletion interaction

between particles and wall. Note that the polymers were not

affected by gravity due to their negligible buoyant mass.

Samples were left to sediment completely, which took ap-

proximately two hours. The resulting monolayer was then ob-

served using a Zeiss LSM 5 Exciter confocal microscope fitted

with a 63× oil immersion objective. For each sample, movies

σl

σs = qσl

a = 0.075σl

Fig. 1 Simulation model for the indented colloids. The size ratio

between colloidal particles (yellow) and ideal depletant particles

(blue) is q. The indentation depth is fixed at a = 0.075σl throughout

this work, for consistency with the experimental system.

of 150 frames were recorded, where each frame was 51.2 µm

× 51.2 µm in size. The 2D coordinates of each particle were

found using a tracking routine. In contrast to our recent work

on mono-layers in three-dimensional systems of indented col-

loids17, where particles were tightly packed and translational

motion was strongly reduced, we were not able to reliably de-

termine particles’ orientations in this system.

Due to the sedimentation of the particles, the variables of in-

terest were the colloidal area fraction and the polymer volume

fraction. The colloidal area fraction was obtained by count-

ing the number of colloids N within the area of view A, and

calculating the fraction of the area A covered by the colloids,

φc = Nπσ2/(4A). Here, we will focus on results for a system

with a colloidal area fraction of φc ≈ 0.5, and with polymer

volume fractions of φp ≈ 0.5.

2.2 Simulations

We use Monte Carlo (MC) simulations to calculate the equi-

librium properties of indented colloids, in the presence of de-

pletion interactions, confined close to a hard wall. We model

these particles by taking spheres of diameter σl , and cut-

ting away a volume that corresponds to its intersection with

a second sphere of the same diameter. The resulting situa-

tion is shown in Fig. 1: the distance between the centres of

the spheres is dc = 0.85σl , so the depth of the indentation

is 0.075σl , comparable with the experimental case (approx-

imately 0.078σ ). The depletant is modelled as a fluid of small

spheres of diameter σs, which we parameterise by the size ra-

tio q = σs/σl . These spheres are an ‘ideal’ depletant31: they

interact with the colloids as if they were hard particles, but

they do not interact with each other. The chemical potential

of the depletant is adjusted so that their volume fraction in

a system without colloids would be ηs. This modelling ap-

proach provides a simple and computationally-efficient model

that accurately captures the properties of colloid-polymer mix-

tures32–34.

We place N = 100 colloidal particles in a cuboidal box of
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dimensions Lx = Ly = 12.5σl , Lz = 2.5σl . Structureless hard

walls are placed at z = 0 and z = Lz and gravity acts in the

negative z direction. These parameters give an area fraction

for the colloids of φc ≈ 0.5. The gravitational length asso-

ciated with the colloidal particles is 0.1σl , comparable with

experiments. Given this gravitational length, the height of the

box is sufficient to prevent any effects from the upper wall.

In order to obtain good sampling in this system, we use

grand-canonical insertion/deletion moves for the depletant,

combined with the geometric cluster algorithm (GCA)35 as

described in13. The complete move set includes (i) grand

canonical moves for the small particles, (ii) standard displace-

ment and rotation moves of the colloids, (iii) GCA “biased

pivot” moves, where the pivot is placed close to the centre of

the particle to move it a small distance, (iv) GCA plane moves

where a particle can rotate by an arbitrary amount, (v) GCA

“biased plane” moves where the particle’s director nearly lies

in the reflection plane resulting in a small rotation, and (vi)

combinations of pivot and plane GCA moves. At the begin-

ning of the simulations, the colloids are first equilibrated with-

out depletant to ensure they drop to the bottom of the box,

after which grand canonical insertion/deletion MC moves for

the depletant are turned on

The aim of the GCA is to move clusters of particles to-

gether, since otherwise the large number of depletant particles

in the system tend to obstruct the movement of the colloids.

However, for computational efficiency, it is sometimes con-

venient to restrict the size of the cluster being moved, since

moves of larger clusters require greater computational effort.

Therefore, in each Monte Carlo sweep we perform N moves

where the cluster can contain only one indented colloid (but

with unlimited depletant particles), as well as one move where

the cluster size is unlimited. We perform these moves in 3-

dimensions to allow vertical movement of the colloids, but

we also perform updates where colloids move only in the xy-

plane, which allows efficient relaxation in two dimensions.

Our implementation of the GCA with gravity includes an ex-

tra step. As each particle move is proposed, we test for ac-

ceptance using a Metropolis criterion, based on the change in

gravitational potential energy. If any colloidal particle fails

this test the whole move is rejected.

2.3 Depletion interactions

The structures that are formed by these indented colloids are

controlled by depletion interactions. These interactions arise

because if two colloidal particles come close to each other,

the volume accessible to the depletant particles is increased.

This effect increases the total entropy of the system, and the

result is an attractive force between the colloids. There are

also attractive depletion forces between the colloids and the

hard walls of the system.

“Lock-and-key” “Dimple-down”

∆VLK
∆VSW

∆VSS ∆VLW

Fig. 2 Two binding modes for the depletion interaction next to a

hard wall (grey). The blue regions indicate the excess free volume

∆V that becomes accessible to depletant particles when the colloids

bind as shown. The strength of the depletion interaction is

proportional to these volumes. In “lock-and-key” binding, one lock

sits within the indentation of another, while in “dimple-down”

binding, the indentation points towards the wall. Numerical and

exact geometrical calculations (see Appendix A) indicate that

∆VLK +∆VSW > ∆VSS +∆VLW, which means that lock-and-key

binding is typically the dominant binding mechanism.

The decrease in free energy (gain in entropy) associated

with various configurations of the colloids can be estimated

by a geometrical argument. The most relevant cases are il-

lustrated in Fig. 2: they are (a) “lock-and-key” binding, where

one colloidal particle sits within the indentation of another col-

loid; (b) “dimple-down” binding, where the indentation on the

colloidal particle points towards a nearby hard wall. The sizes

of the shaded areas in Fig. 2 indicate the volume released to

the depletant when the colloids bind – the larger the relevant

volume, the stronger is the attractive depletion force. These

volumes can be calculated geometrically: see Appendix A.

For the purposes of this work, we emphasize two key points.

First, the “lock-and-key” binding mechanism is associated

with the strongest depletion force, while “dimple-down” bind-

ing is rather weaker. The relevant volumes that are released

to the depletant are illustrated in Fig. 2: we label these as

“lock-and-key” (∆VLK); “lock-and-wall” (∆VLW); “sphere-to-

sphere” (∆VSS) and “sphere-to-wall” (∆VSW). When adding

a particle to an existing cluster, “lock-and-key” binding is

favoured over “dimple-down” binding if ∆VLK + ∆VSW >
∆VSS+∆VLW. This inequality is satisfied for the particles con-

sidered here: see Appendix A.3. Second, the differences in

bond strength for the different binding mechanisms are larger

when the depletant particles are smaller (small-q). It may be

useful to think of smaller-q corresponding to “more specific”

depletion interactions, both in terms of the relative strength of

the different bonds, and in terms of the range of the depletion

interaction.
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3 Results

3.1 Structures of spherical and indented colloids

In Fig. 3, we show self-assembled structures in the experi-

mental and computational systems. The colloid area fraction

is φc ≈ 0.5 in all cases, and there is qualitative agreement be-

tween simulation and experiment – while the spherical parti-

cles readily crystallise, the indented spheres form large disor-

dered clusters, reminiscent of vapour-liquid coexistence. For

comparison, we also show snapshots for experimental systems

without any polymer (a,b), where only a liquid-like structure

may be observed. In the simulations, the size ratio between

colloid and depletant is q = 0.125, larger than the experimen-

tal case; the volume fractions of depletant used in simulation

are also lower. This indicates that the depletion interaction in

the experiments is weaker than that predicted by the idealised

model used in the simulations, which we attribute primarily

to non-ideal colloid-depletant interactions34,36 and (for the in-

dented colloids) an indentation that does not match the perfect

spherical shape used in the simulations. However, the qual-

itative features of the experiments are well captured by the

simulations. The dependence of the simulation results on de-

pletant volume fraction is discussed in Section 3.2 below. We

also performed experiments using a larger polymer (xanthan).

The results are qualitatively similar, in that spheres crystallise

more readily than indented colloids.

To quantify the extent of crystallinity and bond-

orientational order, we measured the two-dimensional radial

distribution function of the colloids g(r), as well as a measure

of orientational order g6(r). Once the particle positions are

known, g(r) is obtained (as usual) by calculating the distances

between all pairs of particles, generating a histogram of these

distances r, and normalising by a factor of 2πrZ, where the

constant Z is chosen so that an ideal gas at the same number

density would have g(r) = 1.

To define g6(r), we first introduce a local bond-order pa-

rameter for particle i:

φ6(i) =
1

n
∑

j

ei6θi j (1)

where the sum runs over neighbours j of particle i, the num-

ber of these neighbours is n and θi j is the angle between

~ri j =~r j −~ri and an arbitrary axis. We define ψ6 = 〈|φ6(i)|〉
which provides a simple measure of the local degree of ori-

entational order (the average is independent of i). For the

spherical particles in Fig. 3(a,b), the snapshots correspond to

ψ6 = 0.52 (without polymer) and ψ6 = 0.67 (with polymer,

PeO at φp = 0.5): the crystalline order in Fig. 3(c) is reflected

by the local ψ6 measurement. For indented colloids we have

ψ6 = (0.50,0.49), with and without the polymer (PeO), con-

sistent with the absence of crystalline order in Fig. 3(b,d). For

c d

e f

f =0p f =0p

Fig. 3 Typical configurations of spherical and indented colloids in

experiment and simulation. The colloid area fraction is φc ≈ 0.5 in

all cases. (a-d) Experimental results: the the depletant (not visible)

is PEO at volume fraction φp = 0.0 (a,b) and φp = 0.5 (c,d) in a

0.1M salt solution. Samples (a,b) show liquid-like structure. For

samples with polymer, the spheres (panel c) form a locally

crystalline structure: one domain is highlighted with dashed lines.

The indented colloids (panel d) lack this locally crystalline structure.

These differences are analysed quantitatively in Fig. 4. Scale bars

are 10µm. (e,f) Simulation results: the size ratio is q = 0.125, which

gives qualitative agreement with these experiments. The depletant

volume fraction is ηs = 0.36, which was chosen to maximise the

crystallinity of the indented sphere system (see Fig. 5 below). As in

the experiments, the spheres assemble into a crystalline structure but

the indented colloids do not. The simulation snapshots are

visualised from below: in (f), there are several particles whose

indentations (coloured red) are oriented towards the wall

(“dimple-down” configuration).
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Fig. 4 Radial distribution functions g(r) (left column) and

orientational correlation function g6(r) (right column), under the

same conditions as Fig. 3. In some cases the g(r) data have been

shifted vertically, for clarity. Panels (a,b) are experimental results

for spherical particles (results are shown with and without

depletant). Panels (c,d) are the corresponding results for indented

colloids. In the presence of depletant, a peak in g(r) appears at

r ≈ 0.85σ , corresponding to lock-and-key binding. The

orientational order is weaker for the indented colloids, compared

with the spheres. Panels (e,f) show simulation results in the presence

of depletant (ηs = 0.36). The indented colloids show a lock-and-key

binding peak in g(r), and weaker orientational order than the

spheres, consistent with the experiments.

comparison, systems with Xanthan polymer at φp = 0.5 yield

ψ6 = 0.75 (spheres) and ψ6 = 0.50 (indented colloids), again

showing that the spheres crystallise but the indented colloids

do not.

To measure order on larger length scales, we use the fact

that in systems with bond orientational order, the complex

numbers φ6(i) have significant interparticle correlations. In

particular,

g6(r) =
〈φ6(i)φ

∗
6 ( j)δ (r−|~ri j|)〉

〈δ (r−|~ri j|)〉
(2)

measures order at distance r, with g6(r) = 0 if the system has

no orientational order at length scale r, while g6(r) = 1 if the

system has perfect bond orientational order. It is also useful

to define a “susceptibility”, which is related to a spatial inte-

gral of g6, and gives the approximate size of orientationally-

ordered domains in the system:

χ6 =
1

N

〈

∣

∣

∣∑
i

φ6(i)
∣

∣

∣

2

〉

. (3)

Results for positional order [g(r)] and orientational order

[g6(r)] are shown in Fig. 4. Several features are notable. For

g(r), the simulation results for spheres (with depletant) show

several sharp peaks, consistent with the almost-perfect crystal

state shown in Fig. 3. The corresponding data for the indented

particles lacks the sharp peaks at r > σl , but there is a new

peak that appears at r ≈ 0.85σl . This peak corresponds to the

onset of lock-and-key binding for the indented particles: there

is a strong depletion force that favours the state where one

colloid sits snugly in the indentation of another. The experi-

mental data in the presence of polymer show the same qual-

itative behaviour: the spheres show a splitting in the second

peak of g(r), as expected for crystalline states, and there are

other peaks in g(r) for r > 2σ , consistent with crystalline or-

der. It is notable that the peaks in g(r) are much less sharp

for the experiment as compared with the simulation: we at-

tribute this to polydispersity among the colloids, and the in-

herent uncertainty in capturing particle positions from micro-

scope images. Turning to the experimental data for the in-

dented colloids (with polymer), one observes a suppression

of long-ranged positional order (compared with the spheres),

and the appearance of a new lock-and-key binding peak at

r ≈ 0.85σ . In the absence of the polymer, the results of Fig. 4

are consistent with the fluid states shown in Fig. 3(a,b), con-

firming that depletion interactions are responsible both for the

crystallisation of the spheres and for the lock-key binding of

the indented colloids.

The orientational correlation function g6(r) reinforces this

overall picture: the spheres show clear evidence for long-

ranged bond-orientational order, as expected for crystalline

1–11 | 5
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Fig. 5 Measurements of global bond-orientational order (χ6)

obtained from simulations, as a function of depletant volume

fraction ηs, for various sizes ratios q. Comparing spheres and

indented colloids, the spheres crystallise more readily and over a

larger range of ηs, although there is evidence for kinetic trapping

effects at large ηs and small q. For the indented colloids, the

crystallinity is lower and the range of ηs in which significant

crystallisation is observed is much narrower.

states, while the indented particles have shorter-ranged cor-

relations, consistent with the suppression of crystalline order

by the lock-and-key bonds. As was clear from g(r), the lock-

and-key bonds are shorter than the usual sphere-sphere bonds:

the presence of two competing length scales for binding acts

to suppress the crystalline state. For completeness, we have

included results for φp = 0 for the experiments.

Given that both simulation and experimental results indi-

cate that crystallisation is suppressed by indentations in the

colloidal particles, we now use simulation studies to investi-

gate this effect in more detail. In particular, we concentrate

on the effects of varying depletant size and volume fraction

on the indented colloids: by changing the range of the deple-

tion interaction, we are able to tune the system from a state

where crystallisation is rapid into a state where crystallisation

is frustrated by lock-key binding.

3.2 Dependence on depletant size and volume fraction

In Fig. 5, we collate results that show the total amount of ori-

entational order that forms in systems of indented colloids, on

varying the size and volume fraction of the depletant. These

results are taken from long MC simulations which were ini-

tialised in a disordered state and have “equilibrated” into a

steady state – this state is not guaranteed to be the global

free energy minimum of the system but it is at least strongly

metastable. We discuss this further in Section 3.3 below: the

essential point is that if the simulations suffer from strong ki-

netic effects, it is likely that similar effects will be observed

in experiments. So even for systems that are not fully equili-

brated, we can expect the metastable states found by simula-

tion to be similar to those found in experiment.

For a size ratio q = 0.2 and ηs & 0.45, the system readily

crystallises, as is clear from the large values of χ6. The maxi-

mum possible value of the susceptibility χ6 in a finite system is

equal to the total number of particles, N = 100. One observes

χ6 < N either due to local distortions of the crystal lattice, or

due to defects and domain boundaries that disrupt the crys-

talline packing on relatively large length scales. The results

for q = 0.2 indicate that the crystal domain size in the sys-

tem is comparable with the system size. Comparing with the

spherical particles, the value of χ6 is suppressed: we attribute

this primarily to local structural distortion. In this case, we can

be confident that the system has equilibrated in its thermody-

namically stable state. To reinforce this message, Fig. 6 shows

representative configurations: for each size ratio q, we show

a configuration at the point that maximises χ6. The particles

are decorated by arrows, which indicate their orientation: the

arrow points out through the centre of the indentation in the

colloid. At q = 0.2, the system is indeed crystalline: particles

tend to be oriented with their indentations pointing towards ad-

jacent particles, but the range of the interaction is long enough

that the crystal is not frustrated. There are also a significant

number of dimple-down particles, consistent with this config-

uration being stabilised by the depletion interaction (but not

favoured as strongly as lock-and-key binding). Indeed, com-

paring with the data for spherical colloids shown in Fig. 5(b)

the indentations have rather little effect on the crystallinity.

For the largest ηs, the crystallinity starts to fall – we attribute

this primarily to kinetic effects: see Sec. 3.3 below.

As q is decreased, the lock-and-key binding between col-

loids becomes stronger and shorter ranged, and this starts to

disrupt the crystal formation. The onset of crystalline order

happens at a lower depletant volume fraction ηs, but the ex-

tent of crystalline order is strongly suppressed for q < 0.14.

Fig. 6(b) indicates the origin of this effect: the topology of the

particle packing is close to a hexagonal crystal, but the shorter

lock-and-key bonds leads to local distortions away from the

perfect lattice. (The “crystal planes” deviate from parallel

straight lines, reducing orientational order.) For larger ηs, the

crystallinity decreases, which we again attribute primarily to

kinetic effects.

For the smallest q, we see almost no evidence of crys-

tallinity. For these small depletant particles, the lock-and-key
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b) q = 0.142

c) q = 0.125 d) q = 0.100

a) q = 0.200

Fig. 6 Representative configurations from simulations of indented

colloids, taken at the values of ηs at which χ6 is maximal in Fig. 5.

Colloidal orientations are illustrated using arrows pointing outward

through the indentations. For q = 0.2,0.142, the colloidal

orientations relax quickly on the simulation time scale, indicating

that this is a plastic (rotator) crystal. For smaller q, the orientational

relaxation is much slower, consistent with the strong lock-and-key

binding.

Fig. 7 Illustration (view from above) of the low-symmetry crystal

that we expect to be stable when depletion interactions are very

strong. The orientations of the colloids acquire long-ranged order,

which breaks the six-fold rotational symmetry of the original crystal

– the “lock-and-key” bonds parallel to the orientational order are

shorter than the other interparticle bonds.

binding of the colloids is very strong, which leads to strong

kinetic trapping27,37. Hence, self-assembly of ordered struc-

tures tends to be suppressed: this effect is apparent in both

simulations and experiments. Nevertheless, we can use the-

oretical arguments to obtain the expected fate of the system

for small q. We expect the strong lock-and-key binding in this

regime to cause the formation of chains of colloids (“colloidal

polymers”), which can also branch, leading (when bonds are

strong) to large percolating clusters. For small-q, the deple-

tion interaction between the convex surfaces of the colloids is

much weaker than the lock-and-key binding, so we expect a

range of ηs over which these branching chains dominate the

system. However, for larger ηs, the chains can reduce their

free energy by clustering (or collapsing in on themselves) – for

the largest ηs we expect the stable state to be a low-symmetry

crystal such as that shown in Fig. 7. It is interesting to note

that neither the simulations nor the experiments solved the

packing problem by turning the indentations towards the wall;

although this would allow a perfect hexagonal packing, the

loss in the depletion interaction compared to the lock-and-key

binding is apparently too large for the systems studied here.

3.3 Kinetic effects, and stability of low-symmetry crys-

tals

As noted in the previous section, there are significant kinetic

trapping effects in these systems, due to the presence of strong

directional bonds. For example, in simulations at increasing

depletant volume fraction ηs, one observes from Fig. 5 that

the crystallinity of the assembled state increases for small ηs,

before decreasing again. Such non-monotonicity is familiar

from other systems with strong kinetic trapping27,37,38. How-

ever, in this system, such a non-monotonicity might also arise

from purely thermodynamic considerations – the hexagonal

crystal may be unstable for very large ηs, due to the presence

of two different length scales (shorter lock-and-key bonds and

longer bonds between the convex surfaces of colloidal parti-

cles).

To distinguish between these kinetic and thermodynamic

effects, we performed simulations where the system was ini-

tialised in the low-symmetry crystal state shown in Fig. 7, and

then relaxed using the GCA as before. This highly-ordered

initial state was chosen to contrast with the original “self-

assembly” simulations where the system was initialised in a

disordered state. Results are shown in Fig. 8. For relatively

large q and small ηs, the simulations gave the same results, in-

dependent of the initial condition. As discussed in Section 3.2

above, the MC simulations that we use do not provide direct

dynamical information about the experimentally-relevant as-

sembly pathway. However, if the results of the system are

independent of initial conditions, this is good evidence that

kinetic trapping effects are weak, and the system is fully equi-
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Fig. 8 Illustration of kinetic effects in MC simulations. We show

the extent of bond-orientational order, measured via χ6, obtained

from the final states of “self-assembly” simulations (initialised in

disordered states, closed symbols) and “melting” simulations

(initialised in the low-symmetry crystal shown in Fig. 7, open

symbols). For q = 0.2, the two initial conditions typically lead to

similar results, showing that kinetic effects are small and the system

readily equilibrates in a plastic (rotator) crystal. For smaller q and

large ηs, the results of the simulation depend strongly on the initial

condition, indicating that kinetic effects are strong (see the main text

for a full discussion).
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[ q
c
 = 0.5 ]
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Fig. 9 Diagram showing observed phase behaviour in simulations

of indented colloids (all at colloid area fraction φc = 0.5). Our

results provide evidence for a simple fluid state (circles) as well as

coexistence between the fluid and a hexagonal ‘rotator’ (plastic)

crystal (square symbols). These possibilities are familiar from

studies of spherical particles (recall Figs. 3(c) and 6(a)). For small q

and large ηs, we expect a low-symmetry crystal such as that shown

in Fig. 7 to coexist with the fluid. Self-assembly of this crystal was

not observed in our simulations, but systems initialised in this state

indicate that it is stable at (q,ηs) = (0.125,0.36) (diamond symbol).

The dashed line is our estimate of the freezing line, and the dotted

line indicates the expected location of the transition between rotator

and low-symmetry crystals. They meet at a (conjectured) triple

point. As discussed in the text, there are considerable uncertainties

in the positions of these thermodynamic phase boundaries, due to

kinetic/sampling effects in our simulations. However, we expect the

general picture presented here to be robust.

librated. We also note that for q = 0.2, the orientationally-

ordered crystalline initial state does relax to a plastic (“rota-

tor”) crystal, providing further evidence that this is the ther-

modynamically stable state under these conditions.

On ther other hand, in the regime of large ηs, simulations

initialised as a crystal were observed to evolve to a state whose

degree of crystallinity increased with ηs. This contrasts with

the non-monotonic behaviour observed in the “self assembly”

simulations. In this case, the qualitative dependence of the MC

results on the choice of initial condition indicates that kinetic

trapping effects are strong: the assembly of crystals from a dis-

ordered fluid state is hindered by kinetic effects28,39,40. (The

possibility of conducting these kinds of thought-experiment

reinforces the usefulness of MC simulation in understanding

the experimentally-observed behavior of this system.)

In the presence of these kinetic trapping effects, we cannot

obtain accurate estimates of the relative stabilities of the or-

dered phases of the system. However, if we assume that the
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simulations started in crystalline states mirror the thermody-

namically stable phases, we obtain the qualitative phase be-

haviour shown in Fig. 9. Hysteresis effects mean that there

is considerable uncertainty in the locations of these (presum-

ably) first-order phase transitions, but we expect this general

picture to be correct. Accurate studies of phase behaviour in

this system would be facilitated by the use of an effective

model of colloid-colloid and colloid-wall interactions31,41:

the very large number of depletant particles required in the

simulations used here makes them unsuitable for detailed in-

vestigations of phase behaviour.

4 Conclusions

Our results show that crystallisation of indented colloids is

controlled by a range of factors, including kinetic effects, and

a competition between (at least) two different crystal struc-

tures. In experiments, the main difference between indented

colloids and spheres is that the indented colloids do not crys-

tallise. In simulations, the same trend is observed, but we were

able to identify a range of parameters for which crystallisa-

tion of indented colloids is observed, when the depletant par-

ticles are not too small, and the depletion forces not too strong.

We emphasise that this requires the depletant properties to be

tuned quite accurately, a situation familiar from other self-

assembly processes. The ability of MC simulation to rapidly

explore parameter-space through independent parallel compu-

tations was useful in this regard; by contrast, crystallisation of

indented colloids was not observed in the experiments. Possi-

bilities for ‘tuning’ systems towards a narrow regime of effec-

tive assembly has been discussed recently, but this remains a

challenging problem42–44.

The qualitative agreement between the experimental and

simulation results indicates that the model system described

here captures the essential features of the experimental system

– the suppression of crystallisation in indented colloids can be

captured by a simple model of the depletion interaction, in a

monodisperse colloidal system.

We have proposed that the low-symmetry crystal shown in

Fig. 7 should be thermodynamically stable in the limit where

depletion forces are strong and short-ranged. However, while

this phase was stable within our simulations, its self-assembly

was not observed, presumably due to kinetic effects. The be-

haviour of the system in this regime remains an interesting

area for study.

Finally, we compare the kinetic trapping effects observed

here with the physics of colloidal glasses and gels32,45,46.

While there are superficial connections between glassy be-

haviour and kinetic trapping in self-assembly, we emphasise

that glasses are associated with a metastable liquid phase,

which is homogeneous in space, and has very slow structural

relaxation. Such a situation might be possible for anisotropic

colloids in three dimensions26 but we do not see evidence here

for a metastable liquid state. Rather, the situation for indented

colloids is more similar to gelation, in which attractive parti-

cles aggregate into disordered clusters. This analogy is most

useful for very strong and short-ranged depletion interactions

(see for example Fig. 6(d)): similar considerations are rele-

vant for three-dimensional crystallization39. For more moder-

ate values of q (for example Fig. 6(b,c)), the behaviour of this

two-dimensional system more closely resembles a polycrys-

tal with extremely small domains. That is, most particles are

six-fold coordinated as in the crystal, but long-ranged orienta-

tional and positional order is disrupted by a very large number

of packing defects.
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A Calculations of excess free volume ∆V

This appendix gives expressions for the volumes of the shaded

regions in Fig. 2, which determine the strength of depletion in-

teractions for different modes of binding. We make extensive

use of a formula for the volume of a “spherical cap”:

Vcap(D,h) =
π

6
h2(3D−2h) (4)

where D is the diameter of the underlying sphere and h the

height. as shown in Fig. 10.

A.1 Sphere-sphere and sphere-wall

The cases of spheres interacting with each other and with walls

are well-known. The calculation follows that of Asakura and

Oosawa31, considering an ideal depletant of diameter σs =
qσl . As may be seen from Fig. 2, the sphere-sphere depletion

volume ∆VSS consists of two spherical caps. These caps are

formed from the intersection of two spheres of diameter σl +
σs, with their centres separated by σl . (The spheres represent

the volume that the spherical colloid (diameter σl) excludes

from the centre of the depletant particle (diameter σs)). The

heights of the spherical caps are therefore σs/2. Hence

∆VSS = 2Vcap(σl +σs,σs/2) (5)

We are interested in cases where q= σs/σl is small (compared

to unity) in which case

∆VSS ≈
πq2

4
σ3

l (6)
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which holds to leading order in q.

Similarly the sphere-wall excluded volume is a single spher-

ical cap of diameter σl +σs and height σs, yielding

∆VSW =Vcap(σl +σs,σs)≈
πq2

2
σ3

l (7)

where as before the approximate equality is accurate to lead-

ing order in q. For small q, the sphere-wall interaction is

around twice as strong as the sphere-sphere interaction.

In terms of the effective potential between colloids, the well

depth is given by the product of the number density of deple-

tant and the relevant ∆V factor. Writing this in terms of the

volume fraction of depletant for the sphere-sphere case, we

have

εSS ≈
3ηs

2q
(8)

This equation emphasises that the interactions get stronger on

reducing q (at constant ηs).

A.2 Indented colloid excluded volume

Calculation of the volumes ∆VLK and ∆VLW in Fig. 2 are a

little more involved. The main difficulty is accurate calcula-

tion of the volume excluded to a depletant particle by a single

indented colloid. This calculation can be performed exactly

but we give an approximate treatment here, as illustrated in

Fig. 10. As is clear from that figure, the error involved in this

approximation is small, and it greatly simplifies the analysis.

Within this approximation, the volume excluded by a single

lock is obtained by subtracting two spherical caps from the

volume of a sphere of diameter σl + σs. The two spherical

caps are associated with spheres of diameter σl ±σs, and the

sum of their heights is 2a, where the parameter a was defined

in Fig. 1. Ensuring that the diameters of the circular areas of

both caps are equal (recall Fig. 10) yields that the cap heights

are h± = a[1± (σs/(σl − 2a))]. Hence the volume excluded

to a depletant particle by a lock is (π(σl +σs)
3/6)−∆VL with

∆VL =Vcap(σl +σs,h−)+Vcap(σl −σs,h+) (9)

After some algebra, this may be simplified, yielding

∆VL = 2Vcap(σ ,a)−
πσ2

s a2

σ −2a
. (10)

With this result in hand, the calculation of the volumes

∆VLK and ∆VLW in Fig. 2 is straightforward. For two indented

particles (“lock-key” binding), the excluded volume is given

by two spherical caps, with the volume ∆VL removed from

one of them. The spherical caps have diameters σl +σs and

their heights are (σs/2)+a. Hence

∆VLK = 2Vcap(σl +σs,(σs/2)+a)−∆VL (11)

A B

h

(a) (b)

x

Fig. 10 Geometrical objects used in the calculation of excess free

volumes. (a) Cross section of a spherical cap; the height parameter h

used in the main text is indicated. The radius of curvature of the

curved part is D/2. (b) Illustration of the volume excluded to the

centre of an ideal depletant particle by an indented colloid. The

particle outline is shown as a dashed line. The shaded blue region is

our estimate of the volume excluded to the depletant. The actual

volume excluded may be obtained by “rolling” a small sphere

around the edge of the colloid: this is indicated by the (inner) solid

line. The small difference between the blue shaded area and the

actual exclusion volume occurs in the region indicated by the

arrows. The labels A and B indicate spherical caps corresponding to

the difference between the blue region and a large sphere of

diameter σl +σs. The radius of curvature of cap B is (σl +σs)/2

while that of cap A is (σl −σs)/2 (the relevant surfaces are parts of

spheres that are concentric with the surfaces of the indented colloid).

Using the fact that the radius of curvature of the concave surface of

the lock is σl/2, one may show that the sum of the heights of caps A

and B is 2a. Both spherical caps have the same width x, as indicated.
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From (10), one readily sees that ∆VLK|σs=0 = 0, as it should

be. If both q = σs/σl and a0 = a/σl are small compared to

unity, the dominant term is

∆VLK ≈ πq(a0 +q/4)σ3
l (12)

For a0 = 0 we recover the sphere-sphere result (6); the lock-

key result is significantly larger as soon as a0 becomes com-

parable with q/4.

For an indented particle against a wall, the simplest case

occurs when a < σs, so that a depletant particle cannot fit into

the dimple of a colloid that is flat against the wall. In this case

the relevant volume is a single spherical cap with the volume

∆VL subtracted,

∆VLW =Vcap(σl +σs,σs +a)−∆VL. (13)

On the other hand for a > σs it is easily verified that

∆VLW =Vcap(σl +σs,σs +a)−∆VL +Vcap(σl −σs,a−σs)
(14)

For q,a0 ≪ 1, one finds

∆VLW ≈ (π/2)(q2 +2a0q−a2
0)σ

3
l , a0 < q (15)

≈ πq2σ3
l , a0 > q. (16)

A.3 Competition between binding modes

As discussed in the main text, when depletion interactions are

strong then lock-key binding will dominate over dimple-down

if ∆VLK +∆VSW > ∆VSS +∆VLW. Assuming for convenience

that σs > a (i.e., q > a0), this condition reduces to

2Vcap(σl +σs,(σs/2)+a)+Vcap(σl +σs,σs)>

2Vcap(σl +σs,σs/2)+Vcap(σl +σs,σs +a) (17)

A similar condition holds for q < a0, with one extra Vcap term,

as prescribed by (14). After some algebra one may show that

this condition is satisfied for all 0 < q,a < 1, so one generally

expects lock-key binding to dominate the system when deple-

tion attractions are strong.
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