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Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchan-

nels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by

exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show

that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry

alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow

rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

1 Introduction

Controlled flow manipulation at the micro- or nano-scale is

at the heart of recent developments in microfluidics, includ-

ing many applications in the field of biological analysis and

screening1. Generating and controlling a flow within the con-

fined environment of a microfluidic channel requires an ex-

ternal forcing to overcome the viscous stress on the walls.

In synthetic micro and nanofluidic systems, this is usually

achieved either mechanically, by applying a pressure differ-

ence between the inlet and outlet of the domain, or through

electrokinetics/electroosmosis, where the flow results from an

externally-imposed electric field within the channel2–5.

However, many biological systems rely on stresses local-

ized at boundaries in order to drive flow, rather than on a

global macroscopic forcing. For example, microscopic cilia

on the lung epithelium induce a directional flow of mucus

through their coordinated beating, acting as a pump6. Similar

microscale flow forcing at the wall also plays an essential role

in the early stages of embryo development7 or in the repro-

duction of mammals, where cilia-driven flow is responsible

for the migration of the ovum down the female reproductive

tract8.

In a dual process, cilia-driven flows play an essential role in

the self-propulsion of micro-organisms such as Paramecium9;

the flow generated by the beating of cilia anchored on the wall

of a moving cell is responsible for its locomotion. For both
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swimming and pumping, the coordination of neighboring cilia

into metachronal wave patterns has been proven essential to

achieving maximum flow rate/swimming speed with a mini-

mum energetic cost10–14.

Several attempts have been made to reproduce ciliary

pumping in the lab through the fabrication of artificial actu-

ated cilia15–18. All of them rely, however, on the application

of a global electromagnetic forcing field, and generating effi-

cient pumping would require the application of phase-shifted

forcing on neighboring cilia19,20. This constraint, as well as

the manufacturing process of microscopic cilia, poses impor-

tant challenges to miniaturization.

Phoretic mechanisms, namely the ability to generate fluid

motion near a boundary under the effect of an external field

gradient, represent an alternative route for both pumping and

swimming systems that require no moving parts. These mech-

anisms arise from the interaction of rigid boundaries with neu-

tral or ionic solute species in their immediate environment,

and are known to generate the migration of passive particles

in external gradients21. Phoretic motion has recently received

renewed attention in the context of artificial self-propelled sys-

tems. Such artificial swimmers generate the field gradients re-

quired for propulsion themselves, for example through chem-

ical reactions catalyzed at their surface, and thus do not rely

on any external forcing to achieve propulsion22–25. These sys-

tems combine two properties: (i) an activity, i.e. the ability

to release/consume solute species or thermal energy at their

surface, and (ii) a phoretic mobility, i.e. the ability to create a

slip velocity at the boundary from a local tangential gradient

of solute concentration (diffusiophoresis), temperature (ther-

mophoresis) or electric potential (electrophoresis). Recently,

autophoretic systems have also been considered for generat-

ing micro-rotors that rotate without the application of external

torques26,27.
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In order to generate the surface gradients necessary to their

self-propulsion, autophoretic particles must break spatial sym-

metry. A similar requirement exists for autophoretic pumps.

This symmetry-breaking may be achieved for self-propelled

particles following three main routes: (i) chemical asymme-

try, i.e. patterning the particle surface with active and passive

sites (e.g. Janus particles)23,24,28, (ii) spontaneous symmetry-

breaking resulting from the advection of the field responsible

for the phoretic response by the flow itself29,30 and (iii) geo-

metric asymmetry31,32.

In this work, we use a combination of theoretical analysis

and numerical simulations to investigate whether, and how,

autophoretic mechanisms and geometric asymmetry can gen-

erate a net flow in a microfluidic channel without imposing

any external mechanical forcing, electromagnetic forcing or

chemical patterning. For simplicity we focus on the specific

case of diffusiophoresis, where slip velocities are generated at

the wall from tangential gradients in the concentration of a so-

lute released from one of the channel walls into the fluid. Be-

cause of the similarity between the different phoretic mecha-

nisms, it is expected that the results of the present contribution

may easily be generalized to thermo- or electrophoretic sys-

tems. Specifically, we follow the classical continuum frame-

work of self-diffusiophoresis24,33–35, and consider how a left-

right asymmetry in the wall shape can generate a net flow

within the channel which hence acts as a microfluidic pump.

The paper is organized as follows. Section 2 summarizes

this continuum framework for the case of the flow within an

asymmetric channel, and presents the numerical methods used

in this work. Section 3 shows how the wall geometric charac-

teristics determine the net flow within the channel. The re-

sults are then confirmed analytically in Sec. 4 using lubrica-

tion theory in the long-wavelength limit, and conclusions and

perspectives are presented in Sec. 5.

2 Problem formulation

2.1 Diffusiophoretic channel

We consider a two-dimensional channel of mean height H,

bounded by a flat bottom boundary (y = 0) and a top wall

with a periodic non-flat profile, y = h(x) (see illustration in

Figure 1). In the channel gap, filled with a Newtonian fluid

of dynamic viscosity µ and density ρ , a solute species of lo-

cal concentration C(x) with molecular diffusivity D is present

and interacts with the channel walls through a short range po-

tential. When the typical thickness of this interaction region

is much smaller than the other length scales of the problem

(namely the channel gap and the wavelength), the interaction

of the wall with a local solute gradient generates an effective

slip velocity at the wall21,35

uslip = M∇∇∇‖C, (1)

where ∇∇∇‖ = (1− nn) ·∇∇∇ is the tangential component of the

gradient to the surface of local normal n and M, the phoretic

mobility, is a property of the solute-wall interaction which

may be positive or negative depending on the repulsive or at-

tractive nature of that interaction21. The chemical properties

of the channel walls are also characterized by a chemical ac-

tivity, i.e. the ability to create or consume the solute species.

Here we consider a simple fixed-flux model, for which the ac-

tivity of the wall is given by a fixed flux of solute per unit area

A, counted positively (resp. negatively) when solute is released

(resp. absorbed)

Dn ·∇∇∇C =−A. (2)

In the case of self-diffusiophoretic propulsion, locomotion

is often achieved through inhomogeneity in the chemical treat-

ment of the particle22–24. Recent work has shown that geo-

metric asymmetry of chemically-homogeneous particle alone

is in fact sufficient to ensure locomotion31,32. Here we inves-

tigate a similar question, namely the possibility of obtaining

a net flow from chemically-homogeneous channel walls using

shape asymmetry. We thus assume that the top corrugated wall

has homogeneous mobility M and activity A. To ensure the ex-

istence of a steady state solution, the concentration of the so-

lute on the bottom wall is assumed to be fixed (C =C0). Con-

sequently, the fluid velocity on that wall satisfies the no-slip

boundary condition. By studying the relative concentration of

solute to that on the bottom wall, we can assume without loss

of generality that C0 = 0.

The phoretic slip velocity generated at the top wall by the

wall-solute interaction drives a flow within the channel. When

viscous effects dominate inertia (namely, when the Reynolds

number Re= ρU H/µ is small, with U = |AM|/D the typical

phoretic velocity), the flow satisfies the incompressible Stokes

equations

µ∇2u = ∇∇∇p, ∇∇∇ ·u = 0, (3)

for the velocity and pressure fields, u and p respectively.

Solute molecules diffuse within the channel, and in gen-

eral can also be advected by the phoretic flows. However,

when diffusive effects dominate (i.e. when the Péclet number,

Pe = U H/D, is small), the solute dynamics is completely de-

coupled from the flow, and the solute concentration satisfies

Laplace’s equation

∇2C = 0. (4)

Equations (3)–(4), together with the boundary conditions

Eqs. (1)–(2) applied at the top wall and the inert boundary

conditions C = 0 and u = 0 at the bottom wall, form a closed

set of equations that can be solved successively for the solute

concentration C and velocity field u = (u,v). From these re-

sults, the net flow rate within the channel, Q, can be computed

as

Q =
∫ h(x)

0
u(x,y)dy, (5)

2 | 1–9
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Fig. 1: Asymmetric phoretic channel. The top wall is characterized

by constant chemical activity A and mobility M. The bottom wall

maintains a fixed concentration and thus flow satisfies no-slip there.

The example shown here corresponds to γ = π/4, a/H = 1/2 and

L/H = 2π with the asymmetric shape of the wall given in Eq. (6).

which is independent of x because the flow is incompressible.

2.2 Asymmetric channel

The shape of the channel is a periodic function of x charac-

terized by a wavenumber k = 2π/L. A sinusoidal wall will

generate a perfectly left-right-symmetric concentration distri-

bution and flow pattern, leading to no net flow along the chan-

nel. In the following, we focus on a subset of asymmetric wall

shapes, essentially smoothed ratchets, that are formally ob-

tained by mathematically shearing the symmetric sinusoidal

profile. The top wall is described in parametric form by

x(s) = s−
γ

k
sinks, y(s) = H +asinks, (6)

the non-dimensional asymmetry parameter, γ , determines the

asymmetry of the profile, and H and a are the mean channel

width and the amplitude of the width fluctuations, respectively

(see Figure 1).

Hereafter, the problem is non-dimensionalized using 1/k as

characteristic length, U as characteristic velocity, and |A|/Dk

as characteristic concentration fluctuation. While A and M

are both signed quantities, after nondimensionalisation we fo-

cus on the case A = M = 1; changing the sign of either A

or M simply reverses the slip velocity forcing and flow rate

without changing its magnitude. The problem is now com-

pletely specified by three geometrical quantities, namely the

non-dimensional mean gap, H∗ = kH, the corrugation ampli-

tude, a∗ = ka, and the asymmetry parameter, γ .

2.3 Numerical method

Equation (3) for the solute concentration and Eq. (4) for the

flow and pressure fields are solved numerically using a bound-

ary integral approach with periodic Green’s functions.

We denote Ω the fluid domain in a period of the channel

gap, ∂Ω its lower and upper boundaries (the inert and active

walls), and n the unit normal vector pointing into the fluid

domain. The two-dimensional periodic Green’s function for

Laplace’s equation, Eq. (4), is given by

Φ(x,y;ξ ,η) =
1

4π

∞

∑
n=−∞

ln
[

(x−ξ +2nπ)2 +(y−η)2
]

=
1

4π
ln[2(cosh(y−η)− cos(x−ξ ))]. (7)

Assuming that the channel walls are smooth, the concentration

at a point (x,y) on one of the walls can then be computed using

the boundary integral formulation36

1

2
C(x,y) =

∫

∂Ω

[

C(ξ ,η)
∂

∂n
(Φ(x,y;ξ ,η))

− Φ(x,y;ξ ,η)
∂

∂n
(C(ξ ,η))

]

ds(ξ ,η). (8)

The upper and lower boundaries of the domain are discretized

into 200 straight-line segments, and C and dC/dn are assumed

constant over each element. For elements on the bottom

(resp. top) boundary, C = 0 (resp. dC/dn = −1) is enforced

at the midpoint of each segment. This reduces the boundary

integral equation (7) to a dense matrix system for the solution

vector containing the unknown dC/dn on the lower bound-

ary and C on the upper boundary. The free-space (i.e. singu-

lar) component of the Green’s function is isolated and inte-

grated analytically, and all non-singular element integrals are

computed with a 16-point Gaussian quadrature. In order to

compute the fluid flow and flow rate in the channel, only the

boundary concentration of solute (and not its bulk distribu-

tion) is needed, which makes the boundary element method

particularly suitable for this problem. The numerical code was

validated against analytical solutions for diffusion in a chan-

nel with nontrivial boundary conditions and domain geometry,

achieving a relative error of at worst 0.004%.

For Stokes flow, the dimensionless boundary integral equa-

tion for boundary force density, f, is given by

u j(x) =
1

2π

∫

∂Ω
[Si j(x−ξξξ ) fi(ξξξ )

−Ti jk(x−ξξξ )ui(ξξξ )nk(ξξξ )]ds(ξξξ ). (9)

For x̂ = x− ξξξ and r = |x̂|, the two-dimensional, 2π-periodic

Green’s functions for Stokes flow are

S =
∞

∑
n=−∞

I lnrn −
x̂nx̂n

r2
n

, T =
∞

∑
n=−∞

4
x̂nx̂nx̂n

r4
n

, (10)

where x̂n = (x−ξ +2nπ,y−η). These functions may be ex-

pressed in the closed form

Sxx = K + ŷ∂ŷK −1,

Syy = K − ŷ∂ŷK,

Sxy =−ŷ∂x̂K = Syx,

Txxx = 2∂x̂(2K + ŷ∂ŷK),

Txxy = 2∂ŷ(ŷ∂ŷK),

Txyy =−2ŷ∂x̂ŷK,

Tyyy = 2(∂ŷK − ŷ∂ŷŷK),

Ti jk = Tki j = Tjki,

(11)
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Fig. 2: Dependence of the net flow rate through the channel, Q,

with the left-right asymmetry of the top wall, γ , in the cases a/H =
1/2, L/H = 2π and 0 ≤ γ ≤ π . The four red dots correspond to the

different panels illustrated in Figure 3.

for K = 1
2

ln [2cosh(ŷ)−2cos(x̂)]. The computational pro-

cedure for discretizing the domain boundary is identical to

that used for the diffusion equation (7). Constant force ele-

ments are assumed, singular integrals have the singularity re-

moved and computed analytically, and non-singular integrals

are computed with 16- point Gaussian quadrature.The imple-

mentation is based upon the authors’ previously published

work on the optimal swimming of a sheet37, with the addition

of Tikhonov regularisation to improve matrix conditioning.

3 Results

3.1 The role of asymmetry

When inertia and solute advection are negligible, the Laplace

problem for the solute concentration is linear and decouples

from the Stokes flow problem, which is also linear. Break-

ing the left-right symmetry is thus required in order to create

a net flow within the channel, in the same way that symmetry

breaking is required to achieve self-propulsion of autophoretic

particles. If the chemical properties of the walls are homo-

geneous, this asymmetry can only arise from geometry and

therefore, purely symmetric profiles such as sinusoidal upper-

wall shapes will yield zero net flux.

In order to analyze the effect of asymmetry, we first investi-

gate the effect of the asymmetry parameter, γ , on the flow rate.

The numerical results are shown in Figure 2. At γ = 0, we re-

cover zero-net flux, as expected. For asymmetric shapes, we

obtain that the flow rate within the channel increases mono-

tonically with γ .

To gain insight into the origin of this flow rate, we illustrate

in Figure 3 the dependence of the solute concentration distri-

bution and streamlines with γ . For a strictly symmetric profile,

γ = 0, a flow is induced in the channel but one with no net flux.

(a) Asymmetry γ = 0

0

0.5

1

1.5

(b) Asymmetry γ = π/4

0

0.5

1

1.5

(c) Asymmetry γ = π/2

0

1

2

3

4

(d) Asymmetry γ = 3π/4

0

5

10

Fig. 3: Solute concentration (colors) and streamlines (lines) within

the channel with increasing asymmetry in the case a/H = 1/2 and

L/H = 2π . The four panels above correspond to the four red dots

in Figure 2. Red (resp. white) streamlines correspond to traversing

(resp. recirculating) flow regions.

Indeed, a vertical solute concentration gradient is created be-

tween the two walls due to the fixed-flux emission of solute

at the upper wall and the constant concentration imposed at

the lower wall, where the solute is consumed. The upper wall

is not horizontal, and regions of the upper wall located the

furthest from the bottom wall are exposed to higher concen-

tration than regions corresponding to the narrowest channel

width. This implies the existence of tangential solute gradi-

ents along the wall and, hence, of a slip velocity that drives a

flow within the channel. Due to the symmetry of the channel,

the flow organizes into two counter-rotating flow cells leading

to zero fluid transport across the channel. For positive activity

and mobility of the upper wall, the flow is directed away from

the active wall (i.e. downward) in the regions where the chan-

nel width is greatest, while it is directed toward the active wall

(i.e. upward) in the narrowest regions (Figure 3a).

When γ 6= 0, asymmetry is introduced in two ways. The

asymmetric upper wall can now be decomposed into a longer

4 | 1–9
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backward facing section and a shorter forward-facing section.

The solute gradient on the former is weaker than on the latter,

leading to a stronger left-to-right slip flow along the forward

facing section. Additionally, wall asymmetry increases con-

finement in the trough along the upper wall leading to higher

solute concentration (the rate of production of solute per unit

surface is fixed). This asymmetry between the wall sections

driving the flow within the channel generates a shape and in-

tensity asymmetry between the two recirculation regions, and

a traversing streamtube appears (marked by dark red stream-

lines in Figure 3). This streamtube corresponds to flow regions

that do not recirculate, but are transported along the channel,

being “pumped” by the phoretic mechanism. This tube fol-

lows a pattern along the channel similar to that of a conveyor

belt driven between the two recirculating regions forced by

the slip flow on the wall. Along the shorter forward-facing

section of the upper wall, it is driven by the stronger slip flow

that dictates the direction of the net flow in this case. The tube

then separates from the wall where the slip velocity changes

sign, and circumnavigates around the counter-rotating flow

cell driven by the longer wall section.

As γ is increased beyond γ ≥ 1, the slope of the shorter

flow-driving wall changes sign, leading to a “folded” geome-

try that promotes large confinement effects on the solute con-

centration distribution (see the difference in color scales in

Figure 3). This, in turn, enhances the phoretic slip and net

flow rate. For strong asymmetry, the traversing streamtube is

mostly rectilinear and away from the active wall, except in a

narrowing region where it circles around the smaller recircula-

tion region and is driven by the phoretic slip within the trough

on the boundary.

This process does not appear to saturate when γ ≫ 1 for

fixed amplitude a. In this limit, the flow domain can be

decomposed into two regions: a complex, thin region cor-

responding to long and thin folds in the wall shape where

very large concentration gradients are established by confine-

ment, and an outer region where a net unidirectional flow is

forced within the channel. Beyond obvious practical consider-

ations regarding the manufacturing of such geometries, the as-

sumptions of the current model would potentially break down

when the asymmetry parameter γ becomes too large, as the

phoretic flow become sufficiently intense for advection to be

non-negligible (Pe 6= 0). Furthermore, when local concentra-

tions become too large, it is likely that the model of fixed-flux

release would be impacted, and more detailed reaction kinet-

ics may be required.

3.2 Effect of the pattern amplitude on the flow rate

The flow within the channel is effectively driven by the upper

wall, while the no-slip condition on the lower inert wall tends

to limit the fluid motion. As a consequence, it is expected

(a) Asymmetry γ = π/4

0 0.2 0.4 0.6 0.8 1
0.000

0.005

0.010

0.015

Amplitude a/H

F
lu

x
Q

(b) Asymmetry γ = π/2

0 0.2 0.4 0.6 0.8 1
0.000

0.050

0.100

Amplitude a/H

F
lu

x
Q

Fig. 4: The net flow rate through the channel, Q, as a function of its

relative amplitude a/H in the case L/H = 2π . (a) Flux for γ = π/4

(as Figure 3b), showing behaviour representative of weak asymmetry

(unfolded) channels. (b) Flux for γ = π/2 (as Figure 3d), showing

distinct behaviour for strong asymmetry (folded) channels.

that when the channel gap in the narrowest region becomes

small (a ≈ H), the net flow rate should be small, as the flow

viscosity will offer maximum resistance there. However, the

corrugation amplitude is an essential element to the pumping

performance of the device as it determines the gradient along

the upper wall between the peak and troughs, and therefore

the intensity of the two recirculating regions driving the flow.

When a ≪ H, it is therefore also expected that the flow rate

will become negligible. This intuition is confirmed by our

numerical results in the case of weak asymmetry (γ ≤ 1, un-

folded geometry, see Figure 4a) for which the net flow rate

within the channel displays a maximum at intermediate am-

plitude and decreases to zero in both limits a ≪ H and a ≈ H.

In this case, the limit a ≪ H corresponds to a flat upper wall.

The behavior of the system is however quite different when

the upper wall is folded (γ ≥ 1, strong asymmetry, see Fig-

ure 4b). In this case, the limit a ≪ H is not limiting to a flat

wall, but to a surface with infinitely thin and almost horizon-

tal folds. Within these folds, confinement creates very large

solute concentrations and concentration gradients. As noted
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Fig. 5: Net flow rate through the channel, Q, as a function of the

channel height H/L for unfolded γ = π/4 and folded γ = π/2 chan-

nels with fixed relative amplitude, a/L = 0.08.

in the previous section, this limit is the singular case of a flat

wall forced periodically by infinitely large slip velocities in

infinitely thin regions. As a consequence, the net flow rate

does not decrease to zero for small amplitude, marking a stark

difference between the folded and unfolded geometries.

3.3 Role of the channel width

We finally turn to the influence of the third geometric char-

acteristic of the channel, namely its mean width-to-length ra-

tio. The limit of small minimum width (a ≈ H) was already

discussed in the previous section and the flow rate within the

channel vanishes in that limit due to the diverging hydrody-

namic resistance of the channel. When H is large compared

to both a and L, the relative concentration distribution along

the top wall is not influence by the location of the passive wall

so the tangential concentration gradients and slip velocity be-

come independent of H. As a result the net flow rate through

the channel varies linearly with the channel height as for a

classical Couette (shear) flow. This is confirmed by our nu-

merical results shown in Figure 5.

4 Long-wavelength prediction

When the local height of the channel is small in comparison to

the typical longitudinal length of the topography, i.e. |h′(x)|≪
1, the problem can be solved within the framework of lubri-

cation (long-wavelength) theory. Defining h(x) = ε f (x) with

f (x) = O(1) and ε= H/L ≪ 1, the method consists in solv-

ing for the concentration and velocity fields as regular series

expansions in ε . On the upper wall, the normal unit vector

pointing into the fluid is now written

n =
−ey +h′ex
√

1+h
′2

=−ey + ε f ′ex +
ε2 f

′2

2
ey −

ε3 f
′3

2
ex +O(ε4). (12)

Defining a rescaled vertical coordinate y = εY , the Laplace

and Stokes flow problems are now given by

1

ε2

∂ 2C

∂Y 2
+

∂ 2C

∂x2
= 0, (13a)

1

ε2

∂ 2u

∂Y 2
+

∂ 2u

∂x2
=

∂ p

∂x
, (13b)

1

ε2

∂ 2v

∂Y 2
+

∂ 2v

∂x2
=

1

ε

∂ p

∂Y
, (13c)

1

ε

∂v

∂Y
+

∂u

∂x
= 0, (13d)

and the boundary conditions at y = ε f (x) become

−1 =−
1

ε

∂C

∂Y
+ ε

(

f ′
∂C

∂x
+

f
′2

2

∂C

∂Y

)

+O(ε3C), (14a)

u =

(

∂C

∂x
+ f ′

∂C

∂Y

)

(

1− ε2 f
′2
)

+O(ε4C), (14b)

v = ε f ′
(

∂C

∂x
+ f ′

∂C

∂Y

)

+O(ε3C). (14c)

These, together with the conditions C = 0 and u = v = 0 at

Y = 0, suggest searching for solutions of the form

C(x,Y ) = εC1(x,Y )+ ε3C3(x,Y )+O(ε5), (15a)

u(x,Y ) = εu1(x,Y )+ ε3u3(x,Y )+O(ε5), (15b)

v(x,Y ) = ε2v2(x,Y )+O(ε4), (15c)

p(x,Y ) = ε−1 p−1(x,Y )+ ε p1(x,Y )+O(ε3). (15d)

The flow rate Q is then given by

Q = ε

∫ f (x)

0
u(x,Y )dY = ε2Q2 + ε4Q4 +O(ε6), (16)

with

Q j =
∫ f

0
u j−1(x,Y )dY. (17)

The flow is incompressible and steady, therefore Q and Q j do

not depend on x.

Inserting Eq. (15a) into Eqs. (13a) and (14a) gives at leading

order

C1(x,Y ) = Y. (18)

Eqs. (13b), (14b) and (15b) then provide at O(ε):

u1(x,Y ) =
p′−1

2
(Y 2 −Y f )+

Y f ′

f
, (19)
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with p−1 the leading-order pressure distribution which is ver-

tically invariant. The function p−1(x) is periodic, therefore

Q2 = 0 and p−1(x) =−6/ f . (20)

We see that in the lubrication limit, a velocity field is present

at O(ε), which takes the form of two recirculating regions,

but does not give rise to any net flow through the channel at

this order. After substitution and application of the continuity

equation, we obtain

u1(x,Y ) = 3

(

f ′

f 2

)

Y 2 −2

(

f ′

f

)

Y, (21a)

v2(x,Y ) =

(

f ′

f

)′

Y 2 −

(

f ′

f 2

)′

Y 3. (21b)

At next order, the Laplace problem, Eqs. (13a) and (14a),

together with Eq. (18), provide

C3(x,Y ) =
Y f

′2

2
· (22)

The horizontal Stokes flow problem now yields,

u3(x,Y ) = 2

[(

f ′

f

)′′(
Y 3 −Y f 2

3

)

−

(

f ′

f 2

)′′(
Y 4 −Y f 3

4

)]

+
p̃′1
2
(Y 2 −Y f )+

(

f f ′ f ′′−
f
′3

2

)

Y

f
, (23)

with p̃1(x) a function of x only. Integrating the previous equa-

tion in Y finally provides the flow rate at O(ε4)

Q4 = 2

[

3 f 5

40

(

f ′

f 2

)′′

−
f 4

12

(

f ′

f

)′′]

−
p̃′1
12

f 3

+

(

f 2 f ′ f ′′

2
−

f f ′3

4

)

. (24)

Using the periodicity of p̃1, Q4 can be computed by dividing

the previous equation by f 3, taking the spatial average in x,

and integration by parts. The result can be rewritten in terms

of the original channel height h(x). At leading order we obtain

that the flow through the channel is given by

Q =
11

30

〈

h
′3/h2

〉

〈1/h3〉
, (25)

where 〈·〉 is the spatial average over a period.

We see two important results: (i) the flow rate is intimately

linked to the distribution of local slope along the wall h′(x),
and (ii) shape asymmetry is essential for the existence of a net

flow. Indeed, slip flow along the active wall arises from the

orientation of the wall with a component along the leading or-

der solute concentration gradient. A non zero h′(x) is therefore

5 10 15 20 25 30

0.6

0.8

1

Slenderness 1/ε

N
u

m
fl

u
x

/L
u

b
fl

u
x

Fig. 6: Ratio between the numerical results and the lubrication (long-

wavelength) theory predictions for γ = π/10 and a = H/3 as a func-

tion of an increasing slenderness, 1/ε .

sufficient to guarantee the existence of a local flow but not nec-

essarily of a net flow through the channel. This separation of

scales is clearly visible in the lubrication expansion: the lead-

ing order flow arises from the local channel geometry (i.e. the

fact that the wall is not flat and orthogonal to the leading or-

der solute gradient). However, at this order, the net flow is

zero because the flows driven by the forward- and backward-

facing walls exactly cancel out. A net flux results from an

imbalance between these local flows which can only be in-

duced by geometric asymmetry. Left-right symmetric profiles

are characterized by an even channel height, h(x) = h(−x).

Consequently the function h
′3/h2 is odd and thus exactly av-

erages to zero, so that Q4 is identically zero (all higher orders

are expected to be zero as well).

The result in Eq. (25) is a weighted algebraic spatial aver-

age of the slope of the active wall. More precisely, the leading

order flow rate through the channel, Eq. (25), is the ratio of

two integrals; the numerator is the mean flow forcing due to

the asymmetry of the channel, while the denominator is the

average hydrodynamic resistance of the channel over a wave-

length.

This leading-order prediction is compared to the full nu-

merical simulations in Figure 6. For a fixed asymmetry pa-

rameter γ and relative amplitude a/H, several simulations are

performed for increasing L/H (note that as H is reduced, a

is reduced in the same amount) and the flow rate through the

channel is shown to converge for large slenderness to the pre-

diction of the lubrication theory.

Note that the lubrication result, Eq. (25), is valid for any ra-

tio H/L ≪ 1, regardless of the relative magnitude of the mean

channel height H and the perturbation amplitude a. In the limit

of small wall roughness (a≪H), the hydrodynamic resistance

(the denominator in Eq. 25) is independent of a at leading or-

der and simply scales as 1/H3, while the phoretic forcing (the

numerator in Eq. 25) scales as a3/H2. As a consequence, Q
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