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Abstract 

Theory and modeling are used to characterize disclination loop-loop interactions 

innematic liquid crystals under capillary confinement with strong homeotropic anchoring. This 

defect process arises when quenching a mesogen in the isotropic phase into the stable nematic 

state. The texture evolution starts with +1/2 disclination loops that merge into a single loop 

through a process that involves collision, pinching and relaxation. The process is characterized 

with a combined Rouse-Frank model that incorporates the tension and bending elasticity of 

disclinations and the rotational viscosity of nematics. The Frank model of disclinations follows 

the Euler elastica model, whose non-periodic solution, known as Poleni’s curve is shown to 

describe locally the loop-loop collision and to shed light on why loop-loop merging results in a 

disclination intersection angle of approximately 60º. Additional Poleni invariants demonstrate 

how tension and bending pinch the two loops into a single +1/2 disclination ring. The Rouse 

model of disclination relaxation yields a Cahn-Hilliard equation whose time constant combines 

confinement, tension/bending stiffness ratio and disclination diffusivity. Based on the three stage 

process predictions, a practical procedure is proposed to find viscoelastic parameters from defect 

geometry and defect dynamics. These finding contribute to the evolving understanding of 

textural transformations in nematic liquid crystals under confinement using the disclination 

elastica methodology. 
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1. Introduction 

Nematic liquid crystals (NLCs) are anisotropic viscoelastic materials that possess long 

range macroscopic orientational order characterized by the unit director vector n=-n[1-

2].Singular and non-singular orientational defects are generated by phase transitions, external 

electromagnetic fields, shear flows, and strong confinement.1-13 Defects in nematic liquid crystals 

include point defects (0D), disclinations lines (1D) and inversion walls (2D).1,14 A disclination 

line is characterized by a quantized charge m which presents the amount of rotation when 

encircling the line and the sign (+/-) associated with the charge denotes the sense of rotation.2 

Since the disclination energy per unit length scales with m
2, ±½ lines are energetically 

preferred.2,9 Disclination evolution in nematic liquid crystals under confinement is a subject of 

continuing interest since frustration emanating from fixed orientation at curved bounding 

surfaces is a common phenomenon in various processes.15-18 Since the structure and dynamics of 

disclinations is a function of local viscoelastic properties,15 controlled defect nucleation and 

evolution in capillaries can serve to assess material moduli in a simple way. Compared to 

traditional methods to estimate viscoelastic properties including the Frederiks transition based on 

reorientation of the axis of nematic director by an applied field and light scattering on thermal 

fluctuations of the director,19 the combined theoretical model and observed texture/defect data is 

simpler and cost effective. In this paper we focus on +1/2 disclination loop-loop collision, 

pinching and relaxation inside capillary tubes using the “disclination elastica” shape equation7-10 

that uses the Frank elastic free energy to define the line tension and line bending moduli and 

analysing Poleni’s curve.20  
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The elastic problem was first posed by mathematician Jordan de Nemore in the thirteen 

century.  In 1638 Galilieo did a mathematical study of elasticity by considering a prismatic beam 

set into wall at one end, and loaded by a weight at the other. Hooke presented his famous law in 

1678 in which the applied force on a fiber is proportional to the change in length. Another elastic 

problem has published by James Bernoulli in 1691 and then Daniel Bernoulli proposes his 

variantional techniques in 1742. In 1744, Leonard Euler completely characterized the family of 

curves known as the elastica and proposed his famous equation for estimating of the energy of a 

curve.21 The equation for the shape of the capillary was investigated by Pierre Simon Laplace in 

1807 and in 1859 Kirchhoff showed the differential equations for elastic in form of curvature as 

a function of arc-length are equivalent to those of the motion of the pendulum.21 Finally 

distortion free energy density equation which describes the increase in the free energy density of 

a liquid crystal caused by distortions and defects from its uniformly aligned configuration was 

published by Frederick Charles Frank in the twentieth century.22 Our new model, nematic-

elastica, has been derived based on the Euler equation and Frank elasticity model.      

Here we briefly describe the controlled setting that gives rise loop-loop interactions that 

forms the basis of texture transformations in the nematic phase of chromonic liquid crystals.11 

Quenching an isotropic solution into a nematic state under strong homeotropic anchoring in a 

micron-range capillary gives rise to a planar radial (PR) texture with an axial +1 singular line. 

Due to the large m, the unstable line decays by a nucleation and growth process involving +1/2 

disclination loops attached to the original +1 line through an isotropic branch point (BP) that 

satisfies Kirchhoff branching law.7 Figure 1 shows two interacting + ½ loops attached to a 

shrinking +1 string inside a capillary of radius R; before collision (I) the loops have a ribbon 
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shape of width 2y 1.33R∞ =  with semicircular ends. At the collision stage (II), the loops merge 

and the two branch points fuse and form an unstable junction. Tension forces from the +1/2 lines 

pinch the junction (III, V), allowing the relaxation and formation of a single +1/2 large loop. The 

collision and coarsening of the larger +1/2 loops eventually lead to the formation of the planar 

polar (PP) texture with two parallel +1/2 lines separated by a distance 2y∞=1.33R (IV).23 

 

Figure 1. Collision and relaxation process of two+1/2 loops that eventually lead to sections with 
well-formed planar polar (PP) textures in a cylindrical capillary of radius R. (I) Pre-collision: 
ribbon shaped loops of vertical height 2y∞=1.33R grow axially with the motion of branch points 
and shrinkage of the +1 linkage string. (II) Collision: Loop-loop merging with the formation of a 
double cusp of angle β and disclination curvature κ. Tension forces pinch the branch point. (III) 
Pinching and vertical line relaxation: curvature-driven motion. (IV) Formation of a single planar 

polar domain with two parallel +1/2 lines separated at 2y 1.33R∞ = . (V) Enlarged view of 

collision, junction formation, director fields, and junction angle β. 

A number of key geometric characteristic of the loop-loop pre-collision stage (I) have 

been reported10 due to the adaptive nature of the tension and bending stiffness of disclinations 

under confinement. According to Frank’s disclination elasticity model the material length scale 

ml  associated with the disclination and the defect-defect separation distance 2 y∞∞∞∞are:7-10 
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  m 55,

c

c

o 1/2

1 1.68R R
,    y 0.66R

a 44R
ln

2r

k

γ
l ∞∞∞∞≡ = = = =≡ = = = =≡ = = = =≡ = = = =

    
    
    

                      (1) 

where a= o,1/2γ /kc is the ratio of tension to bending stiffness and rc is the nano-scale disclination 

core radius. Using the Frank model (eqn.(1)) with
4

c R/r 1 10≈ ×≈ ×≈ ×≈ × and imposing the experimentally 

observed branch angle
o 60ϕ≈≈≈≈ , the numerical solution to the disclination elastica in the pre-

collision stage (Figure 1(I))leads to the following scaling estimates at the branchpoint:7-8 

* * * m
m m

R 10 10 22 1
,  ,  ,  y ,  

3 3R 9 10 y 2
κ κ κ

l
l l ∞∞∞∞

∞∞∞∞

≈ ≈ ⋅ ≈ ⋅ ≈ ≈≈ ≈ ⋅ ≈ ⋅ ≈ ≈≈ ≈ ⋅ ≈ ⋅ ≈ ≈≈ ≈ ⋅ ≈ ⋅ ≈ ≈
                                           

(2) 

where κ* is the disclination curvature at the two moving branch points (Fig.1(I)),showing that 

line stiffness responds to the confinement to yield
* o 3.33/ R,  60≈ ≈≈ ≈≈ ≈≈ ≈κ β , revealing a novel 

interaction between disclination line tension o,1/2γ and bending ck and their adaptive nature.  

The key issues addressed in this paper follow from a closer consideration of Figure 1.The 

branch points’ collision (II) gives rise to a junction of four disclinations (II), locally equivalent to 

an intersection of two lines, characterized by a branch angle β and by the curvature κ (Fig.1(V)). 

Assuming geometric compatibility between (I,II), we would expect the lines’ curvature 

atcollision (II) to reflect a balance of tension and bending forces acting on the lines while the 

vertical pinching of the junction should reflect how tension initiates the relaxation (III). Finally, 

the vertical relaxation (III) should be a curve shortening process driven by both tension and 

bending forces.  
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The dynamics of disclination line and relaxation stage (III) have been investigated 

previously. Figure 2 shows experimental data for a confined Sunset Set Yellow11 solution. 

Compared to reported data for a bulk of nematic liquid crystal mixture E724, it can be seen the 

relaxation time is a function of materials properties and the geometry and it can vary from few 

seconds to few minutes. Also anchoring in a capillary affects the disclination shape. There are 

few theoretical studies of this phenomenon24-26 which focus only on the tension of a disclination 

line. As we mentioned before, the bending energy plays an important role in nematic disclination 

dynamics and affects the relaxation time which is a key parameter in the design and operation of 

sensors and actuators. As we will show below, the disclination relaxation decays linearly (for 

tension only regime) and exponentially in time (by considering the bending effect).  

Figure 2. Relaxation of disclination lines in a confined   SSY chromonic liquid crystal solution. 
The effect of wall surfaces leads to forming two straight +1/2 disclination lines (Adapted from 
Ref. 11).   

  The specific objectives of this paper are: (i) to use the disclination elastica model to 

describe the novel defect physics of loop-loop merging, junction point pinching, and relaxation 

under tension and bending forces of wide interest to defect structure and dynamics under 

confinement, and (ii) derive specific relations between the relaxing line geometry and nematic 

viscoelastic moduli. This paper builds on our previous work on nematic liquid crystals under 

capillary confinement.7-10 Understanding how calibration of bending and tension controls 
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disclination geometry and kinematics will be useful to design new structures in LCs and 

disclination-based rheo-physics can be a practical characterization tool. 

The organization of this paper is as follows. Section 2 presents the disclination geometry, 

the disclination elastica model, the method used to calculate the corresponding disclination space 

curves, and an analytical solution of the loop-loop collision/merging stage. Section 3 presents the 

collision, pinching, and relaxation stages and the procedure to estimate viscoelastic properties of 

nematics from defect relaxation that includes bending and tension elasticity. Section 4 presents 

the conclusions.  

2. Disclination Elastica Model 

2.1. Disclination Curves Geometry and Kinematics 

Figure 3 shows the (x,y) coordinate system and geometry of a +1/2 disclination curves 

consisting of two planar m=+1/2 disclination curve evaluating to form tow well-formed m=+1/2 

disclination lines. The collision point located at (x,y)=(0,0).  
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Figure 3. Schematic of the coordinate system and geometry of two m=+ ½ lines evaluating from 
the collision point at x=0,y=0. The x-axis is along the capillary axis. The angle between the x-
axis and the tangent vector t is φ, N is the unit normal, and s the arc-length. The collision point 
angle, is 60°. y∞ is the final defect distance23 which is the half-separation distance between the 
two + ½ lines. 

 

The unit tangent t and the unit normal N to the filament are given by:7-9 

2

2

(s, t) (s, t) (s, t)
(s, t)     ;    κ (s, t)

s s s

r t r
t N

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
= ≡ == ≡ == ≡ == ≡ =

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
      (3a,b) 

where / stκ = ∂ ∂κ = ∂ ∂κ = ∂ ∂κ = ∂ ∂  is the curvature, r is the position vector and s the arc length, respectively. t is a 

unit vector which is expressed with the tangent angle φ(s): (s) (cos (s), sin (s))φ φt = −= −= −= − . The non-

material line velocity u is: 

=  U(s, t) (s, t)  + W (s, t) (s, t)u t N                                                                    (4) 

where Ut is the tangential velocity, and WNis the normal velocity. The evolution of the 

disclination curvature κ(s,t) and the metric g are:27 
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2
2

2

W g U
W U ,    g W

t s s t s

κ κ
κ κ

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂    = + + = −= + + = −= + + = −= + + = −    ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂    
               (5a,b) 

For a disclination line the only relevant velocity is W (U=0), the tangential force balance 

equation is satisfied for a constant line tension (see Appendix) and the metric obeys 

g / t g Wκ∂ ∂ = −∂ ∂ = −∂ ∂ = −∂ ∂ = −  (line shrinkage). 

2.2. Disclination Shape Equation 

In this section, largely based on references [7-10] we derive the disclination shape 

equation by formulating the force balance equation due to internal and external stresses on the 

line. Internal stresses include line tension and line bending forces are derived using Frank 

elasticity. The shape equation is then used to formulate the disclination shape evolution. 

The Frank gradient elasticity density f for uniaxial NLCs, using the one constant 

approximation is:2 

(((( )))) (((( ))))(((( ))))2 2K
f

2
n n= ∇ ⋅ + ∇ ×= ∇ ⋅ + ∇ ×= ∇ ⋅ + ∇ ×= ∇ ⋅ + ∇ ×                                                                                                         (6) 

where K=K11=K33≈10 pN. It has been approved experimentally for nematic phase of a self-

assembled lyotropic chromonic liquid crystal the elastic moduli of splay (K11) and bend (K33) are 

in the order of 10 pN while the twist modulus (K22) is much smaller.28 Saddle-splay K24

(((( )))) (((( )))). n. n .n n    ∇ ∇ − ∇∇ ∇ − ∇∇ ∇ − ∇∇ ∇ − ∇      is not considered because under assumptions and approximations of this 

first order planar ( no torsion) model it plays no role. The assumptions and approximations are: 

1. Disclinations are of the singular core Frank type, with the director locally normal to the 

line axis, exhibiting splay and bend deformations and no twist and no escape in the third 

dimension are considered (see Figure 3) ; 
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2. The core energy is neglected. The saddle-splay energy of + disclinations decreases the 

core tension but it is neglected as it is usually less than 10% of the retained director-bases 

tension. Finally the topological invariant associated with saddle-splay is conserved in a 

defect branching process and hence whether we have +1 of 2 +1/2 lines this line core 

effect will remain unaffected. . 

3. Higher order curvature terms and curvature gradients are neglected.    

In terms of textures, previous results are consistent with our assumptions.  For PR configuration, 

a line singularity exists along the axis and K24 doesn’t contribute to the director free energy.29  

For PP, the term is zero, so it is irrelevant for this configuration too. In general, for the case of 

strong anchoring, K24 doesn’t have a major portion in equilibrium bulk energy but when escaped 

radial (ER) configuration becomes stable under weak anchoring, K24 should be considered.29,30 

For Sunset Yellow FCF chromonic liquid crystal, large value of K24 leads to ER configuration.30    

Minimizing the total free energy results in the Euler-Lagrange equation:31 2K λn n∇ =∇ =∇ =∇ = ; K 

is the Frank elastic constant, and λ is the Lagrange multiplier that takes into account the unit 

length restriction 1n n⋅ =⋅ =⋅ =⋅ = . By integrating eqn. (2) in a cylinder of radius R, one obtains the line 

tension ( )o PPγ  of a single straight m=+1/2 disclination in the PP texture:32 

( )
2

2
1/2 ,1/2 ,1/2;     ln

2 2o o c c o

c

RK
PP r

r y

π
γ γ γ πσ γ

∞

  
= = + =      

                   (7) 

where Rc is the capillary radius, rc is the core radius, σc is the core energy density that is usually 

assumed to be negligible in comparison to the other terms. The total line energy γ1/2 

(energy/length) of a curved +1/2 disclination is given by the sum of the core energy
2

c crπσ , bare 

line tension γ0,1/2,and the bending 
2

ck / 2κ contributions:7 
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2
2 2c c

1/2 c c 0,1/2 c

k KR
r ;  k

2 2

π
γ = πσ + γ + κ =

                                          
(8a,b) 

where kc is the bending modulus (energy × length) and only the leading order bending term is 

retained. The force balance equation represents the Rouse model, and it is written by the sum of 

line force .T
l

∇∇∇∇ and the surrounding medium viscous force: 

1 Wγ N .T
l

= ∇= ∇= ∇= ∇                                                                                             

(9) 

where T is the + ½ disclination line elastic stress tensor, (((( )))) (((( )))) / st
l

∇ • = ∂ • ∂∇ • = ∂ • ∂∇ • = ∂ • ∂∇ • = ∂ • ∂  is the line gradient 

operator, γ1 is the rotational viscosity. To find the line elastic stress tensor T, we perform a 

variation of the total line elastic free energy due to tangential and normal displacements and 

find:33 ( )1/ 2

M
 T B ; T : ; B

s

∂
= + = γ − = −

∂
T tt tN M b

                                           

(10) 

where 1/2γ tt  is the thermodynamic tension stress analogous to 3D pressure. The elastic line stress 

T has a mechanical contributions ( :−M b ), since there can be no bending without tension; here 

b is the line curvature tensor given by = κb tt . The last term in equation (6) are the bending 

stresses that arise under curvature gradients ( / s 0∂κ ∂ ≠ ). The scalar moment M, line moment 

tensor M, and line elastic stress tensor T  are:  

cM k= κ, M =M tt  ; 2c
o,1/2 c

k
k

2 s

∂κ = γ − κ −  ∂ 
T tt tN              (11a,b,c) 

From eqns. (5) and (11) we find the governing equations under the U=0 gauge: 

(((( ))))
2

2 2c
1 o c ss 2

k W g
W= k ,   W ,    g W

2 t s t

∂κ ∂ ∂∂κ ∂ ∂∂κ ∂ ∂∂κ ∂ ∂    
γ γ − κ κ − κ = κ + = −κγ γ − κ κ − κ = κ + = −κγ γ − κ κ − κ = κ + = −κγ γ − κ κ − κ = κ + = −κ     ∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂    

           (12a,b,c) 
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 We use eqns.(11) for the collision, pinching and relaxation processes. The standard 

numerical integration of eqn.(11a) for W=0 , parametric data, boundary conditions and how to 

compute the disclination space curves y(x) from the curvature k(s) are found in [7]. 

2.2 Poleni’s Curve 

The Poleni curve is a single loop solution to Euler’s elastic, that has been used to describe 

among other things the curvature of a steel saw blade under tension and liquid meniscus.34At the 

collision of two branch points (Figure II,V), the disclination curve can be obtained from the 

steady form of equation (10a): 

3

ss a 0
2

κ
κ κ+ − =+ − =+ − =+ − =

                                                                    
(13) 

 Here we introduce a closed form solution to eqn.(13) and the corresponding space curve 

(y(s), x(s))that fits the loop collision stage , first introduced in 1729 by Poleni:20, 34 

( ) ( )
( )

( )

 

2
( ) tanh

2
( ) sin sech 22cosh ( )

cosh

 = −


= → = →
=



space curve

x s s as
aa

s as
as y s

a as

ϕ
κ

                  

(14) 

where (0) 0,  x (0) 1, (0) 2 / ,  y (0) 0s sx y a= = = =  and ϕ  is the tangent angle; see Figure 2. 

 This continuous curve contains an intersection at ( )* 2 tanh * /S a S a=  , which joins a 

cusp (lower region) with a loop (upper region). The bottom part of figure 4 shows a typical fit of 

Poleni's curve to the numerical solution to the elastic in the precollision stage, where each branch 

of each loop is computed by solving eqn.(8) with prescribed branch angle ϕ and 0.665∞ =y R
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.Figure 4(b) shows the curvature κ(s) pulse-like profile surrounding the cusp for micron range ml

.The increasing curvature introduces bending energy that resists the pulling tension and gives rise 

to this single loop solution to the elastica. 

Figure 4. (a) Geometry and coordinates of Poleni's curve; (b) Curvature as a function of arc-
length; from eqn.(14). 

The predicted quantities for disclinations under confinement extracted from Poleni's 

elastica are: the aperture angle β, the disclination curvature at the intersection (((( ))))S*κ , the 

asymptote y∞∞∞∞
and their dependence on the material length scale  ml and on the capillary 

confinement intensity R. 

3. Results and Discussion 

3.1. Collision Stage  

 In this section we describe the geometry of the unstable junction that leads to pinching 

and in the following section we use this geometry to calculate the forces that lead to the break-

up. Superposing a Poleni curve and its reflection creates a double loop curve (Figure 5), where 
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each Poleni curve satisfies the elastica eqn.(11).We then attach the two Poleni curves ( 

* *s S  , s S≤− ≥ ) and remove the loops ( 
* *S< s S− < ), duplicating the unstable state at collision: 

 

Figure 5. Superposing a Poleni curve and its reflection creates a double loop curve (superposed 
elasticas). Cutting the two loops gives the unstable junction that eventually pinches and allows a 
single loop formation. The junction angle β reflects the bending and tension forces. 

 

The real junction will connect the loops with a nano-scale disclination point formed by 

the collision of the two branch points. We note that here we are only concerned with the 

geometry and stresses of the unconnected (superposed) Poleni curves. 

From eqn.(13), x(S*)=0, we find the invariant a S*=S*/ ml : 

( )*/ 2tanh */ 1.915m mS S= =l l
                                                                                              (15)

 

From the tangent angle ϕ in eqn.(13) ( )( )( )12 sin sech /−= l msϕ  and the S*/ ml invariant, 

we find the invariant junction angle β : 

( )( )( )1 04 sin sech * / 56.5−= − =mSβ π l
                                                                                (16)
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This unique angle is essentially equal to that computed previously (see ref.(7)) based for 

the pre-collision stage. Using Poleni's curvature from eqn.(14) and the invariant S*/ ml  we find 

the maximum curvature at the junction: 

( )
2 0.58

( *)
cosh */

= =
m m m

S
S

κ
l l l

                                (17)
 

For 
056.5=β , pre-collision computations give ( *) 0.0164=Sκ . The junction height 

( *) ∞≡y S y  from the zero curvature asymptote found from eqn.(14) and the invariant S*/ ml is: 

( *) my S y∞≡ =l
                                   (18) 

Combining eqns.(16 and 17) we find another invariant  

( *) 0.58S yκ ∞ =                                    (19) 

Table I summarizes the numerical pre-collision results extracted from [7-10] and the 

Polenis’ elastic at collision. In the former we imposed 
0=60 ,y 0.66Rϕ ∞∞∞∞ ==== while in the later these 

are results from the model.  The table shows that Poleni’s analytical predictions are in very good 

agreement with pre-collision numerical calculations, especially in the intersection region as 

shown in Fig.(3a), demonstrating that the initial conditions (Poleni curve) is consistent with the 

numerical solutions of the pre-collision stage. 

 

Table I. Geometry and material length scales estimates for numerical pre-collision (numerical [7-10]) and 
collision (Poleni curve predictions from eqns.(14-19)). 

 Stage Curvature Angle  Material/geometry 

length scale ratio 

Defect 

separation/geom. 

Material/def. 

separation 

length scale 
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length scale ratio  ratio 

Pre-collision 

(numerical) 

3.33
*

R
κ ====  

o
bp 60ϕ ====  

*
m 1.1κl ⋅ ≈⋅ ≈⋅ ≈⋅ ≈  

*y 2.2κ∞∞∞∞ ⋅ ≈⋅ ≈⋅ ≈⋅ ≈  my / 2l∞∞∞∞ ≈≈≈≈  

Collision 

(Poleni) 

(S*) 1.64 / Rκ ====  o(S*) 56.6β ====  

 

m (S*) 0.58κl ⋅ =⋅ =⋅ =⋅ =  ( *) 1.1∞ =S yκ  my / 2l∞∞∞∞ ≈≈≈≈  

 

Next we briefly discuss the energies and stresses associated with the cusp that remains 

after removing the loop.  After removing the loop, the scaled scalar tension and bending stresses 

(eqns.(11)) acting on each disclination piece at s=S* are: 

( )

( )

22 2
m

o,1/2

2 2
2 m

o,1/2 m m 2 2
m

0.58
T / 1 1 0.83

2 2

d 4
B/ tanh as 1 0.55

ds 2

 κ
γ = − = − = 

 

κκ
γ = − = − κ = − =

κ

l

l
l l

l
                  (20)

 

and
2 2
mT/ B f( ) 1.50= κ =l .  Removing these stress loads at the junction will lead to the pinching 

instability. 

The dimensionless elastic energy density 0,1/2e/ γ  of the disclination cusp is a shifted 

hyperbolic secant square: 

( )2

0,1/2

e
1 2sech as= +

γ
                               (21a,b) 

which is a single hump curve with maximum at s=0.At the junction (s=S*) bending is 1/3 times 

tension and then it decreases towards zero. Next we delete the loop ( 
* *S s S− ≤ ≤ ) and retain the 
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cusp of a Poleni curve. Figure 6 shows the dimensionless tension and bending elasticity (

( )22 sech as  ) as function of “x”, showing the bending energy cusp. 

 

Figure 6. Dimensionless bending energy density as a function of distance x. 

The net energy difference Poleni PPE E− between the two Poleni’s curves and the planar 

polar texture that drives the relaxation is: 

( )2L L

Poleni PP 0,1/2

0 0

sech as(x)1
E E 4 dx L 4 dx

cos cos

     − = γ − +   ϕ ϕ    
∫ ∫                     (22) 

Where L is of the order of the capillary radius R. The tension driving force is due to line length 

decrease and the bending driving force is due to the curvature. 

3.2. Pinching 
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The pinching process (Fig.7(b)) that follows collision of the two branch points can be 

viewed as a form of frustrated T1 topological process found in foams, networks, and cellular 

patterns.35 In the pre-collision stage the +1 disclination line to joins +1/2 loops shrinks to a 

isotropic junction point, but instead of stretching as T1 process, it pinches creating a larger +1/2 

loop; see Fig.(1).  

Figure 7.(a) Neighbor exchange (T1) process (Adapted from ref. 36).  (b)The pinching process. 
The dotted lines represent the 90o angle between the tension T and bending B forces.  A net 
vertical force due to tension (T) and bending (B) overcomes a resistance associated with the 
junction here represented by a +1 line. 

We perform a force balance equation around the branch point.  The control volume is a   

short +1 disclination cylinder of length 2rc with semi-circular ends, and diameter 2rc; here rc is 

the characteristic nanoscale radius of a disclination. The cylinder axis is along the y-axis.  

Halving the control volume and considering the bottom half, the net acting force F is: 

2
i i

y 1 1/2
i 1

ˆ :F δ T t T+ ++ ++ ++ +
====

= ⋅ += ⋅ += ⋅ += ⋅ +∑∑∑∑              (23) 
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where yδ̂  is the unit vector in the vertical y-direction, 1T++++  is the stress in the +1 junction, i
t  is 

the ith unit tangent vector to the +1/2 lines, and {{{{ }}}}i
1/2; i 1,2T++++ ==== are the line stress tensor of the 

+1/2 lines. Using eqn. (9c) these stress tensors are: 

i i i i i i
y 1 o,1 y y 1/2

c

Rˆ ˆ ˆKln ;  T B ;i 1,2
r+

 
⋅ = γ ≡ π ⋅ = + = 

 
δ T δ δ t T t N                                         (24) 

where we assumed a pure tension on the +1 line , and where 
i iT ,B  are given in eqn.(20); the 

standard expression for  o,1γ  is found in [2].  Projecting eqn. (23) along the vertical (y-direction) 

we find the net downward force Fy at the junction: 

(((( ))))i i
y o,1 y y o,1 o,1 o,1/2

i i
y y

ˆ ˆF 2B 2T 3 B T 3.6 50K

ˆ ˆ 3 / 3

γ γ γ γN δ t δ

N δ t δ

= − ⋅ − ⋅ = − + = − ≈= − ⋅ − ⋅ = − + = − ≈= − ⋅ − ⋅ = − + = − ≈= − ⋅ − ⋅ = − + = − ≈

⋅ = ⋅ =⋅ = ⋅ =⋅ = ⋅ =⋅ = ⋅ =
                              (25) 

where we used Poleni’s curve predictions (eqns.(14)). Using R=100 µm and rc=10nm, we find a 

net downward force of the order of Fy≈-50K, where K is the Frank elastic constant. The 

downward force from the bottom section and the corresponding upward force from the top 

section pinch the junction and complete the single loop formation. 

3.3 Relaxation  

We analyze the late stage regime of the relaxation given by the linearized version 

equation (12) obtained by neglecting 
3

ck κ / 2 and assuming a constant metric g (eqn.(5)): 

2

1 o c xx 2

W
W= k ,   

t x

∂κ ∂∂κ ∂∂κ ∂∂κ ∂
γ γ κ− κ =γ γ κ− κ =γ γ κ− κ =γ γ κ− κ =

∂ ∂∂ ∂∂ ∂∂ ∂
        (26a,b) 
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Assuming that in a (x, y) frame, the disclination’s shape is described by a curve y=H(x,t), and 

xH H/ x≡∂ ∂  is sufficiently small, then the normal velocity W and curvature κ  are: 

xxW= H/ t, κ H∂ ∂ =  and the disclination shape equation (26a) becomes: 

2 4

2 4

H H H
=  - δ

t x x

∂ ∂ ∂
∂ ∂ ∂l

D
                       

(27) 

where o,1/2 1=γ /γ
l

D is the line diffusivity and c 1δ= k / γ  .  For m=+ ½ disclinations, the tension o,1/2γ  

and bending ck  moduli are given in equations (6b and 6c). The solution of the relaxing shape 

around the collision point (x=0) is 

( ) ( ) / 2 4 21
H H H cos ,    D + . −

∞ ∞= + − =
l

l
t

mR e xτ λ λ λ
τ                                                              

(28) 

where τ is the disclination relaxation time.  It can be seen by ignoring the bending term, the 

relaxation decays linearly in time as found previously.22 Assuming a decay vector / 4= Rλ π , 

where R is the characteristic geometric scale (capillary radius R), the relaxation rate τ is given by 

the line diffusion term 
2 /ex D

l
l  times the length scale factor ( )( )2

1/ 1 /+ l lm ex : 

122

1ex m

exD
τ

−
  
 = +    l

l l

l
                                                                     (29) 

where 4 /ex R π=l is the external length scale.  

Based on figures 3 and 4,   we see the maximum in y(x) curve at the center where the collision 

happens.  Then the curvature decreases to zero at the point of inflection. Over time, because the 
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disclination curve relaxes to a straight line as a results of bending stiffness, the maximum 

curvature goes to zero.   

3.4 Viscoelastic Properties 

The loop-loop coalescence model can be used to approximate viscoelastic properties such 

as rotational diffusivity, the average Frank elastic constant.  Using the Frank disclination model     

( /3m R=l ) and eqn.(29) we find : 

2

5
≈

l

R

D
τ                (30) 

Hence measuring τ gives the line diffusivity o,1/2 1D =γ /γ
l and the elastic bending/viscous 

rotation ratio: 
2
m c 1D =k /γ

l
l .Using the Frank dislination model (eqn.(7) for o,1/2γ ) we then find the 

rotational viscosity 1 o,1/2γ =γ /D
l . This value can be tested by using different capillary radii to 

show that it is essentially independent of R.  

As an initial application of the property determination procedure. Using experimental 

data (Ref. 11) for lex=100µm, the measured relaxation time is τ= 72s, and from Frank’s model 

with K=10 pN, lm≈30 µm. Using eqn.(29) we find 
11 2

0 1D =γ /γ 2.77 10 /−≈ ×
l

m s and

2 20 4
1 in / D 3.5 10 /ck m sγ −= ≈ ×

l
l . With these values the rotational viscosity is

1 0,1/2γ =γ /D 3.91 .=
l

Pas , which compares well with other reported values for the same liquid 

crystal.26, 37 

3.5. Model extension  
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Here we briefly discuss a few significant possible extensions and generalizations of  the 

planar elastica model and its applications in the absence of external fields. 

(i) Capillaries with complex cross-sections: the confinement cross-sectional geometry 

affects the defect formation. For example, nematics confined in elliptic cylinders with 

homeotropic anchoring can show escaped-radial configuration for micro-meter size;38 in this 

case the nematic elastica should include the neglected saddle-splay.  The confinement cross-

section can be designed to incorporate stable +1 defects by immersing   micro fibers in a 

confined nematic 39; in this case the PP-PR transformation is frustrated and branch points remain 

static.   

(ii) Polygonal capillaries: under strong homeotropic anchoring the strength mN of bulk 

defects in nematics inside polygonal capillaries of N sides obey Zimmer’s rule 40,41: 

 
N

N 2
m

2

−−−−
====             (31) 

with the defect core type following an odd-even rule: odd N yield singular and even N yield non-

singular cores. For odd polygons (N=5,7…) possible branching phenomena that obey Kirchhoff 

defect branching7,42, and Zimmer’s rules are:    

(((( )))) (((( ))))
N 2 1

N 2
2 2

−−−−     
+ → − ++ → − ++ → − ++ → − +    

    
                       (32) 

For even polygons the cores are non-singular and saddle splay needs to be included. 

(iii) Non-planar elastica: non-planar disclinations are described by curvature and torsion and 

hence Frank anisotropies and saddle-splay need to be retained.  Disclination double helices or 
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disclination DNA are observed in chiral nematics.43 Single low tension helical disclination 

around a high tension straight disclination are observed also in chiral nematics.44    

4. Conclusions 

 This paper presents theory, scaling and analysis of disclination loop-loop collision and 

relaxationthat appears in the transformation of a nematic liquid crystal planar radial texture with 

one axial +1 singular disclination into a planar polar texture with two +1/2 singular disclinations 

in a cylindrical capillary whose surfaces impose strong homeotropic anchoring. The defect 

process has three stages: (i) loop-loop collision, (ii) pinching, and (iii) time relaxation into a 

larger single loop, described by a Rouse-Frank model. The geometry of loop defects are 

simulated with the disclination elastica model based on Frank elasticity and the dynamics with a 

Rouse model. In this model disclination have both tension and bending stiffness whose 

magnitude depends on the degree of confinement or capillary radius R. The disclination elastic is 

identical to the Euler elastic. The disclination shapes involved in the loop-loop merging are well 

described by the Poleni curve which is a non-periodic single-loop solution to Euler’s elastic. 

Loop-loop merging give rise to a two line intersection whose angle is close to 60o which is an 

invariant of the Poleni curve. The curvature at the intersection is also expressed as a Poleni 

invariant. These results for loop-loop collision are the used to demonstrate that pinching the two 

line intersection is due to tension overcoming bending. The excess energy of the curved lines 

with respect to the planar polar texture drives the relaxation here described by a linear Rouse 

model, yielding a close-from expression of the longest relaxation time in terms of the 

disclination line diffusivity, the confinement, and the ratio of tension-to-bending stiffness. The 

combined Rouse-Frank model is used to formulate a procedure to predict the average Frank 

elasticity and the rotational viscosity of nematic liquid crystals. The nematic elastica model used 
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to solve texture transformations under confinement can in the future be extended to non-planar 

disclinations where disclination torsion arises. The modeling predictions from the nematic 

elastica model enhance the current fundamental understanding of defect physics of liquid 

crystals. 
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Appendix    

Here we show that the form of stress tensor (eqn.(11c)) is consistent with the kinematics in 

eqn.(9).  The motion of a defect due to changes in Q is: 

 
t

Q
V Q

∂∂∂∂
= ⋅ ∇= ⋅ ∇= ⋅ ∇= ⋅ ∇

∂∂∂∂
          (A1) 

where Q is the symmetric traceless tensor order parameter and the V is the velocity vector. At 

the defect core axis, the shape of Q+I/3  is that of an uniaxial oblate ellipsoid [13, 18]; I is the 

unit tensor.  The unique axis of Q is t and on the plane perpendicular to t we have circular 

symmetry and the eigenvalues of Q only vary in radial direction perpendicular to t. Hence 

W
t z

Q Q
V Q

∂ ∂∂ ∂∂ ∂∂ ∂
= ⋅ ∇ == ⋅ ∇ == ⋅ ∇ == ⋅ ∇ =

∂ ∂∂ ∂∂ ∂∂ ∂
                                             (A2) 

where z is a coordinate along N and W is the normal speed. Equation (A2) shows that / tQ∂ ∂∂ ∂∂ ∂∂ ∂  

depends only on the normal velocity of the disclination line. This fact is compatible with our 

stress tensor. We rewrite equation (8) as: 

2c
o c

k
k

2 s

∂κ = γ − κ −  ∂ 
T tt tN           (A3) 
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The  stress line gradient is: 

s

T
T t

l

∂∂∂∂
∇ ⋅ = ⋅∇ ⋅ = ⋅∇ ⋅ = ⋅∇ ⋅ = ⋅

∂∂∂∂
                                                                  (A4) 

where l
∇∇∇∇  is the line gradient.  Using (A3) we find the vector line force: 

( ) 2 2c c
c s o o

c ss c c

k k
k

s 2 2

k k k
s s

∂    = − κκ + γ − κ κ + γ − κ κ −   ∂    

∂κ ∂κ
− κ − κ + κ

∂ ∂

T
tt Nt tN

tN NN tt

                                          (A5) 

Replacing eq. (A5) in (A4) gives:  

2 2c c
c o o

c ss c c

2 2c c
c c o c ss o c ss

k k
k

s s 2 2

k k k
s s

k k
k k k k

s s 2 2

T
T t t tt t Nt t tN

t tN t NN t tt

t N N

l

∂ ∂κ∂ ∂κ∂ ∂κ∂ ∂κ                 ∇ ⋅ = ⋅ = − κ ⋅ + γ − κ κ ⋅ + γ − κ κ ⋅∇ ⋅ = ⋅ = − κ ⋅ + γ − κ κ ⋅ + γ − κ κ ⋅∇ ⋅ = ⋅ = − κ ⋅ + γ − κ κ ⋅ + γ − κ κ ⋅∇ ⋅ = ⋅ = − κ ⋅ + γ − κ κ ⋅ + γ − κ κ ⋅                 ∂ ∂∂ ∂∂ ∂∂ ∂                 

∂κ ∂κ∂κ ∂κ∂κ ∂κ∂κ ∂κ
− κ ⋅ − κ ⋅ + κ ⋅ =− κ ⋅ − κ ⋅ + κ ⋅ =− κ ⋅ − κ ⋅ + κ ⋅ =− κ ⋅ − κ ⋅ + κ ⋅ =

∂ ∂∂ ∂∂ ∂∂ ∂

             ∂κ ∂κ  ∂κ ∂κ  ∂κ ∂κ  ∂κ ∂κ                  
= − κ + κ + γ − κ κ − κ = γ − κ κ − κ= − κ + κ + γ − κ κ − κ = γ − κ κ − κ= − κ + κ + γ − κ κ − κ = γ − κ κ − κ= − κ + κ + γ − κ κ − κ = γ − κ κ − κ                                 ∂ ∂∂ ∂∂ ∂∂ ∂                                  

  (A6) 

The general Rouse model reads [23]: 

1 1  U(s,t) (s,t)  +  W(s,t) (s,t)T t N
l

∇ ⋅ = γ γ∇ ⋅ = γ γ∇ ⋅ = γ γ∇ ⋅ = γ γ        (A7) 

where γ1 is rotational viscosity. On the tangential and normal directions we have 

1 1:  U; :  WT tt T NN
l l

∇ ⋅ = γ ∇ ⋅ = γ∇ ⋅ = γ ∇ ⋅ = γ∇ ⋅ = γ ∇ ⋅ = γ∇ ⋅ = γ ∇ ⋅ = γ                (A8 a,b) 

From equation (A6): 
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c c: k k 0
s s s

∂ ∂κ ∂κ   = − κ + κ ≡   ∂ ∂ ∂   

T
tt         (A9) 

and 

( ) 1  U=0∇ ⋅ ⋅ = γT t
l l

          (A10) 

which is consistent with (A2). 
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