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Abstract

Large-scale simulations by the authors [10] of the kinetic-hydrodynamic equations for active polar
nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded
(1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at
dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previ-
ous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on
low-moment orientation tensor and polarity vector models [13, 15, 24, 25, 26, 28, 34, 35, 36]. Here
we extend our previous results to complete attractor phase diagrams for active nematics, with and
without an explicit polar potential, to map out novel spatial and dynamic transitions, and to iden-
tify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod
activation strength.

The particle-scale activation parameter corresponds experimentally to a tunable force dipole
strength (so-called pushers with propulsion from the rod tail) generated by active rod macro-
molecules, e.g., catalysis with the solvent phase [30, 33, 47], ATP-induced propulsion [19], or
light-activated propulsion [32]. The simulations allow 2d spatial variations in all flow and orien-
tational variables and full spherical orientational degrees of freedom; the attractors correspond to
numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase dia-
grams with and without the polar interaction potential are remarkably similar, implying that polar
interactions among the rodlike particles are not essential to long-range spatial and temporal correla-
tions in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions
induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again
as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transi-
tions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d
banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength
further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d
and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and
periodic switching between 1d and 2d patterns. These results imply that active macromolecular
suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium

concentrations, provided particle-scale activation is sufficiently strong.
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1 Kinetic-hydrodynamic model [10]

A kinetic model was developed in [10] for active dispersions of rod-like macromolecules of
relatively large aspect ratio. Our approach was to start from the highly developed and experimen-
tally benchmarked kinetic theory for flowing passive nematic polymers, owing to contributions of
Doi, Edwards [3], Hess[16], Marrucci and Greco [27]. We recall the lesson learned from passive
nematic polymer simulations: low-moment closures of Landau-deGennes type capture qualitative
features of both equilibrium and non-equilibrium, steady and unsteady, attractors in a variety of
geometries and forcing conditions. However, every such closure model fails to have quantitative
accuracy in comparison with the kinetic theory, and furthermore fails to get the correct transitions
(bifurcations) between attractors as forcing conditions, rod concentrations, or rod aspect ratios are
varied [6, 7, 8, 9]. The inaccuracies due to closure are only removed by going to a sufficiently
high expansion in spherical harmonics for the orientational probability distribution function of the
rodlike particle ensemble. Furthermore, restriction to planar rods, i.e., to a Fourier series for unit-
length rods on the circle, instead of three-dimensional rods on the sphere and spherical harmonic
expansions, completely misses many of the attractors and phase transitions of nematic polymers in
shear-dominated flows. The remarkable kayaking limit cycles [22] that permeate shear cells [48]
and driven cavities [49], are only possible on the sphere. In any future modeling exploration of
active nematics in deformable vesicles, for example, shear-induced behavior at vesicle walls (cf.
sheared passive nematic droplet phenomena [5]) will interact with the "free space” phenomena ex-
plored thus far for active nematics with periodic boundary conditions. These lessons and sights
on future applications are our motivation to develop a full orientation space, full kinetic theory for
active nematics, and rigorous, comprehensive simulations thereof.

From this rigorous foundation for passive nematics, in [10] we incorporated the statistical
physics of particle-scale activation, including a swimming speed of the active particles, a polar
interaction potential in addition to the Maier-Saupe nematic potential, and activation-induced extra
stress contributions. In this way, our previous numerical algorithms for passive nematic polymer
hydrodynamics [6, 7, 8, 9] could be generalized with only a couple tedious but straightforward
modifications. First, the swimming velocity and associated force dipole of the rod macromolecules
induces polarity of the suspension, with or without a polar potential. The polarity variable is the
first moment of the rod number density distribution function, so that all odd spherical harmonics
of the orientational distribution function had to be added to previous expansions in even spheri-
cal harmonics of nematic polymers. The polarity of active nematics translates in any truncated
spherical harmonic expansion to approximately doubling of the size of the system: from 65 real
degrees of freedom for apolar nematics to 121 real degrees of freedom for polar nematics. Thus

the evolutionary system of nonlinear partial differential equations (PDEs) in two space dimensions
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expands from 65 + 4 (three momentum equations for the flow variables and a pressure equation)
to 121 + 4, or 125. Second, instead of a confined domain of passive nematics with moving wall
and no-slip boundary conditions, the typical active suspension studies impose periodic boundary
conditions in both space dimensions. We point the reader to our earlier paper [10] for these details,
and furthermore to recent research and review articles [26, 24, 39, 40] that give a broad motivation
and overview of the experimental and modeling literature on active nematics and broader active
”swimmer” suspensions. These articles also provide proper citations to the seminal literature on
active suspensions.

The essential details of our model derived in [10] are recalled below, with tunable molecular
features that distinguish among possible synthetic materials (e.g., catalytic nanorod dispersions [30,
47, 33] or microtubules in ATP-rich fluids [19] and their self-organized spatio-temporal behavior).
Our goal here is to extend the illustrative numerical results in [10] for active polar nematics to
complete attractor phase diagrams with and without the polar interaction potential. These results
require detailed, long time, large scale, numerical simulations of the active kinetic-hydrodynamic
system. Our approach here, as in [10], is not to introduce low-moment closures, but rather to go
sufficiently high in the spherical harmonic expansion (121 real degrees of freedom) in the particle
orientational configuration space so that we remove the influence of closure approximations. This
comes with a significant computational expense, yet we believe the results justify the cost. In
particular, in [10] and the results presented here, we find that active nematics of sufficient dipole
strength exhibit long-range spatial correlations and unsteady behavior even at dilute concentrations
where the passive dispersion is isotropic. Intuitively, sufficiently strong nanorod swimmers obviate
the need for a stronger nematic ordering potential. Previously reported results of active nematic
spatio-temporal states with Landau-deGennes type, low order truncated models, focus on nematic
equilibrium concentrations.

The dimensionless equation for the nanorod number density function (NDF) f(m,x,7) with

constant translational diffusion coefficient Dy and rotational diffusion coefficient D, is given by

%) - .

YV (v Uom)f) = DY (Vf 4 fVU) 4D, fi7> R (Rf + FRU) ~ R-(mox ), (1)

where U is the rod self-propulsion speed (which is set to unity throughout the paper), m is the unit

vector representing the axis of symmetry of the rodlike macromolecule, V represents the spatial
o

gradient operator, and X = m X 5 is the rotational gradient operator (see Doi and Edwards [3]).

The intermolecular potential U is given as follows
3N
U:leo—ocn-m—TM:mm, 2)

with Ny, o, and N representing the strengths of the potentials for spatial inhomogeneity, polarity and

nematic order, respectively. The nematic parameter N is proportional to the rod macromolecular

2
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volume fraction (or concentration); for passive nematics, the isotropic-nematic phase diagram [7]
reveals a stable isotropic equilibrium for all N < 5, which is the range explored here. Likewise, the
strength of polar interaction potential o is also proportional to the rod macromolecular volume frac-
tion. The local concentration fj, the polarity director n and the second moment orientation tensor

M are defined as the zeroth, first and second moment of f(m,x,7) on the unit sphere, respectively:

fols)= ()= [ rmxn)dm, ®
n(x,t) = (m) = /| ™ 1) dm, @)
M(x,t) = (mm) = Aml_lmmf(m,x,t) dm. 4)

Note that the rotational diffusion term is normalized by f 2 [3], which is the only modification
from the model in [10]. The Jeffery orbit m in (1) is

m=W-m+a[D-m—D: mmm], (6)

where 0 < a < 1 is a geometric particle parameter for rods, a = (r> — 1) /(r> + 1), with r the particle
aspect ratio, and D, W are the symmetric and anti-symmetric parts of the velocity gradient tensor.
Equation (1) describes the transport of the number density function. Marchetti et al. have derived
a similar kinetic equation for polar active rods in [2] while Shelley and Saintillan derived another
variant of the kinetic theory for suspensions of self-propelled particles [36, 34, 35]. Aside from
these studies, all other simulations of active nematics have studied low moment closure models of
the kinetic equation, and the rods have been restricted to planar.

To close the system in the hydrodynamic kinetic theory, the Smoluchowski equation (1) is

coupled to the incompressible Navier-Stokes equations

dv
E+(V'V)V:V~(—pl—|—’cp—|—’ca), V.v=0. (7)

Many authors assume zero Reynolds number and replace the Navier-Stokes equations by the Stokes
equations. However, a significant body of work has studied O(1) Reynolds numbers [14, 39] as we
have in [10] and the present paper. The constitutive equations for the passive nematic stress T, and
the active stress T, are

T, =2Re” 'D+GM — 1 fol — NM? + NM : (mmmm)]

—éocoG[2nnl— ((mmm) -n+n- (mmm))]+Re; ' [D-M+M-D| +Re3_1 (mmmm) : D, (8)

Ta = GG (M — 3 foI),
where (mmm) and (mmmm) are third and fourth moments of f, the parameters Re, Re;, Re3 are
Reynolds numbers for solvent and particle-solvent interactions, G is the anisotropic stress coeffi-

cient (the entropic stored stress, or zero frequency elastic modulus, normalized by inertial stress),

3
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0l tunes the stored stress due to polarity (induced or primary), and {, is the particle activation pa-
rameter that tunes the strength of the force dipole. A detailed choice of characteristic length, time,
and stress scales that yield the values of all dimensionless parameters is given in our earlier paper

[10], including an order one Reynolds number.

2 Phase diagrams of polar active nematic suspensions with and
without the polar interaction potential

We solve the coupled system (1)—(8) in a normalized unit square physical domain with spatially
periodic boundary conditions. The numerical method is described in [10], where we use a Galerkin
spectral method with 121 spherical harmonic basis functions resulting in 125 partial differential
equations for the Fourier coefficients of the number density function, the hydrostatic pressure and
the three velocity components. The initial state of the NDF is a randomly perturbed isotropic state,
while the flow is quiescent initially. Several dilute concentrations, all corresponding to a stable
isotropic equilibrium for the Doi-Hess-Smoluchowski kinetic equation [6, 7, 8, 9], are explored:
0.5 < N < 3.5 in increments of 0.5. For each N, we run long-time simulations for a range of acti-
vation parameter values {, < 0 (pushers), thereby compiling long-time attractors across the (N, ;)
base domain. We sample across {, with sufficient detail to identify attractor phase transitions, and
these phase boundaries are drawn in Figure 1 (polar active nematics without the polar interaction po-
tential) and Figure 8 (polar active nematics with the polar interaction potential). We note that most
simulations are run out to 500 non-dimensional time units (6.25 x 10° steps) , which corresponds
to an experimental clock time of 2250s or about 37 minutes (for a typical nanorod with length
ranging from 5 to 300nm, the characteristic timescale of rotational relaxation is around 7y = 4.5s
[10]). In some cases, the transients persist out to 500 time units, in which case we double the run
time to be reasonably sure of convergence to a quasi-stationary asymptotic state. To be completely
forthcoming, it is quite possible that these apparent stationary states are long-lived transients, but
the same is true of physical experiments. The boundaries between attractor domains are resolved
within .1 increments of each parameter on a relatively coarse grid, Figures 1 and 8, and then we
simply connect the dots to approximate the boundaries corresponding to attractor bifurcations. We
have not yet attempted to classify the precise nature of these high-dimensional bifurcations, e.g.,
using sophisticated continuation software such as AUTO [4] or XPPAUT [1]. We also cannot rule
out hysteresis at these phase transition boundaries, but the expense to explore this across the phase
diagram is prohibitive. Thiese finer resolution issues are where low-dimensional moment closures
can prove useful, although we caution that several attractors reported here have not been observed
in low-moment closures.

The base parameter values used to produce the phase diagrams in Figure 1 and 8 are Dy =
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0.02,De = 20,Re = Rey = Re3 = 5,G = 4, so that we can make direct contact with the results
reported in [10] for active polar nematics, and place those attractors within the phase diagram. We
begin with the phase diagram without the polar interaction potential, i.e., where polarity is induced
by the force dipole of the nanorod swimmers, and then turn to the polar phase diagram with the

polar interaction potential (not studied in [10]).

2.1 Active nematic suspensions with induced polarity

Figure 1 shows the phase diagram for polar active nematics without the polar interaction poten-
tial (the polar strength coefficient o = 0 in (2) and the polar stress constant og = 0 in (8)). Shorthand
labels for the various spatio-temporal structures are given in Table 1 with their detailed descriptions
below.

2D/FastOS

2D/OS-TW

|Zal

1D/TW+2D/OS

No activation

2:\““\““\““\‘“‘\““\““\:
0.5 10 15 20 25 3.0 35

Figure 1: Active nematic phase diagram with induced polarity (without a polar interaction potential,
o = 0 = 0). The labels for each spatio-temporal attractor are given in Table 1 and described in the
text.

1D/OS 1D banded oscillatory state
2D/OS 2D nonbanded oscillatory state
1D/TW 1D banded traveling waves
2D/OS-TW | 2D traveling nonbanded oscillatory state
2D/ITW 2D traveling nonbanded steady state
2D/FastOS 2D nonbanded with fast oscillations

Table 1: Notation for the observed long-lived attracting states.

We now summarize the key features of Figure 1.
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First notice that the dependence on N is less sensitive than the dependence on {,. Sitting at fixed

N, vertical slices more or less pass through the same bifurcation sequence, summarized in Table 2.

N<06 |06<N<I1S5| I5<N<25 | 25<N<35
isotropic isotropic isotropic isotropic
2D/OS 2D/OS 2D/OS 2D/OS
1D/OS 1D/OS 1D/OS
ID/TW+2D/OS | 1D/TW+2D/OS
1ID/TW 1D/TW 1D/TW
2D/OS-TW 2D/OS-TW 2D/OS-TW
2D/FastOS 2D/FastOS 2D/FastOS
2D/TW 2D/TW 2D/TW

Table 2: Bifurcation sequences versus activation parameter {, for different intervals of nanorod
volume fraction N. The top row is for sufficiently low {,, with increasing {, going down.

For a sufficiently small magnitude of {, (in the region labeled ”No activation” in Figure 1), the
random initial perturbation of the isotropic equilibrium gradually dissipates, leaving no visible flow
in the suspension with uniform nanorod concentration in the physical domain. We now list and
describe the primary attractors in Figure 1.

2d oscillatory attractor, labelled 2D/OS, Figure 1. The critical activation value of |{,|, where
the instability of the isotropic state begins to build up, decreases as the nematic strength N increases
(as shown by the bottom curve in Figure 1). After the initial random perturbation is smoothed out,
an unsteady 1d oscillatory structure with small amplitude is first observed. At long times, it then
gradually transforms to a stable 2d oscillatory structure (in the region labeled "2D/OS”). This
structure has been investigated carefully in our paper [10]. Figure 2 shows some snapshots of the
final 2d oscillatory state for N = 2 and {, = —3.4. In the top-left figure, two elliptic points and
two hyperbolic points are clearly seen in the streamlines of the velocity field. Local concentration
attains its maximum at the hyperbolic points, and the minimum at the elliptic points. These flow
stationary points disintegrate and reform with a period of about 1.98 time units. The polarity vector
field in the middle column of Figure 2 strongly correlates with the flow field. Herring-bone patterns
are observed in the nematic director field, column 3, with domains of nearly isotropic order along
the ridges of the patterns. In the kinetic theory, there are two scalar order parameters associated
with the two measures (polarity and nematic order) for mesoscopic orientation, |n| and the nematic
order parameter s, the difference of the two leading eigenvalues of M. When |n| is zero, the polarity
vector is undefined. Likewise, when s is zero, the nematic director is undefined. So, we might well
call the first case a defect associated with the polarity vector and the second case a nematic defect.
Our results show the two defects are not necessarily correlated. In the middle column, we observe

the evolution of pairs of degree +1 polarity defects, where they form in tandem vertically and
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horizontally. In column 3, the nematic defect forms along a curve at some time and then breaks up
into islands at other times. During the transition, nematic defects annihilate. In the nematic defect

region, domain walls are apparent, either along disclination lines or the periphery of islands.
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Figure 2: Snapshots of a 2D oscillatory attractor, labelled 2D/OS, for N = 2,{, = 3.4. Left column:
Streamline of the velocity field with local concentration color-coded background. Middle column:
Patterns formed by the polarity director superimposed with |n|. Right column: Patterns formed by
the nematic director with the order parameter s in background. Time: top row at t = 242.56, middle
row at t = 243.04, and bottom row at t = 243.52.

1d banded oscillatory attractor, labelled 1D/OS. For N < 2.5, increasing the magnitude of
€4, the elliptic and hyperbolic regions in the stable 2D/OS state expand and then disappear, after
which a stable oscillatory 1d banded structure emerges. This structure is also reported in [10], and
not shown here in detail, but they are very similar to the top row snapshots of Figure 3. The salient

features of this 1D/OS attractor are described in [10], with the distinctive feature of flow reversal

7
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fluctuations with the shear bands.

1d steady and traveling banded attractors, labelled 1D/TW. For N < 1.5, with increasing
|Cal, the 1d banded structure converges to a stationary steady state as reported in [10]. As |{|
increases slightly, the stationary 1d banded structure develops a uniform translational velocity in
the direction perpendicular to the uniform bands.

A hybrid 1d/2d attractor, switching between traveling 1D bands and a 2D oscillatory pat-
tern, labelled 1D/TW + 2D/OS, Figure 3. For N > 1.5 and intermediate values of |(,|, a hybrid
attractor emerges, switching between 1d bands that translate at uniform speed (top row, Figure 3)
and a 2d stationary, oscillating structure (bottom row, Figure 3). As |{,| increases, the duration of
the 1D translating pattern drops while that of the 2d oscillating pattern grows. We calculate the
spatial discrete Fourier transform of fy(x,?),

Cun = EN'E20 cjpcos (0 4 ) 0 << Np,O<n <Ny
» J= = ) Nl N2 (9)
Ni—1yNr—1 . 2nj 21k
Sm,n - Ej;() ZkiO Cj7k51n< 1;/]1m+17\t,_2n>’ O§m<N1,0§n<N2

where, c¢; are the discrete values of the local concentration fp(x,?) at the grid points. The magni-
tudes , /C,%m +S,%w of four representative Fourier modes are shown in Figure 4 for 0 < ¢ < 1000
when N =2.5,|C,| =4.5. In the (2,0) mode, the tilted line corresponds to the unsteady 1d, banded,
traveling state, interrupted by short-lived 2d rapid oscillations. The 1d traveling wave dominates
while the 2d oscillation occurs in a very short time. For all other Fourier modes, similar spikes
in the Fourier amplitudes arise during the short-lived 2d phase. As |{,| increases to around 5 for
N = 2.5, the 1d traveling wave disappears completely, giving way to a purely 2d oscillatory state.

2d traveling oscillatory state. For N > 0.6, the 1D/TW attractors destabilize with increasing
|Cal, giving way to 2d patterns that oscillate (labelled 2D/OS), and at slightly higher values acquire
an additional translation mode at a uniform speed (labelled 2D/OS-TW). Figure 5 gives snapshots
of the latter attractors.

2d violent oscillatory state. The region in Figure 1 labelled ” 2D/FastOS” refers to a rapidly
oscillating 2D state with period much shorter than other 2d oscillatory states. Some snapshots are
shown in Figure 6 for N =2.5,{, = —6.7, which has a period around 0.48 time units. Instead of two
elliptic and two hyperbolic points located in the velocity field of the 2D/OS state in Figure 5, there
are four elliptic and hyperbolic points in the velocity field in Figure 6 (left column), with similar
features in the induced polarity vector (middle column) and the nematic director (right column).

Translational 2d structure. For sufficiently large |{,|, the 2d violent oscillation dies down
to a small amplitude, uniformly translating 2d structure, labeled 2D/TW in Figure 1, for all dilute
volume fractions N > 0.6. A snapshot for the steadily traveling 2d structure is given in Figure 7
(left) for N =2.5,(, = —8.6, where the velocity field v is superimposed with the local concentration

fo. The structure steadily travels toward the upper left. Unlike all states discussed above, two

8
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Figure 3: Translational motion of the mesoscopic pattern (1D/TW+2D/OS). Snapshots of the
hybrid 1D/TW + 2D/OS attractor, consisting of a traveling 1D banded structure (top row) for some
duration that switches back and forth between a 2D oscillating pattern. The values used here from
Figure 1 are N =2.5,{, = 4.5. Left column: Streamlines of the 1D velocity field with local nanorod
concentration in the background. Middle column: Patterns formed by the induced polarity director
superimposed with |n|. Right column: Patterns formed by the nematic director with the order
parameter s in the background.

Poiseuille-like velocity bands are clearly present in this structure, oriented in opposite directions.
Figure 7 (middle) is a snapshot of the pattern formed by the polarity director, while Figure 7 (right)
is a snapshot of the nematic pattern superimposed with the nematic order parameter.



0.012 F

0.010 +

0.008 -

0.006 -

0.004 -

0.002 -

0.000 ¢

0.008

0.006

0.002

0.000

Soft Matter

(2,0) mode
2!30 560 750
= (3,1) mode

A

A

\

250

500

750

Page 12 of 21

0.015+
0.010+

0.005 -

A

0.000

A

(2,1) mode

A

0.0025 |

0.0020 f

0.0015 f

0.0010 F

0.0005

0.0000

250

500

750
(0,2) mode
2&")0 560 750

Figure 4. From the hybrid attractor of Figure 3, the time series of four spatial Fourier modes
showing a slow growth during the 1D traveling wave phase and a short-lived rapid oscillation during
the 2D oscillatory phase. Note the y-dependent Fourier modes vanish except during the brief 2D

oscillations.
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Figure 5: Snapshots of the 2D attractor that oscillates and translates, labelled 2D/OS-TW in Figure
1, for N =2,{, = —5.6. Left column: Streamlines of velocity with local concentration in back-
ground. Middle column: Patterns formed by the induced polarity director superimposed with |n|.
Right column: Patterns formed by the nematic director with the order parameter s in the back-
ground. Snapshots are taken at time t = 243.52 (top row), t = 244 (middle row), and ¢ = 246.56
(bottom row).

11
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Figure 6: Snapshots of the attractor labelled 2D/FastOS in Figure 1, for N = 2.5,{, = —6.7. Left
column: Streamlines of velocity with local concentration in background. Middle column: Patterns
formed by the induced polarity director superimposed with |n|. Right column: Patterns formed by
the nematic director with the order parameter s in the background.
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Figure 7: Snapshots of a traveling wave 2D structure (labelled 2DTW) for N = 2.5,(, = —8.6.
Left: Streamlines of the velocity field with the local concentration in background. Middle: Patterns
formed by the induced polarity director superimposed with |n|. Right: Patterns formed by the
nematic director with the order parameter s in the background.
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2.2 Active polar nematic suspensions with a polar interaction potential

The phase diagram for active polar nematic suspensions with & = 0y = 1 and all other parameters
the same as in Figure 1, is given in Figure 8. The same labels are used for the various attractors since
there are no new attractors. The effect of the polar interaction potential is similar to an increase in

rod volume fraction, which is evident by comparison of Figures 1 and 8.

oF

|Zal

No activation

3 ; I L L L L Il L L L L Il L L L L L L L L L L L L
05 10 15 20 25 30

N

Figure 8: Phase diagram for polar active nematic suspensions with & = olp = 1. The labels for each
attractor are explained in Table 1.

3 Conclusion

Phase diagrams of the spatio-temporal attractors of active nematic (nanorod) suspensions are pre-
sented both with and without first-order rod polarity. In all cases, particle activation induces polar-
ity. These results are based on large-scale simulations of the kinetic-hydrodynamic theory of active
nematic suspensions spanning nanorod volume fractions in the dilute regime and particle activation
strength. Banded 1d and cellular 2d structures, some stationary, some stationary yet fluctuating, and
others fluctuating and uniformly translating, are reported across the two-parameter phase diagrams.
These results reproduce at dilute volume fractions all previously reported banded and 2D attrac-
tors from mesoscopic closure models of Landau-deGennes type of active nematics at nematic or
semi-dilute concentrations [12, 13, 14, 15, 20, 21, 24, 25, 26, 28, 29, 34, 35, 36, 46]. Furthermore,
new attractors are revealed, in particular those with a translational mode superimposed on unsteady
banded and cellular patterns. Extensions of these kinetic-hydrodynamic results to higher volume

fractions where the equilibrium nanorod dispersion is either bi-stable or nematic are in progress.

14
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These are the most resolved simulations of the kinetic-hydrodynamic theory of polar active ne-
matics, consisting of a coupled system of 125 nonlinear partial differential equations in 2 space di-
mensions and time with full orientational degrees of freedom. These space-time attractors undergo
1d to 2d spatial pattern transitions versus nanorod volume fraction, as well as dynamic transitions
versus activity strength, including stationary to oscillatory standing wave patterns, periodic switch-
ing between 1d and 2d oscillating patterns, changes in oscillation frequencies of the spatial patterns
and switching frequency, and onset of a traveling wave motion of all patterns at intermediate to high

particle activation strengths.
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