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Quantifying vorticity in magnetic particle suspensions driven by 

symmetric and asymmetric multiaxial fields 

J. E. Martin,
a
 and K. J. Solis

a 

We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method 

employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose 

frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create 

the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields 

comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1:2:3). For each method a 

symmetry theory has been developed that enables the prediction of the direction and sign of vorticity as functions of the 

field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that 

give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can 

symmetry theory provide a measure of the magnitude of the torque density induced by the field.  In this paper a 

functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the 

symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots 

lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry 

theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the 

unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of 

off-axis vorticity for rational triads, such as 1:3:5, that do not have the symmetry required to analyze by symmetry theory. 

Experimental data are given that show the degree to which this functional is successful in predicting observed trends. 

1 Introduction 

Methods of inducing vigorous noncontact fluid flow are 

important to technologies involving heat and mass transfer 

and fluid mixing, since they eliminate the need for moving 

parts, pipes and seals, all of which compromise reliability. 

Unfortunately, noncontact methods of inducing strong 

organized flows are few, and have limitations of their own. For 

example, natural convection [1–3] requires both gravity and a 

destabilizing thermal gradient. Magnetohydrodynamics [1] 

requires the injection of large currents into conducting liquids 

and high magnetic fields. Thermomagnetic convection in 

ferrofluids [4,5] requires gravity, a destabilizing thermal 

gradient and a large magnetic field gradient, which makes 

scaling to large volumes challenging. A more flexible method 

that eliminated these requirements would be amenable to a 

broad range of applications. 

 We have discovered several classes of triaxial fields of 

modest strength that induce vigorous noncontact fluid flow in 

dilute magnetic particle dispersions without requiring gravity, 

a thermal gradient, or a magnetic field gradient. Such fields 

can create flow lattices [6], vortex lattices and vortex fluids [7, 

8]. These induced flows have been used to direct droplet 

motion [9], create a thermal valve [10], effect active, directed 

wetting [7], and stimulate a variety of biomimetic dynamics 

[9]. However, at this point our understanding of these flows is 

based only on the symmetry of the multiaxial fields and this 

non-quantitative approach is useful only for certain highly 

symmetric fields. In this study a functional of the magnetic 

field is introduced that pertains to the measurable fluid torque 

densities. The purpose of this study is to investigate the degree 

to which this functional conforms to the wide range of 

observed phenomena, to demonstrate that it conforms to the 

many predictions of symmetry theory, and to use this 

functional to make predictions where symmetry theory cannot 

be applied. 

 

1.1 Symmetry theory background 

The symmetry theories we have developed are for two classes 

of fields that induce vorticity, each of which is comprised of 

three orthogonal components. The first class we call 

symmetry-breaking rational fields [7,8]. These fields employ 

two alternating components and one dc component. The 

frequencies of the ac components form a rational number l:m, 

where l and m are relative primes, so either one or both are 

odd. The second class of fields we call rational triads [11], 

which differ in that all three components are alternating. Once 

again the frequency ratios are rational numbers, such as 1:2:3. 
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For both field classes it can be shown that the dynamic fields 

have the symmetry of vorticity and thus have the parity 

required to allow deterministic fluid vorticity and flow reversal. 

 The primary goal of the symmetry theories is to predict 

whether deterministic vorticity can occur and if so, to predict 

the direction of the fluid vorticity vector and the field changes 

required to reverse the sign of the vorticity without changing 

its magnitude. For symmetry-breaking rational fields the 

predictions are that the vorticity axis is parallel to the odd axis 

unless both axes are odd, in which case it is parallel to the dc 

field. Only if the vorticity is around an ac axis does reversing 

the dc field reverse the flow, but changing the phase of the 

high frequency (m) component by 180°/l (l ≤ m) always 

reverses the flow. These predictions have been experimentally 

confirmed for all fields investigated [8]. 

 For rational triads the symmetry theory predicts that 

vorticity occurs around the field component whose reduced 

frequency has unique numerical parity (e.g., the “2” in 1:2:3). 

In the case where all reduced frequencies are odd (e.g., 1:3:5) 

the dynamic field does not have the symmetry of vorticity, so 

it is not possible to make predictions about flow with this 

approach. Symmetry theory also predicts the phase changes 

required to reverse flow at constant magnitude. These 

predictions have also been experimentally confirmed for the 

fields we have investigated [11]. 

 Symmetry theory has some limitations. First, it is not 

possible to make predictions for fields whose Lissajous 

trajectories are not highly symmetrical. For symmetry-breaking 

fields these 2-d trajectories occur at particular phase angles 

between the two ac components. For example, for a 1:2 field 

these special phase angles (applied to the high frequency 

component) are 0°, 90°, 180°,… In all cases there are four 

distinct Lissajous trajectories that can be treated out of this 1-

d set of continuous phases. All other phase angles cannot be 

treated. For rational triads the symmetric Lissajous trajectories 

can be obtained by applying the phase angles 0°, 90°,180°,… to 

each of the three frequencies in any combination. It turns out 

that this creates only 16 distinct 3-d Lissajous trajectories that 

can be analyzed out of the 2-d set of independent phase 

angles (there are only two independent phases for three 

frequencies since the zero of time is unimportant). 

 A second limitation of symmetry theory is the inability to 

make any kind of estimate of the magnitude of the torque 

density created within a magnetic particle dispersion subjected 

to a multiaxial field. Intuitively it is reasonable that a 1:2 

symmetry-breaking field will create greater vorticity than a 

13:20 field, but there is currently no method of justifying this 

belief. Even more disconcerting is the inability to deal with the 

effect of small frequency changes. For example, the symmetry-

breaking field 150:100 factors to 3:2, so vorticity is predicted 

to occur around the high-frequency field axis. But if the low 

frequency is increased to obtain 150:101 the low frequency 

axis becomes odd so vorticity should now occur around this 

axis. But 150:101 can be viewed as a phase-modulated 3:2 

field, so we expect to observe oscillating vorticity around the 

high frequency axis, which is indeed the experimental 

observation. Symmetry theory cannot address this oscillating 

flow. 

 Finally, symmetry theory cannot address the utter 

peculiarity of the origin of these flows. There is just something 

strange about predicting vorticity for fields that in general are 

non-circulating. Yet these flows can be quite vigorous. In fact, 

the symmetry theory only shows that these flows are allowed 

and cannot make any statement about whether they should or 

should not occur. For these reasons it is desirable to have a 

physically reasonable method that for any given field can 

produce a torque density vector that produces vorticity. One 

approach is to simulate the system microscopically. This would 

lead to an understanding of the microscopic magnetic particle 

dynamics as well as addressing the issues raised above, but 

such an approach would be extremely time consuming. A 

second approach is to develop a closed-form theory of the 

microscopic particle dynamics that can at least be numerically 

integrated. A third approach is to use physical insight and 

previous results to develop a functional that produces the 

torque vector: This is the approach we have taken as a first 

step on the path to quantifying vorticity in any multiaxial field. 

 

1.2 Torque density functional 

A physically meaningful functional must conform to all of the 

above-mentioned predictions of the symmetry theories and 

yet must also conform to various experimental observations. 

These observations include the finding that the torque density 

in a particle suspension exposed to a particular field is 

independent of particle size, liquid viscosity, and the 

magnitude of the field frequencies, provided that the Mason 

number is below a critical value that permits particle chaining. 

For the restricted case of a “vortex field,” which consists of a 

rotating field to which an orthogonal dc field is applied, an 

expression has been derived for the suspension torque density 

that is based on the analysis of volatile particle chains that lag 

in phase behind the field [12]. This is a phase lag problem in 

three dimensions for particle chains whose size is determined 

by various instabilities that lead to fragmentation. This theory 

successfully accounts for all of the experimental observations 

on vortex fields, the result being 

 Τ =
1

12
ϕ pµ0M

2 sin2θ f − cos2θ f  for θ f ≥ 45°                       (1) 

where ϕ p
 is the particle volume fraction, µ0 is the vacuum 

permeability, M is the particle magnetization, and θf is the 

angle the field vector makes to the dc field. For this case the 

Mason number is defined as )2(9
2

0MMn µηω= , where ω is 

the field frequency. Eq. 1 is valid when this Mason number is 

less than ~0.02 for balanced vortex fields, those having equal 

rms field components ( 2tan =fθ ). In the case of linear 

magnetic polarization the particle magnetization for a dilute 

suspension is given by 
0Hpχ  where 3=pχ  is the intrinsic 

susceptibility of a magnetic sphere comprised of a material 

whose relative permeability greatly exceeds that of the liquid, 

which is the typical case for soft ferromagnetic particles. In 

short, the specific torque density Τ ϕ p
 is simply proportional 

to the energy density 2

00Hµ  of the field. 

 The vortex field is a very simple case because it admits a 

steady-state solution. For other multiaxial fields, such as 1:2:dc 

the field magnitude is not constant and the axis about which 

instantaneous field rotation occurs is not so easily described. If 

we make the approximation that the instantaneous field 

energy density gives the instantaneous torque density then all 

that remains is dealing with the direction of the instantaneous 

torque vector. As a second approximation this torque direction 
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is taken to be the direction about which the instantaneous 

field rotates, )()()()( 0000 tttt HHHH && ×× , in other words this 

vector is normal to the instantaneous rotation plane of the 

field. If the torque is indeed caused by particle chains lagging 

the field, then this is a good approximation when the phase lag 

is small. The torque density functional J φ{ }
 is thus 

J φ{ } = J φ{ }(s)ds0

1

∫  where .      (2) 

where we have indicated explicitly the dependence on the 

phase angles of the field. Here s = ft is the reduced time, f is a 

frequency, and h is the reduced field. For symmetry breaking 

fields the reduced field is 

zyx
H

h ˆ
2

ˆ)2sin(ˆ)2sin(
)(

)(
0

0 c
ftmftl

H

t
t ml ++×++×== φπφπ  (3) 

l and m are relative primes and by convention l ≤ m. The rms 

reduced field is 22 2c+ . (For a balanced field, where all 

rms field components are equal c = 1.) For the rational triads 

we restrict our attention to such balanced fields, so 

    

h(t) = sin(l × 2π ft +ϕ l )x̂+ sin(m× 2π ft +ϕm )ŷ

        +sin(n× 2π ft +ϕn )ẑ              

(4) 

In this case the rms reduced field is 3 / 2  and to be definite 

l ≤ m ≤ n. The predicted torque density is related to the 

dimensionless torque density functional by 

T = const ×ϕ pµ0H0

2
J φ{ }

. 

 This expression may be viewed as an ansatz, not a theory 

per se, however it produces many useful results that are in 

accord with experiment and also can be used to successfully 

predict unexpected effects that we have observed in 

experiment. Some of these predictions were sufficiently 

strange that we literally ran down to the lab to verify them, 

and verify them we did, as will be discussed below. 

2 Experimental 

The magnetic particle suspension consisted of molybdenum-

Permalloy platelets ~50 µm across by 0.4 µm thick (Novamet  

Corp.) dispersed into isopropyl alcohol at a low volume 

fraction. The uniform triaxial ac magnetic fields were produced 

by three orthogonally-nested Helmholtz coils, operating in 

series resonance with appropriately-configured capacitor 

banks, two of which employ a computer-controlled fractal 

design [13]. For the 1:3:5 rational triad field studied in this 

work the fundamental frequency was 50 Hz and all three 

induction field components were 150 Grms. The three field 

components were phase-locked via two Agilent/HP function 

generators (equipped with Option 005), allowing for stable 

control of the phase angle of each component. (If the field 

components are not phase-locked there will be a very slow 

phase modulation between the components due to the finite 

difference in the oscillator frequency of each function 

generator, preventing meaningful studies of the phase angle.) 

 To quantify the magnitude of the vorticity, the torque 

density of the suspension was computed from measured 

angular displacements on a custom-built torsion balance that 

is described and pictured in Fig. 2 of reference 7. In this case 

the suspension (1.5 vol%) was contained in a small vial (1.8 mL) 

attached at the end of the torsion balance and suspended into 

the central cavity of the Helmholtz coils via a 96.0 cm-long, 

0.75 mm-diameter nylon fiber with a torsion constant of 

~13 µN·m rad
−1

. 

3 Results and Discussion 

3.1 Computations for symmetry-breaking fields 

The first issue that must be addressed is whether the 

functional conforms to the predictions of symmetry theory. 

The case of a 2:3:dc field with both phase angles set to zero is 

given in Fig. 1. Recall that vorticity must occur around the high 

frequency (y) axis in this case. In these figures the three 

components of the integrand of J(s) and its integral are given 

as functions of the reduced time. This integral corresponds to 

the rotation of a body subject to this time-dependent torque 

density. Along both the x and z axes the integrands are 

perfectly symmetric around zero, so the integral over one cycle 

is zero and the average slope of the integral, which is 

proportional to the average torque density, is thus zero. Along 

the y axis the integral is asymmetric, and the integral has a 

finite average slope and torque density. So this particular case 

conforms to the predictions of symmetry theory. In fact, even  

 

 
Fig. 1 Instantaneous values of the computed torque functional are given for a 2:3:dc symmetry-breaking field. The integral of these functions 

corresponds to the rotation of a free body subjected to this torque. A persistent rotation only occurs around the y axis, which is indeed the 

prediction of symmetry theory. The time-averaged torque density functional is the slope of the integral. It is this slope that pertains to 

measurement, since the field frequencies are typically in the audio range, generally above 48 Hz in our laboratory and frequently much higher, 

and so the fluctuations only give rise to rapid fluctuations of the needle in our torsion fiber apparatus. 
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Fig. 2 Computed torque density as a function of the high frequency 

phase for the 2:3:dc field. The dc field is relative to the rms amplitude 

of either of the ac field components. 

the predicted fluctuations in the torque can be observed 

experimentally as a jittery torque signal. 

3.2 Dependence on phase and dc field 

The computed torque density has a strong dependence on the 

relative phase between the ac field components, as well as on 

the magnitude of the dc field. This dependence is shown in Fig. 

2 for the y axis torque created by the 2:3:dc field. At zero dc 

field the torque functional is zero, in accordance with 

symmetry theory for even, odd fields, but for finite dc fields 

the torque is non-vanishing, is periodic on the interval 180°, 

and can be reversed at constant magnitude by any 90° shift of 

the high frequency phase, in agreement with both symmetry 

theory [7] and experiment [8]. Moreover, symmetry theory 

shows that reversing the dc field reverses the torque for even, 

odd fields and the torque functional also shows this reversal. 

In general, for the field l:m symmetry theory shows that when 

plotted against the high-frequency phase the torque curve is 

periodic on the interval 360°/l and reverses at constant 

magnitude for phase shifts of 180°/l. 

 Odd:odd fields differ in that vorticity is symmetry allowed 

even in the absence of the dc field component and therefore 

must not reverse upon dc field reversal. Computations for the 

1:3 field do indeed show that the torque functional does not 

vanish in the absence of a dc field, but grows stronger as the 

dc field increases and cannot be reversed by reversing the dc 

field. This suggests the possibility of torque when the dc field is 

replaced by an ac field, a subject discussed below. However, 

the experimental situation is complicated by the fact that in 

the absence of the dc component the particles experience a 

time-averaged interaction that can be described as a negative 

dipolar interaction, causing the particles to form into parallel 

stationary sheets [14–17] (like baklava), instead of forming the 

volatile chains that give rise to vorticity. Because of this 

competing effect, fluid vorticity does require the presence of 

the dc component, at least for spherical particles. For platelets 

made of soft ferromagnetic materials the situation is more 

complex: Although stationary sheets can form in a biaxial field 

under some circumstances (e.g., very high frequency, very high 

viscosity, low field), flow instabilities typically occur in the form  

of a square lattice of antiparallel flow columns normal to the 

plane of the field [6]. When these columns form in an odd:odd 

field there is pronounced vorticity as well, the axis of which is 

parallel to the flow columns. At higher platelet loadings a 

normal-field instability can occur that causes the particle 

dispersion to rise up as a ridge, within which a lattice of flow 

columns can be observed [see Fig. 4 in Reference 6]. The 

vorticity in the absence of a dc field can be easily confirmed by 

detuning one of the field components to create a phase 

modulation that periodically reverses the vorticity. The ridge 

then sloshes back-and-forth in response to the oscillating 

vorticity, which brings us to the next issue: field heterodyning. 

3.3 Heterodyning 

A more interesting problem is that of heterodyning, which 

occurs when one of the frequencies is detuned to create a 

modulation of phase and flow reversal. In Fig. 3 are presented  

 

 

Fig. 3 When a 2:3:dc field is detuned field to 101:150:dc the 

heterodyne beating creates periodic flow reversal around the y axis, 

which is indeed observed in the laboratory. (top) The torque functional 

demonstrates this flow reversal and shows that the peak torque 

density is expected to be the same as for the non-heterodyned field. 

However, symmetry theory shows that for the 101:150:dc field the 

average torque can be non-vanishing only around the x axis. For this 

field the torque functional shows that around the y axis does indeed 

average to zero and a small but finite net torque does occur around 

the x axis, as shown at bottom. 
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Fig. 4 The maximum of the torque functional as a function of phase is plotted versus the relative denominator frequency for rational number sequences 

approaching ½ from above and below.  Multiplying these peak torques by the number of domains in the 2-d Lissajous plots shows an approach to an 

asymptote, indicating an algebraic decay.  The alternation in the torque axes are predicted by symmetry theory as well. (bottom) Experimental torque data 

for rational number sequences approaching ½ from above and below show the alternation of the vorticity axis between the high frequency and dc field axes, 

although the relative magnitude of the torque around each axis is reversed from the trend predicted by the functional. In both cases the magnitude of the 

torque is observed to decay rapidly as the number of Lissajous domains increases. 

computations for the case 101:150:dc. Because this is a 

modulation of 2:3:dc it is expected that a periodic torque 

around the y axis will occur, and this is indeed observed in the 

component Jy(s). More importantly, the time-average of this 

torque is zero, in conformity to symmetry theory. However, 

symmetry theory allows a finite time-average torque around 

the x axis, and although this torque is quite small, the slope 

can be seen in the data in Fig. 3(b). 

3.4 Torque density for fields of increasing complexity 

As the irreducible ratio of the field frequencies requires larger 

integers to represent, both experiment and intuition indicate 

that the suspension torque density diminishes, though 

symmetry theory is uninformative on this point. To examine 

this issue we have considered a few particular sequences of 

irreducible rational numbers. The first two sequences arise in 

investigations of the fractional quantum Hall effect [18] and 

serve as useful examples here as well. Both of these sequences 

approach 1/2, one from above [k/(2k − 1), k = 1,2,…] and one 

from below [k/(2k + 1), k = 1,2,…]. All of these calculations are 

for balanced fields and the phase angle between the field 

components (either φx or φy will do) is varied to find the 

maximum of the torque functional. 

 The dependence of |J| on the denominator of these ratios 

is shown in Figs. 4(a) and (b). For the sequence approaching ½ 

from above the torque vacillates between the high frequency 

and dc field directions, in agreement with symmetry theory, 

and falls off asymptotically as the inverse of the number of 

domains N in the relevant Lissajous curve, given by 

)1)(1( −−+= mllmN . Fields such as 21:41 therefore give rise 

to very small torques in comparison to something like 2:3. For 

the sequence approaching ½ from below, Fig. 4(b), the 

behavior is similar, with the odd:odd fields showing somewhat 

greater torque. 
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Fig. 5 The maximum of the torque functional as a function of phase is plotted versus the relative denominator frequency for even:odd and 

odd:odd frequencies approaching unity. Multiplying these peak torques by the number of domains in the 2-d Lissajous plots shows an approach 

to an asymptote, indicating an algebraic decay. The odd:odd torques are expected to be especially strong. (bottom) Experimental torque data for 

even, odd ratio approaching unity. An oscillatory series of torques are produced whose vorticity axis alternates between the high and low 

frequency components. The magnitude of the torque is observed to decay rapidly as the number of Lissajous domains increases. 

 Both of these sequences were investigated experimentally, 

with the torque data shown in Figs. 4(c) and (d). The 

experimental torque values display the alternation of the 

vorticity axis between the high frequency and dc field axes, in 

accord with the torque functional and symmetry theory. 

Furthermore, an oscillatory trend in the relative magnitudes of 

the torques between the two vorticity axes is also observed; 

however, the trend in the relative magnitudes is reversed from 

that predicted by the functional. The reason for this 

discrepancy is not clear. Finally, the overall magnitude of the 

torque is observed to decay rapidly with increasing 

denominator frequency, corresponding to an increasing 

number of Lissajous domains. 

 Two sequences approaching unity were investigated as 

well. The first consists of irreducible ratios containing an even 

integer, [k/(k + 1), k = 1,2,…], and the second consists of only 

odd numbers, [(2k − 1)/(2k + 1), k = 1,2,…]. Fig. 5(a) shows that 

for the even, odd field sequence there is an oscillation 

between the torque being around the low and high frequency 

axis, as expected from symmetry theory, and that the 

maximum torque is again asymptotically scaling as the inverse 

number of domains in the Lissajous plot. For odd:odd fields the 

torque is predicted to occur only around the dc field direction 

and once again it falls off as the inverse number of domains, 

Fig. 5(b), but the amplitude is much larger for any given 

domain number than for the other cases investigated. 

 Experimental torque data were also collected for the even, 

odd sequence approaching unity, Figs. 5(c) and (d). In accord 

with the predicted data from the functional in Fig. 5(a), the 

experimental torque values display an oscillatory behavior as 

the overall magnitude rapidly decays with increasing 

denominator frequency. The oscillations in torque correspond 

to the vorticity axis alternating between the high and low 

frequency components. However, as was observed with the 

sequences approaching ½ from above and below, the trend in 

the relative magnitudes between the two vorticity axes is 

reversed from that predicted by the functional. The odd:odd 

ratio approaching unity was also investigated, Fig. 5(d), in 

which case the torque only occurs around the dc field axis and 

falls off rapidly with increasing denominator frequency. 
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Fig. 6 The Fibonacci sequence creates a periodic transition between all 

three field axes and once again the peak torque falls off as the inverse 

of the number of domains. 

 Finally, neighboring terms in a Fibonacci sequence are 

relative primes and so make sequences of irreducible rational 

numbers. We investigated the sequence 1:1, 1:2, 2:3, 3:5, 5:8, 

8:13,… This sequence approaches the inverse golden ratio. The 

maximum torque functional for this sequence is plotted in Fig. 

6. The vorticity axis is observed to form the repeated axis 

sequence dc, low, high, which is once again in accord with 

symmetry theory. Once again the torque falls off as the inverse 

number of domains in the Lissajous plots. 

3.5 Flow reversal 

In a previous publication [8] we reported a very strange 

observation for a 1:2 field. After applying the ac fields the dc 

field was slowly ramped up, which caused fluid vorticity to 

initiate and progressively increase. As the field was 

progressively increased further the vorticity slowed down, 

stopped, and then reversed direction. Symmetry theory cannot 

address this issue, but can the torque functional shed light on 

this? In Fig. 7 calculations are shown for a 1:2 field over a 

range of dc field strengths, ranging from c = 0 to 1.25 (see Eq. 

3). Flow reversal occurs at roughly c = 0.75, which is 

commensurate with experimental observations of surface flow 

[8]. We pursued this issue by investigating many different 

symmetry-breaking fields and for all fields of the form 

odd:odd + 1 that we have investigated flow reversal is 

indicated. We can find no other fields where the torque 

functional indicates flow reversal. 

3.6 Inducing vorticity with biaxial fields? 

It is quick and easy to investigate a lot of ideas with the torque 

functional, including ideas that might be difficult to screen 

experimentally. Symmetry-breaking rational fields consist of 

three orthogonal components and thus are three-dimensional 

fields. Is it possible to initiate strong vorticity with fields 

confined to a plane? Take for example the biaxial field in the x-

y plane with frequency ratio 2:3. Recall that this field produces 

vorticity around the y axis when a dc field is applied along the z 

axis. If instead a dc field is applied along the y axis, which is the 

odd axis, the torque functional indicates torque around the z 

axis, Fig. 8. The dependence of the torque functional on 

 
Fig. 7 For all of the odd:odd+1:dc fields we have investigated (1:2, 

3:4,…) the torque functional indicates flow reversal with increasing 

field.  Flow reversal seems to be unique to this class of fields. 

 
Fig. 8 When a dc field is applied along the high frequency axis of a 2:3 

field the resulting biaxial field produces torque around the normal to 

the field plane. 

phase angle approaches a square wave, which is striking. The z 

axis is a C2 symmetry axis for this case when one considers the 

equivalency of the field and its converse and the other two 

axes are antisymmetric under a 180° rotation. Because this 

symmetry is shared by vorticity around the z axis this 

observation could have been anticipated. Experiments on 

platelet suspensions do indeed confirm this prediction. On the 

other hand, if a dc field is applied along the x axis the torque 

functional predicts that vorticity will not occur, and it is 

notable that all three axes are C2 axes for the field and its 

converse, which is not the symmetry of vorticity. 

 Similar observations apply to the 1:2 field: when a dc field 

is applied along the odd axis (which in this case is the low 

frequency axis) the torque functional indicates torque around 

the z axis. When a dc field is applied along the even axis the 

functional predicts no torque. Again, this behavior could have 

been anticipated from the symmetry of the trajectories. It 

would appear that all even, odd fields are capable of producing 

a z axis torque when a dc field is applied along the odd field 

component.

Page 7 of 13 Soft Matter



COMMUNICATION Journal Name 

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 
Fig. 9 The torque functional correctly predicts torque around the y axis for the 1:2:3 field. Here this torque density is plotted as a function of the 

three possible sets of phases. 

 As discussed above, odd:odd fields produce torque around 

the z axis even in the absence of a dc field, because odd:odd 

fields possess the symmetry of vorticity, with the z axis being 

the C2 axis of symmetry. Applying a dc field along either of the 

ac components does not change this symmetry and does not 

appreciably alter the dependence of the torque functional on 

phase angle. Odd:odd fields do not seem to be interesting as 

regards the addition of in-plane dc fields. However, 

suspensions of spherical particles have a strong tendency to 

form particle sheets, and the dc field component reduces this 

tendency, allowing the particles to form the chains that 

presumably give rise to the torque.  

3.7 Rational triads 

The experimental investigation of the torque generated by 

rational triads is time consuming because there are two 

independent phase angles. If torque measurements are made 

at 10° intervals for each of the two phase angles over 1200 

measurements are required. At roughly 5 minutes per 

measurement that requires 100 hrs. of continuous work. Any 

new ideas about rational fields are therefore tough to sort 

through, especially those that might lead to off-axis vorticity 

(see below), which could triple the measurement time, since 

measurements would in general have to be made along all 

three field directions. In contrast, it is a matter of much less 

than a minute to compute the torque functional for the same 

set of phase angles. These results are sufficiently useful to 

guide experimental work. In the following we will explore the 

torque density functional for the specific cases of the four 

classes of rational triads, three of which we have previously 

investigated experimentally [11]. 

 In previous work we have shown that there are four classes 

of rational triads [11]. The first is even, odd, odd and 1:2:3 is 

the simplest example of this class. Symmetry theory shows 

that this field produces vorticity around the even axis. The 

second class is even, even, odd fields with even:even factoring 

to even:odd. A simple example of this class is 2:3:4 and 

symmetry theory shows that vorticity is around the odd axis 

for this class (i.e., “3” in this case). The third class is even, even, 

odd with even:even factoring to odd:odd and once again 

symmetry theory predicts vorticity around the odd axis. The 

example of this class that was experimentally investigated in 

our previous paper is 1:2:6. Finally, the fourth class is 

odd:odd:odd, for which symmetry theory could not make 

predictions, simply because fields of this class do not have the 

symmetry of vorticity. These fields can be treated by the 

torque density functional, however, which we will find predicts 

off-axis vorticity for the example field 1:3:5. 

 The symmetry theory for rational triads is based on those 

3-d Lissajous trajectories that have highly symmetric 

projections on faces normal to each of the three field 

Page 8 of 13Soft Matter



Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9 

Please do not adjust margins 

Please do not adjust margins 

 
Fig. 10 The torque functional correctly predicts torque around the y axis for the 2:3:4 field. The torque density is plotted as a function of the 

three possible sets of phases. 

directions. These symmetric 3-d trajectories can be expressed 

by assigning to each of the three sine terms in Eq. 4 one of the 

phases 0°, 90°, 180°, 270°, corresponding to sine, cosine, −sine, 

−cosine. There are thus 4 × 4 × 4 = 64 symmetric 3-d Lissajous 

trajectories that can be treated by symmetry theory. These 64 

trajectories can be classified into 4 groups of 16. In each of 

these groups the magnitude of the torque density is fixed, but 

8 of the trajectories give clockwise flow and 8 give 

counterclockwise. In addition to predicting the vorticity axis 

symmetry theory also predicts these groups and the relative 

vorticity sign for each trajectory within each group. 

The 1:2:3 triad—Calculations for the 1:2:3 field show that 

vorticity does indeed occur around the even axis. In Fig. 9 

calculations are presented for the torque functional as a 

function of each possible set of two independent phase angles, 

(φ1, φ2), (φ2, φ3) and (φ1, φ3). Of course, all of these data sets 

contain the same information and can be related to each other 

by a change of variables. For the 1:2:3 field the equivalent 

phase angles are )3, 2, 0), (, 0, ), (0, , ( 11222

3

22

1

121 φφφφφφφφ −−−− . 

 In the (φ1, φ2) plane one lattice vector that defines the unit 

cell (a vector that preserves torque density) is seen from Fig. 

9(a) to be A=(0°, 180°). Substituting this phase shift into Eq. 4 

(with 03 =φ ) gives 

 zyx
H

h ˆ)cos(ˆ)sin(ˆ)cos(
)(

)(
0

0 snsmsl
H

t
t ml

′++′++′−== φφ   (5) 

where °+=′ 90ss . The torque equivalence of the fields [−C, S, 

C] {abbreviation for [−cos(1s), sin(2s), cos(3s)]} and [S, S, S], is 

in accord with symmetry theory, as shown in Table 5 of 

Reference 11. The second lattice vector is B = (120°, 60°). The 

change of variables °+=′ 30ss  leads to [C, S, −C], which is 

also shown by symmetry theory to be equivalent to [S, S, S]. 

Experimental data need only be taken over this unit cell, which 

is only 1/6 the computed area. The lattice vectors are those 

phase changes that preserve vorticity. To reverse vorticity at 

constant magnitude requires a phase change of (60°, 120°). 

 It is interesting to examine how the unit cell transforms in 

other data planes. For the (φ1, φ3) plane the lattice vectors A 

and B become (270°, 90°) and (90°, −90°), which is the rather 

large and experimentally awkward unit cell observed in Fig. 

9(b). In the (φ2, φ3) plane the lattice vectors A and B transform 

to (180°, 0°) and (−180°, 360°) to create the unit cell apparent 

in Fig. 9(c). (Of course, a simpler choice for the unit cell is the 

lower half of the plane.) In any case, the torque functional can 

determine which pair of phase shifts leads to a unit cell 
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Fig. 11 The torque functional correctly predicts torque around the x axis for the 1:2:6 field. Again the torque density is plotted as a function of 

the three possible sets of phases. 

suitable for experimental investigation, and avoids the issue of 

taking redundant data. In the (φ1, φ3) plane flow reversal at 

constant magnitude requires a phase shift of (90°, 90°) and in 

the (φ2, φ3) the required phase shift is (0°, 180°). 

 The torque functional can also be computed for the exact 

phases of all of the 64 symmetric 3-d Lissajous trajectories 

presented in Table 5 of Reference 11. These computations 

show that within each group of 16 fields the torque magnitude 

is indeed constant and the computed relative vorticity signs 

(CW or CCW) are in agreement as well. 

 Previously reported experimental data were collected in 

the (φ1, φ3) plane and demonstrate the predicted lattice 

vectors. However, the “dog bone” shaped peaks and valleys in 

Fig. 9(a) are merely elongated single peaks in these data. 

The 2:3:4 triad—In this case the torque functional shows 

torque around the odd axis (“3), in accord with the predictions 

of symmetry theory. The equivalent phase angles are 

)2, , 0), (, 0, ), (0, , ( 222

3

333

4

33

2

232 φφφφφφφφ −−−−  and in the (φ2, φ3) 

plane lattice vectors are A=(0°, 180°) and B=(90°, 45°), Fig. 

10(a). These phase shifts transform [S, S, S] to [S, −S, S] and [S, 

−C, −S], respec[vely. Table 1 of the Electronic Supplementary 

Information (ESI) for Reference 11 shows that symmetry 

theory shows the equivalence of [S, S, S], [S, −S, S], and [C, −S, 

−S]. Moreover, torque func[onal calcula[ons for the 64 

symmetric Lissajous trajectories within this table are in 

agreement with the vorticity magnitude and sign groupings.  

Flow reversal at constant magnitude can be achieved by the 

phase change (0°, 90°). 

 The lattice vectors A and B become (120°, 240°) and (60°, 

−60°) in the (φ2, φ4) plane and the unit cell in this case is shown 

in Fig. 10b. Flow reversal at constant magnitude can be 

achieved from the phase change (0°, 180°). In the (φ3, φ4) plane 

the lattice vectors become (180°, 0°) and (90°, 180°) and a unit 

cell corresponding to these vectors is shown in Fig. 10(c). The 

simplest flow reversal vector in this plane is (90°, 0°). 

 Previously reported experimental data were collected in 

the (φ2, φ3) plane, which was perhaps not the best choice. The 

symmetry of these data reflect that of the torque functional, 

but both the shape of the maxima and their exact locations 

differ somewhat. 

The 1:2:6 triad—This is the final example of a rational field for 

which we previously collected experimental data. Once again 

the torque functional demonstrates torque around the axis 

predicted by symmetry theory, which in this case is the odd 

axis. The computed magnitudes and the signs of the vorticity 

are in accord with the predictions of symmetry theory given in 

Table 2 of the ESI for Reference 11. In the (φ1, φ6) plane the 

lattice vectors are (0°, 360°) and (90°, 0°), which transform [S, 

S, S] to [S, S, S] and [C, S, S] respectively. Table 2 of the ESI for 

Reference 11 shows that symmetry theory predicts that the 
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Fig. 12 The torque functional predicts torque around all axes for the 1:3:5 field: (a) around the x axis; (b) around the y axis; and (c) around the z 

axis. 

torque density will be invariant for these fields. Flow reversal 

at constant magnitude can be achieved with the phase change 

(0°, 180°). 

 The equivalent phase angles are 

)6, 2, 0), (0, , ), (, 0, ( 16163

1

66

1

161 φφφφφφφφ −−−− . In the (φ1, φ2) 

plane the lattice vectors transform to (60°, 120°) and (90°, 0°). 

In the (φ2, φ6) plane the lattice vectors become (0°, 360°) and 

(180°, 540°). The unit cells for each of these representations 

are evident in Fig. 11. Previously reported experimental data 

were taken in the (φ1, φ6) plane. These data reflect the 

symmetry of the torque functional, but the peak torques occur 

at somewhat different phase angles, demonstrating the 

limitations of the torque functional. 

The 1:3:5 triad—Odd:odd:odd fields do not have the symmetry 

of vorticity and so we could not conclude anything about the 

torque created by these fields in our previous paper [11]. 

However, some interesting comments can be made about such 

fields. Recall that for symmetry-breaking, odd:odd fields the 

vorticity is invariant to the direction of the dc field. This fact 

implies that if the dc field is replaced by an alternating field 

fluid vorticity will still occur around the same axis.  Indeed, 

odd:odd:dc and odd:odd:even both produce vorticity around 

the z axis. However, by the same logic odd:odd:odd fields 

should produce vorticity around all axes, so the situation is one 

of competing amplitudes, which is the domain of the torque 

functional. 

 For the 1:3:5 field the torque functional predicts torque 

around all field directions, so the net torque will be off axis. 

The computed torques around the x, y, and z axes are shown 

in Fig. 12. Under the qualitative reasoning of the previous 

paragraph torque around the x axis is produced by the 3,5 

components. The torque functional peaks at 0.175 for this axis. 

The torque functional around the z axis peaks at 0.081 and can 

be roughly thought of as being created by the 1,3 components. 

Finally, the torque functional around the y axis peaks at only 

0.0033 and can be approximately attributed to the 1,5 

components. In fact, calculations for the balanced symmetry 

breaking field 1:3 produces a torque maximum of 0.163, for 

3:5 the maximum is 0.067 and 1:5 maximizes at 0.002. The 

torque around the y axis is too small to measure, but the other 

torques were mapped out in the (φ1, φ5) plane, Fig. 13. 

 Although the experimental torque data almost appear 

sheared or skewed compared to those predicted by the 

functional in Fig. 12(a), both sets possess the same unit cell 

defined by the lattice vectors (180°, 0°) and (60°, 120°). 

Despite the fact that both sets of data possess the same 

symmetry, there is a phase shift between the predicted and 

experimental data indicated by the fact that the positions of 

the extrema are not in the exact same location in each phase 

map. The origin of this phase offset is not clear at this time, 

but was also seen with previously studied rational triads (i.e., 

1:2:3, 1:2:6, and 2:3:4) [11].  
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Fig. 13. Experimental torque density data for the (φ1, φ5) plane for a 1:3:5 rational triad (f0=50Hz; B=150 Grms). These data possess the same unit 

cell and thus the same symmetry as those in Fig. 12(a) despite the superficial difference in their appearance. 

There is a noteworthy consequence concerning flow 

reversal due to the subtle differences between the 

experimental data, which appear sheared, compared to those 

predicted by the functional. Recall that the locus of points that 

delineate the green and red regions in these torque density 

maps are points of zero torque, and thus indicate points of 

flow reversal. In both the predicted and experimental phase 

maps [Figs. 12(a) & 13], points of flow reversal are indicated by 

white dots on the boundary of the unit cell. The torque 

functional predicts no points of flow reversal on the canted 

boundaries and two points on the vertical boundaries; 

whereas, experiments reveal two points of flow reversal on 

the canted boundaries and four on the vertical boundaries. 

4 Conclusions 

We have developed a functional—by using physical insight and 

previous results based on the theory of vortex magnetic field 

mixing—that can be used to predict the relative magnitude 

and direction of the vorticity vector in magnetic particle 

suspensions driven by complex, time-dependent magnetic 

fields (symmetry-breaking rational fields and rational triads). 

We find that the functional predicts results that are in 

agreement with both the symmetry theories developed for 

these new classes of fields as well as experimental 

observations. Such a functional allows for the rapid 

investigation of innumerable magnetic field schemes, which 

can be used to direct future experimental work, and serves as 

a natural first step toward understanding the microscopic 

origins of the observed vorticity.  Experimental results are 

given for a wide variety of symmetry-breaking fields, showing 

that the torque density falls off rapidly as the number of 

domains in the Lissajous plot increases.  The 1:3:5 rational field 

was investigated experimentally and gives good agreement 

with the predictions of the torque functional.  The vorticity 

direction produced by this field cannot be predicted by 

symmetry theory, but the torque density functional shows that 

the vorticity axis is not aligned with any of the three field 

components, and this is indeed the experimental observation. 
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