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Recent advances in colloidal synthesis make it possible
to generate a wide array of precisely controlled, non-
spherical particles. This provides a unique opportunity
to probe the role that particle shape plays in the dynam-
ics of colloidal suspensions, particularly at higher vol-
ume fractions, where particle interactions are important.
We examine the role of particle shape by characterizing
both the bulk rheology and micro-scale diffusion in a sus-
pension of pseudo-cubic silica superballs. Working with
these well-characterized shaped colloids, we can disentan-
gle shape effects in the hydrodynamics of isolated particles
from shape-mediated particle interactions. We find that
the hydrodynamic properties of isolated superballs are
marginally different from comparably sized hard spheres.
However, shape-mediated interactions modify the suspen-
sion microstructure, leading to significant differences in
the self-diffusion of the superballs. While this excluded
volume interaction can be captured with a rescaling of the
superball volume fraction, we observe qualitative differ-
ences in the shear thickening behavior of moderately con-
centrated superball suspensions that defy simple rescaling
on to hard sphere results. This study helps to define the
unknowns associated with the effects of shape on the rhe-
ology and dynamics of colloidal solutions.

1 Introduction

There is a growing interest in anisotropic colloids,1–3 while
new synthesis techniques now make it possible to create a
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Fig. 1 Colloidal Superballs (A) Sample TEM image showing a
hollow silica superball. The blue line shows a fit of the edge contour
to |x|m + |y|m = am to extract the shape parameter m and edge length
2a. (B) Scatter plot of the shape parameter and edge length
extracted from 96 TEM images from a single batch of cubes. Bar
plots above and to the right show histograms of the same data.

variety of different types of particles with uniform, well-
controlled, non-spherical shapes. Simulations have shown that
particle shape can have a dramatic effect on both the pack-
ing structure and equilibrium phase behavior of a material.4–6

When used in combination with other interactions and func-
tionalization schemes, particle shape can play a key role in the
design of materials for self-assembly7.

Despite this recent interest in anisotropic colloids, we are
only beginning to understand how particle shape influences
the rheology and micro-scale dynamics in a suspension. While
previous studies have made progress understanding how par-
ticle shape influences the single-particle hydrodynamics,8–13

this can only capture the first-order viscosity corrections in
the dilute limit. Experiments exploring concentrated suspen-
sions of colloidal14 and non-Brownian15 rods found signif-
icant shape effects, particularly in the shear thickening be-
havior, but there is no general theory to relate the microstruc-
ture and rheology in suspensions of anisotropic particles. This
highlights a growing need for detailed experiments that can si-
multaneously probe both the bulk properties and micro-scale
structure and dynamics in suspensions of well-controlled and
well-characterized non-spherical particles.
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Here we work with suspensions of pseudo-cubic hollow-
shell silica superballs,16 colloidal particles with a shape well
described by an equation of the form

|x|m + |y|m + |z|m ≤ am (1)

where a characterizes the particle size and the exponent m is
known as the shape parameter. For m = 2 this equation re-
duces to a sphere with radius a, while for m > 2 this equa-
tion describes cube-like shapes with rounded corners that ap-
proach sharp cubes as m→ ∞. Previous studies using similar
particles focused on the self-assembly and crystal formation
in quasi two-dimensional systems, using either depletion16 or
capillary forces17 to induce attractive interactions between the
superballs. Here we instead focus on three-dimensional sus-
pensions without induced attraction to isolate the role of parti-
cle geometry. These particles are well-suited for exploring the
role of particle shape because they are mono-disperse, read-
ily dyed and index matched for confocal imaging, and can be
synthesized in bulk quantities. This allows us to do both bulk
rheology and, using confocal imaging, precisely locate and
track particles to characterize the suspension microstructure
and particle diffusion. Varying the volume fraction to explore
both dilute and moderate concentrations, we find that these
superballs behave similar to spheres at the single particle level
but shape effects manifest themselves in the particle interac-
tions.

2 Methods and Materials

Superball Synthesis

We synthesized hollow silica superballs following the ap-
proach initially described by Rossi et al.,16, first synthesizing
pseudo-cubic hematite (α−Fe2O3) particles to serve as tem-
plates, then coating the hematite particles with a thin layer of
silica using a modified Stöber process.18 This silica shell is
roughly 60 nm thick and porous, allowing fluid to slowly dif-
fuse through the shell. We take advantage of this to etch away
the hematite cores by placing the coated superballs in a strong
acid. After 24 h to 48 h the cores are completely dissolved,
leaving only the silica shells. Details of the synthesis proce-
dure are provided in the SI.

In Fig. 1 we characterize the the size and shape of the hol-
low silica superballs used in this work. From TEM images of
individual superballs (Fig. 1A) we use image processing rou-
tines to extract the contour of the of the outer edge. We then
fit this contour to a 2D superball |x|m + |y|m = am to extract
the shape parameter m and edge length L = 2a. Repeating this
procedure with multiple TEM images (Fig. 1B), we find that
〈L〉 = 1.50 µm ±0.06 µm and that 〈m〉 = 2.85±0.15. From
the variance of the measured edge length distribution 〈∆L2〉
we compute the polydispersity s =

√
〈∆L2〉/〈L〉2 = 0.04, a

rather low value compared to other colloidal systems.19 Fluo-
rescent and undyed superballs were made from a single batch
of hematite templates and the resulting silica particles were
indistinguishable in both size and shape.

Index matched suspensions of silica superballs were pre-
pared using a glycerol/water mixture (92 % glycerol mass
fraction, refractive index n = 1.461), with a small amount of
added salt (NaCl) to screen electrostatic interactions (the De-
bye screening length is κ−1 = 7 nm). A detailed description of
the index matching procedure for these hollow, porous shells
is provided in the SI. Diffusion of the high viscosity index-
matching fluid (µ = 0.29 Pa·s at 21.0 ◦C) through the silica
shells is exceptionally slow, so that the superballs can be con-
sidered as impermeable solid particles over the timescales for
the diffusion and rheology measurements. This low perme-
ability could also be exploited to image undyed superballs by
fluorescently dyeing the outer fluid.

We also work with two common ‘hard-sphere’20 colloidal
systems: 2a = 1.54 µm plain silica spheres (Bang Labora-
tories, Inc.) and 2a = 1.45 µm sterically stabilized, fluo-
rescent polymethylmethacrylate (PMMA) spheres (purchased
from Andrew Schofield, the University of Edinburgh). These
colloidal spheres are similar in size to the superballs, allowing
for direct comparisons between the behavior of the colloidal
spheres and superballs. The silica spheres were index matched
using a similar glycerol/water mixture, adjusting the glycerol
content to match the slightly lower refractive index (70 %
glycerol mass fraction, refractive index n = 1.426, viscosity
µ = 0.02 Pa·s at 21.0 ◦C). The PMMA spheres were index
matched using a cyclohexylmethyl bromide (CXB)/decalin
mixture (73 % CXB mass fraction), with a small amount of
tetrabutylammonium bromide salt to screen electrostatic in-
teractions.

Confocal Imaging

To characterize the particle diffusion and suspension mi-
crostructure, we imaged and tracked particles in three dimen-
sions using a Leica SP-5 laser scanning confocal microscope.
Samples were prepared in plasma-cleaned glass capillaries
sealed with UV epoxy and stored when not in use on a slowly
rotating mixing wheel to prevent sedimentation. We restricted
the imaging volume to at least 25 µm above the bottom sur-
face and at least 100 µm from the sides of the capillary to
avoid wall effects. The fluorescent PMMA spheres could be
imaged readily and tracked using standard techniques.21,22

Locating the hollow superballs posed a challenge, since in-
stead of a bright peak at the particle center, the fluorescent
shells define the particle edges. In two-dimensional slices
from a 3D image stack, the superball shaped shells can be
picked up by a circular Hough transform to locate the (x,y)
position of each particle. These positions were linked together
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using tracking routines and averaged to locate the z position
of each particle. To prevent multiple particles from being
misidentified as a single object, we used an iterative routine
to break apart tracks longer than 1.5 times the edge length of
a superball. This routine can accurately locate the superball
positions but requires high-contrast, high-resolution images,
making high-speed three dimensional tracking challenging in
moderately dense suspensions. While the the superball pair
distribution function was measured using samples consisting
solely of fluorescent superballs, diffusion measurements were
carried out using undyed superballs with a small amount of
fluorescent tracers. This allowed us to image larger volumes
at reduced resolution and track tracer particles over long times
(up to 3 h). In these measurements we fluroescently dyed the
glycerol/water suspending fluid, allowing us to obtain nega-
tive images of the undyed superballs to measure the volume
fraction for each sample.

Measuring Volume Fraction

To ensure that the composition and viscosity of the suspending
fluid remained constant from sample to sample, suspensions
with varying volume fraction φ =Vpart,tot/Vtot were prepared
by diluting moderately concentrated stock solutions, using the
supernatant from the the final centrifugation step for the subse-
quent dilutions. We measure φ using confocal imaging to lo-
cate particles within a 3D volume and computing the Voronoi
tessellation23 from the measured particle positions. The to-
tal volume Vtot is the sum of all the cell volumes, excluding
those on the boundaries, and Vpart,tot = ncellsvsb(a,m), where
ncells is the number of cells and vsb(a,m) is the volume of a
superball with size a and shape parameter m. The volume of
a superball can be expressed analytically in terms of the Euler
beta function B(p,q) = Γ(p)Γ(q)/Γ(p+q) by24

vsb(a,m) =
8

m2 B
(

1
m
,

m+1
m

)
B
(

1
m
,

m+2
m

)
a3, (2)

which gives vsb ≈ 5.53a3 for m = 2.85, roughly 32 % larger
than a sphere of radius a.

Samples for diffusion measurements were all prepared from
a single stock solution, while a separate stock was used for the
superball rheology measurements. We directly measured the
volume fraction of all samples used in the diffusion measure-
ments. For the rheology we imaged a subset of the samples
to determine φ for the stock solution and subsequent dilu-
tions. Spatial variations in the measured volume fraction, un-
certainty in the particle size and particle locating errors in the
confocal images limit our relative uncertainty in φ to about 5
% to 7 %, e.g. φ = 0.37±0.02. We used a similar procedure
to measure the volume fraction in the hard sphere samples.
The volume fraction in a sample can be roughly estimated by
centrifuging a fixed volume and measuring the volume of the

densely packed sediment and assuming random close pack-
ing in the sediment, using φrcp = 0.71 for the superballs25

and φrcp = 0.64 for spheres. However we found this method
tended to underestimate the volume fraction by roughly 10 %
indicating that φsed < φrcp, a discrepancy which has also been
observed by others.19

Rheology

The rheology of silica superballs and solid silica spheres was
characterized under steady shear at 21.0 ◦C using an Anton-
Paar MCR302 with a 25 mm cone-plate tool. A temperature
control hood was used to minimize exposure to ambient mois-
ture to prevent the hydroscopic glycerol-water index match-
ing fluid from absorbing extra water. The sample was sheared
at γ̇ = 100 s−1 for 10 min prior to collecting data to ensure
the sample was uniformly mixed. For each sample we per-
formed four back to back sweeps of the shear rate and ob-
served minimal drift or hysteresis in the measured viscosity
η(γ̇). We varied the shear rate from γ̇ = 100 s−1 to γ̇ = 103

s−1, covering a range of Péclet number Pe = 6πµa3γ̇/kBT
from Pe = 5.8×102 up to Pe = 5.8×105. However the maxi-
mum Reynolds number for individual particles remains below
Rep ≤ 4−3 even at our maximum shear rate, so inertial effects
remain negligible.

For dilute suspensions of silica spheres (φ < 0.15) we also
employed a double-gap Couette cell, though the sample vol-
ume requirements prevented us from using this cell with our
superballs. While there were no significant differences be-
tween results obtained using the cone-plate tool and Couette
cell, there is less scatter in measurements using the Couette
cell. This is due to the large sample volume required for the
Couette cell relative to the cone-plate tool (3.8 mL vs 75 µL),
making the results much less sensitive to small pipetting errors
or changes in the water content in the suspending fluid from
absorbed ambient moisture.

3 Results and Discussion

Rheology and diffusion in dilute suspensions

In Fig. 2A we plot the relative viscosity η(γ̇)/µ of our super-
ball suspensions at low to moderate volume fractions. Below
φ ≈ 0.25 we observe Newtonian behavior, where the suspen-
sion viscosity is independent of shear rate and only depends
on φ . This Newtonian viscosity ηN(φ) corresponds to the
‘high-shear’ limiting viscosity (sometimes denoted η∞), since
Pe� 1 even at our lowest shear rates.

In dilute suspensions (φ . 0.2), the relative viscosity can
be expanded as ηN/µ = 1+[η ]φ + c2φ 2 +O(φ 3), where [η ]
is the intrinsic viscosity. The intrinsic viscosity characterizes
the hydrodynamic stresses acting on an isolated particle in a
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Fig. 2 Viscosity of dilute superball suspensions. (A) Relative
viscosity η/µ versus shear rate γ̇ for superball suspensions at
various volume fractions. (B) Newtonian high-shear viscosity ηN/µ

for superballs (black squares) and silica spheres (red circles) versus
φ . Black lines show ηN/µ = 1+[η ]φ for [η ] = 2.54 (solid line) and
[η ] = 3.1 (dotted line). Dashed lines include second order
corrections: ηN/µ = 1+[η ]φ + c2φ 2. Red dashed line: predicted
hard-sphere values26 [η ]HS = 2.5 and cHS

2 = 6.0. Grey dashed line:
a fit to the superball results yields c2 = 6.2±0.4. Error bars in (A)
reflect variations in η over the course of repeated up and down shear
sweeps, while in (B) they include uncertainty in µ = 0.292 Pa·s ±
0.001 Pa·s.

simple shear flow,29 and thus depends directly on the parti-
cle shape. For hard spheres [η ]HS = 2.5 and can be obtained
analytically,29,30 while a variety of numerical techniques are
available to compute [η ] for more complex shapes.10,31 Re-
cent experimental work with PbTe and Fe3O4 nano-cubes
found [η ] = 3.1, in agreement numerical predictions.12 This
larger value is due to large hydrodynamic stresses near cube
corners, which are blunted with our rounded cubic superballs.
Recent numerical work32 on the hydrodynamic properties of
superballs over a range m found that for m = 2.85 the intrinsic
viscosity is [η ] = 2.54, only marginally above the hard sphere
value.

A direct comparison between dilute suspensions of spheres
and superballs (Fig. 2B) reveals little difference in the rel-
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Fig. 3 Superball diffusion. (A) Mean squared displacement (MSD)
of fluorescent tracer superballs tracked using 3D confocal
microscopy. Dotted lines: fits to 〈∆r2〉= 6DL∆t. (B) Long-time self
diffusion coefficient DL(φ) for superballs (black squares) and
PMMA spheres (solid red circles). Error bars in (B) reflect the
standard deviation from multiple measurements with the same
sample. Solid lines: fits to DL(φ) = D0(1+D2φ) for φ ≤ 0.20. Red
open symbols show data for DL/D0 for hard spheres from van
Megen et al. obtained using tracer particles in a DLS setup. Open
circles: 2a = 166 nm poly(vinyl alcohol) spheres with 2a = 170 nm
PMMA tracers in decalin.27 Open diamonds: 2a = 432 nm PMMA
spheres with 2a = 410 nm silica tracers in a decalin/CS2 mixture.28

ative viscosity of the two types of particles. Fitting the su-
perball viscosity for φ < 0.05 to ηN(φ)/µ = 1+[η ]φ yields
[η ] = 2.57±0.11, consistent with [η ] = 2.54 predicted in ref. [
32] and below [η ] = 3.1 predicted for ideal cubes. The results
for the silica spheres agree exceptionally well with both the
the linear [η ]HS = 2.5 and second order cHS

2 = 6.0 coefficients
predicted for ideal hard spheres (Fig. 2B). Including the sec-
ond order term in the superball viscosity for φ < 0.15 yields
c2 = 6.2±0.4, again giving a coefficient that is slightly higher
than the comparable hard sphere value.

In Fig. 3A we plot the three dimensional mean squared dis-
placement (MSD) 〈∆r2(∆t)〉= 〈[~r(t+∆t)−~r(t)]2〉 for fluores-
cent tracer superballs over a range of φ . In dilute suspensions,
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Fig. 4 Microstructure of superball and hard sphere suspensions.
Pair distribution function g(r) for suspensions of (A) superballs and
(B) PMMA spheres at various volume fractions φ . The separation
distance r is scaled by the average diameter 2a = 1.45 µm for the
PMMA spheres and by the average edge length 2a = 1.50 µm for
the superballs. Error bars reflect the standard deviation reflect the
standard deviation from multiple measurements with the same
sample.

diffusion slows down as φ increases but the MSD remains lin-
ear, allowing us to extract the long-time self-diffusion coeffi-
cient DL(φ) by fitting 〈∆r2(∆t)〉 = 6DL∆t. At volume frac-
tions above φ ≈ 0.25 the MSD is initially sub-diffusive before
transitioning to diffusive motion at later times, when the root
mean squared displacement is roughly a distance a. In these
samples we restrict out fit to the late-time regime, where the
MSD is linear, when computing DL(φ).

We fit DL(φ) = D0(1 + D2φ) for φ ≤ 0.2 to extract the
single particle diffusion constant D0 and the first-order cor-
rection D2. We obtain D0 = 1.14× 10−3 µm2/s ±0.06×
10−3 µm2/s, giving an effective hydrodynamic diameter dH ≡
kBT/3πµD0 = 1.59 µm ± 0.11 µm. Most of the uncer-
tainty in dH is due to uncertainty in the viscosity of the glyc-
erol/water supernatant µ . Our measured dH is just slightly
larger than the edge length (dH/2a = 1.06± 0.08) and con-
sistent with recent numerical work by Audus et al.32 which
predicts dH/2a≈ 1.10 for m = 2.85.

Diffusion and structure

When looking at single particle hydrodynamic properties such
as the intrinsic viscosity [η ] and hydrodynamic diameter dH ,

these superballs seem almost indistinguishable from hard-
spheres. However, there is a clear difference between the su-
perballs and hard spheres in how the diffusion slows down
with increasing φ (Fig. 3B). Our measured DL(φ)/D0 in the
PMMA spheres is slightly above, but generally in agreement
with previous experimental results27,28 and the initial slope
D2 = −2.08± 0.01 agrees well with the predicted value for
hard spheres29,33 DHS

2 =−2.1. However, in the superball sus-
pensions we observe a significantly faster initial decrease in
DL(φ)/D0, with D2 = −3.48± 0.19. This difference in the
long-time self diffusivity is evident even at relatively low vol-
ume fractions (φ < 0.20), where we observe minimal differ-
ences in the relative viscosity of superball and hard sphere sus-
pensions. This suggests that the difference in the long-time
self diffusivity of the spheres and superballs is due to differ-
ences in the suspension microstructure.

We therefore compare the pair distribution function g(r) for
spheres and superballs at different volume fractions in Fig. 4.
For PMMA spheres the measured pair distributions match ex-
pectations for a hard-sphere colloidal liquid (Fig. 4A). Theo-
retically, in mono-disperse hard spheres with radius a, the pair
distribution g(r) = 0 for r < 2a then jumps to a finite value gm
at contact r = 2a. In practice polydispersity and particle locat-
ing errors blur this jump, though the peak location is still close
to r = 2a. At higher volume fractions the peak gm increases,
reflecting a growing number of particles in close contact, and
damped oscillations appear for r > 2a, reflecting spatial cor-
relations in the local density.34 In superball suspensions, we
observe similar trends in both the rise in the first peak and the
development of oscillations as φ is increased.

With superballs there is no longer a single distance at which
particles come into contact, but instead the conditions for con-
tact depend on the relative particle orientations. The mini-
mum possible separation between superballs with size a de-
fined by Eq. 1 is r = 2a, corresponding to face-to-face contact.
However, when scaling r by this minimum separation we find
g(r) for the superball suspensions is shifted to larger distances
compared to the hard sphere g(r), with the first peak occur-
ring at a substantially larger separation (Fig. 5A). In Fig. 5B
we show the same data, but replace a with an effective radius
ae f f = 31/2−1/ma defined by the minimal sphere needed to en-
close a superball, i.e. the radius to the corner. This effective
radius reduces to ae f f = a for m = 2 (spheres), ae f f = 31/2a
for m→ ∞ (cubes) and for our superballs with m = 2.85 we
have ae f f ≈ 1.18a. Scaling by this effective radius matches
both the location of the first peak and the oscillation period
for the sphere and superball suspensions, so that the shifted
pair distributions for the different particles at the same φ look
nearly identical (Fig. 5B).

Motivated by this rescaling, in Fig. 5C we re-plot DL/D0
for the spheres and superballs against an effective volume frac-
tion φe f f defined by this minimal enclosing sphere. The effec-
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Fig. 3), with the superball data now plotted against the effective volume fraction φe f f defined by the minimal enclosing sphere.

tive volume fraction is related to the physical volume fraction
φ by

φe f f =
4
3 πa3

e f f

vsb(a,m)
φ (3)

where vsb(a,m) is the volume of a superball given by Eq.2.
For our particles with m = 2.85 the effective volume fraction
is φe f f ≈ 1.24φ .

The first order corrections to DL(φ)/D0 are proportional
to terms of the form33,35 n

∫
∞

2a h(r)g(r)r2dr, where n is the
particle number density, h(r) characterizes different types
of particle-particle interactions (hydrodynamic, etc) and the
lower limit of integration reflects the fact that g(r < 2a) = 0
for hard spheres. For hard spheres we non-dimensionalize the
integral by scaling r̃ = r/a to obtain a term proportional to
a3n ∝ φ . We have shown that the sphere and superball pair
distributions align when we replace 2a→ 2ae f f , and if we as-
sume the interaction terms contained in h(r̃) are similar for the
spheres and superballs, then this first order correction for the
superball long-time self diffusivity is the same as in the hard
sphere case but with a3n replaced with a3

e f f n ∝ φe f f . Rescal-
ing by this effective volume fraction brings the superball and
sphere long-time self diffusion results into closer agreement,
though DL(φe f f )/D0 for the superballs still falls slightly bel-
low the hard sphere data and a linear fit gives an initial slope
D2 = −2.80± 0.16. This suggests that non-negligible differ-
ences in the hydrodynamic interactions h(r̃) remain.

This shape mediated excluded volume interaction might
manifest itself in other quantities that depend on the particle

interactions, such as the osmotic pressure. Collision-driven
molecular dynamics (MD) simulations of dense superball sus-
pensions by Batten et al.24 show a similar shift in g(r), how-
ever osmotic viral coefficients computed in that same study
do not show this large excluded volume effect, for example
B2/vsb ≈ 4.1 for m = 2.85 while B2/vsph = 4 for hard spheres.
It is possible that this difference is due to the additional hydro-
dynamic contributions contained in h(r), or that the rotational
diffusion needs to be better modeled to capture this effect.

The rotational diffusion coefficient DR(φ) of hard spheres
exhibits a much weaker dependence on φ than the translational
diffusion coefficient.36 Since the superball shape does not dra-
matically effect the single particle hydrodynamics, we expect
the single particle rotational diffusion coefficient to be well ap-
proximated by the hard sphere value DR,0 = 3D0/4a2. The an-
gular mean squared displacement is given by 〈∆θ 2〉= 4DR∆t,
so the timescale τR for a superball to diffuse a root mean
squared angular distance ∆θ = 0.96 radians (from a corner to
the center of a face) is τR ≈ 150 s. This timescale is somewhat
shorter than the timescale for caged diffusion at higher volume
fractions (Fig. 3A), and the MD simulations24 of superballs
found no rotational correlations in the fluid phase except for
rare configurations with particles in perfect face-to-face con-
tact. Together, this suggests that the superballs can explore
the full range of orientations within their transient cages, so
that their excluded volume is essentially set by the enclosing
sphere radius ae f f .

In hard sphere suspensions, sub-diffusion and caged motion
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Fig. 6 Shear-thickening. (A)-(D) Relative viscosity η/µ versus
Péclet number Pe for superballs (solid squares) and silica spheres
(open circles in (C) and (D)) at various volume fractions. In (A) we
illustrate how we define the Péclet number for the onset of shear
thickening Pec,1 and the viscosity plateau Pec,2. Horizontal dashed
lines show ηN/µ and ηST S/µ . The solid line is a fit to
η/µ = A lnPe+B in the shear thickening region. Pec,1 and Pec,2 are
determined by the intercepts at ηN/µ and ηST S/µ , respectively.

becomes noticeable at volume fractions as low as φ = 0.32
and typically becomes pronounced for φ > 0.4.37,38 We first
observe sub-diffusion at φ = 0.25 and at φ = 0.37 the sub-
diffusion is quite pronounced, indicating enhanced caging in
the superball suspensions. In terms of the effective volume
fraction (φe f f = 0.30 and φe f f = 0.44) the sub-diffusion ob-
served in these two samples aligns much closer with the on-
set of sub-diffusion in hard spheres, suggesting the short-time
caging dynamics are also controlled by this shape mediated
interaction.

We cannot directly apply this rescaling φ → φe f f to the sus-
pension viscosity ηN(φ)/µ , since the viscosity contains con-
tributions from both the single particle hydrodynamics and the
suspension microstructure. When expanding ηN/µ in powers
of φ , the linear term [η ]φ remains unchanged since it is in-
dependent of g(r). Higher order terms reflect the coupling
between the hydrodynamics and structure, resulting in mixed
terms that depend on both the physical volume fraction φ and
the effective volume fraction φe f f . For details see the SI and
refs. [39] and [40], which address the relative hydrodynamic
and interaction contributions to the viscosity of core-shell par-
ticles.

Shear thickening at moderate volume fractions

As the volume fraction in a sheared suspension is increased,
the coupling between the suspension microstructure and hy-
drodynamic interactions becomes increasingly important and
we expect likewise the details of the particle shape to become
increasingly important. Indeed, we find that at moderate vol-
ume fractions as low as φ = 0.24 the superball suspensions
exhibit non-Newtonian shear thickening behavior (Fig. 6).
The superball suspensions exhibit mild shear thinning at our
lowest shear rates (or equivalently Péclet numbers Pe). The
viscosity then plateaus at the high-shear Newtonian viscosity
ηN(φ). At a Péclet number Pec,1 the viscosity begins to rise
logarithmically over a decade in Pe. At a second value of the
Péclet number Pec,2 the viscosity plateaus at a higher value
ηST S. Over the range of volume fractions explored here the
ratio ηST S/ηN varies between ηST S/ηN = 1.04 at φ = 0.24 to
ηST S/ηN = 1.4 at φ = 0.40, a rather mild increase compared
to the large viscosity increases that have been observed in dis-
continuous shear thickening suspensions.41,42The shear thick-
ening observed in these superball suspensions is reversible,
with no discernible hysteresis when repeatedly increasing and
decreasing the shear rate.

While we begin to see hints of shear thickening in our sil-
ica sphere suspensions at similar volume fractions (Figs. 6C-
D), the shear thickening in the superball suspensions begins at
much lower Péclet numbers. The critical Péclet numbers for
shear thickening onset Pec,1 and the viscosity plateau Pec,2 in
the superball suspensions both decrease with increasing vol-
ume fraction. However, if we plot the viscosity against the
physical shear stress σ = ηγ̇ , we find that both the onset stress
σc,1 and plateau stress σc,2 are roughly constant, independent
of φ (Fig. 7). In the superballs, the average onset stress is
〈σc,1〉= 4.7 Pa ±1.3 Pa, while the viscosity plateau occurs at
a stress 〈σc,2〉= 119.5 Pa ±15.7 Pa.

Comparing the form of η(σ)/ηN for suspensions of super-
balls and silica spheres over a range of φ in Fig. 7, we find that
the rescaling φ → φe f f cannot account for the difference be-
tween the shear thickening in the two types of particles. In the
silica sphere suspensions, the shear thickening onset occurs at
a stress σc ≈ 20 Pa, independent of the φ and well above the
onset stress in the superball suspensions. We do not observe
a comparable viscosity plateau in the sphere suspensions for
φ < 0.5 within our measured shear stresses. In sphere suspen-
sions at higher volume fractions (φ ≈ 0.6), where the shear
thickening becomes discontinuous, the viscosity begins to ap-
proach a plateau around 103 Pa, again much higher than the
plateau stress for the superball suspensions.

While the microscopic origins of shear thickening remains
a subject of active research and debate,41,42 continuous shear
thickening in colloidal suspensions is typically ascribed to
large lubrication forces that develop as particles are driven into
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close contact, creating particle clusters that are tightly coupled
by these hydrodynamic forces.43–45 In this scenario, many-
body effects conspire to force particles into close contact, so
the gaps between particle surfaces δ approaches 0, while hy-
drodynamic lubrication forces diverge as 1/δ . In real col-
loidal systems the ‘hard-sphere’ picture breaks down as h→ 0
and details of the surface interactions (i.e., a polymer brush
or short-ranged electrostatics) become important. The min-
imum separation δm is set by balancing the shear stress and
some repulsive contact force Frep. Shear thickening occurs
when the contact relaxation time45 τcont = α(δm)/k(δm) be-
comes longer than the shear timescale 1/γ̇ . For hard spheres,
α = 3πηa2/2δ is the lubrication drag coefficient and k =
dFrep/dδ an effective spring constant evaluated at δm. For
short ranged electrostatic repulsion with a surface potential
ψs, this stress is given by46,47 σc ≈ 0.1(πεrε0ψ2

s κ/a). For
σc ≈ 20 Pa exhibited by the silica spheres, this translates to
ψs =−31 mV, a reasonable value for colloidal silica.48

At present there is no theory for the critical onset stress for
shear thickening in suspensions of shaped particles. For such
particles, both the lubrication and contact forces will depend
on the relative particle orientations. While tangential forces
play a negligible role in the traditional picture for lubrication-
driven shear thickening,45 in shaped particles the role of par-
ticle rotations should become increasingly important, partic-
ularly at higher volume fractions. Given the nearly identi-
cal particle compositions and suspending fluids, the surface
potential for the spheres and superballs should be nearly the
same. While it is possible that the difference between the on-
set stresses in the spheres and superballs can be accounted for
by appropriately modifying the lubrication and electrostatic
forces, it is also possible that different modes of stress trans-
mission and relaxation need to be considered.

The second, high-stress viscosity plateau in the shear thick-
ened state has been observed by others in suspensions of
spherical particles, though the origin of this plateau remain un-
resolved.49,50 We speculate that the viscosity plateau in the su-
perball suspensions at σc,2 reflects a structural change that al-
lows the superballs to relieve large lubrication stresses, though
additional studies exploring the dynamics and structure at high
shear rates and volume fractions is needed to examine this
transition.

To characterize the increase in the superball viscosity at
higher volume fractions, we fit both ηN(φ) and ηST S(φ) to
a Kreiger-Dougherty type equation:

η

µ
= (1−φ/φm)

−[η ]φm (4)

in Fig. 8. We employ this function as an empirical fit, fix-
ing [η ] = 2.54 to fit the data in the dilute limit and allowing
φm to vary. This yields φ ST S

m = 0.56±0.04 in the shear thick-
ened state and φ N

m = 0.68±0.07 in the high-shear Newtonian

100 101 102

1.0

1.2

1.4

Stress σ (Pa)

η(
σ)

/η
Ν

φ=0.50
φ=0.46
φ=0.39
φ=0.31

φ=0.40
φ=0.33
φ=0.28
φ=0.24

σc,2σc,1

Superballs

Spheres

Fig. 7 Shear thickening onset. Viscosity (scaled by ηN(φ)) plotted
against shear stress σ = ηγ̇ for superballs (solid squares) and silica
spheres (open circles). Vertical dotted lines show the average values
〈σc,1〉= 4.7 Pa ±1.3 Pa and 〈σc,2〉= 119.5 Pa ±15.7 Pa. The range
of superball volume fractions 0.24≤ φ ≤ 0.40 corresponds to a
range 0.30≤ φe f f ≤ 0.50 using the same rescaling φe f f = 1.24φ

using in Fig. 5.

regime at stresses below the shear thickening onset. We also
plot this function with fixed [η ] = 2.5 and φ HS

m = 0.71 which
was previously found to fit the high-shear Newtonian viscos-
ity in hard-sphere suspensions.26,51,52 Our measured viscosi-
ties in the silica spheres agree quite well with this previous
result for φ < 0.5. The extracted φ N

m for the superballs is
slightly lower than φ HS

m for hard spheres, though this differ-
ence is less than the uncertainty in φ N

m . Recent work50 ex-
amining ηST S in strongly shear thickening suspensions of sil-
ica spheres (a = 260 nm) suspended in poly-ethylene glycol
(Mw = 200) found φ ST S

m = 0.54±0.01, close to our measured
φ ST S

m . One might expect the viscosity divergence in super-
balls to occur at a higher volume fraction, since the maxi-
mum volume fractions for disordered and crystalline packings
of superballs exceed the maximum volume fractions possible
in sphere packings.24 Other functional forms have been pro-
posed to describe the divergence of the high-shear viscosity in
concentrated suspensions,50,51 however alternative forms do
not significantly change the quality of the fits or the extracted
values of φm. More data at higher volume fractions is needed
to better resolve the behavior of highly concentrated superball
suspensions.

4 Conclusions

Our results highlight the challenges and subtleties inherent in
adapting results and theories for uniform spheres to suspen-
sions of anisotropic, shaped particles. Superballs seem sim-
ple at the single particle level, with hydrodynamic proper-
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m = 0.56±0.04 and
φ N
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ties (characterized by the hydrodynamic diameter dh and in-
trinsic viscosity [η ]) that are marginally different from hard
spheres. However, the particle shape modifies the suspension
microstructure (characterized by g(r)), which significantly al-
ters the diffusive behavior of the superballs (measured by
DL(φ)). Similarly, the shear thickening at moderate concen-
trations is qualitatively different from the shear thickening we
observe in comparable hard spheres.

The differences between the hydrodynamic contributions
to the viscosity and the shape-mediated contributions to the
self-diffusion highlight the challenges in applying Generalized
Stokes Einstein (GSE) relations53–55 to suspensions of shaped
particles. These GSE relations relate the viscosity and dif-
fusion η(φ)/µ = C(φ)D0/D(φ), where a constant C(φ) = 1
would correspond to a strict GSE relation. While we expect
the diffusion and viscosity to follow a similar trend, there
is no fundamental reason this GSE relation must be strictly
obeyed54,55 and a variety of different forms of this GSE have
been proposed, using either self-diffusion coefficient, collec-
tive diffusion coefficient53,54 or Laplace transformed forms
of frequency-dependent quantities.56 Mode coupling theory55

for hard spheres suggest a GSE relating the long-time self-
diffusion and the zero-shear viscosity holds approximately
with C(φ) ≈ 1 for 0 ≤ φ < 0.5, though experimental evi-
dence is mixed19,54. There must be finite deviations in di-
lute hard sphere suspensions, since one can expand C(φ) =
1+([η ]+D2)φ + ... and [η ]HS+DHS

2 = 0.4. Though we mea-
sure the high-shear viscosity instead of the zero-shear viscos-
ity in this work, the intrinsic viscosity should be the same in

both limits. This indicates that deviations from C(φ)≈ 1 in the
superballs should be more pronounced and go in the opposite
direction, since [η ]+D2 =−0.93. Relations of this form also
fail in suspensions of charged spheres,57 suggesting that the
approximate agreement in hard spheres is coincidental, and
GSE relations should not be expected to hold in suspensions
where the single particle hydrodynamics and particle interac-
tions are not simply related.

While it is possible to separate contributions from the sin-
gle particle hydrodynamics and shape-mediated interactions
in the viscosity and diffusion measurements in dilute suspen-
sions, in moderately concentrated shear thickening suspen-
sions the microstructure and hydrodynamic interactions are
tightly coupled. In the hydrodynamic clustering picture of
continuous shear thickening41,43,58 with spherical particles,
the dynamics is controlled by diverging pair-wise lubrication
forces acting normal to the particle contacts, while tangen-
tial forces exhibit a slower logarithmic divergence with the
gap size. In spheres, these forces furthermore depend only on
the gap size and the only pathway to relax these forces is for
Brownian or shear-induced diffusion to move particles apart
from each other. This is no longer true with non-spherical par-
ticles.

Lubrication forces will depend strongly on the relative ori-
entations of neighboring superballs, with the potential for both
stronger lubrication forces at face-to-face contacts and weaker
forces at edges or corners where the local radius of curvature is
smaller. Furthermore, particle rotations provide a new route to
relax lubrication stresses, particularly in corner or edge facing
contacts. Previous studies have begun to explore the role par-
ticle shape plays in setting the range of volume fractions14,15

where shear thickening is observed and how different shapes
provide multiple avenues for stress to relax,59 however more
work is needed with well-controlled and characterized particle
shapes.

Furthermore, in non-spherical particles translational and ro-
tational motion are directly coupled, suggesting an analogy to
contact friction in spherical particles. A growing body of ev-
idence42,49,60–62 suggests that discontinuous shear thickening,
where the stress rapidly rises by orders of magnitude with in-
creasing γ̇ , in non-Brownian suspensions is driven by dilation
and frictional contact forces. Discontinuous shear thickening
is also observed in (Brownian) colloidal suspensions, though
the role of contact friction in this regime is less established.
While we observe only mild shear thickening in the superballs
over the range of volume fractions and shear stress explored
here, we might expect more dramatic effects at higher vol-
ume fractions. More experimental work, as well as theory and
simulations, are needed to better understand concentrated su-
perball suspensions, and could potentially open a new window
to address long debated questions in colloidal science.
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