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We report theoretical as well as numerical investigations of deformable nanocarriers (NCs) un-

der physiologically relevant flow conditions. Specifically, to model the deformable lysozyme-

www.rsc.org/journalname core/dextran-shell crosslinked polymer polymer-based NC with internal nanostructure and sub-
ject to external hydrodynamic shear, we have introduced a coarse-grained model for the NC and
have adopted a Brownian dynamics framework, which incorporates hydrodynamic interactions, in
order to describe the static and dynamic properties of the NC. In order to represent the fluidity
of the polymer network in the dextran brush-like corona, we coarse-grain the structure of the NC
based on the hypothesis that Brownian motion, polymer melt reptations, and crosslinking density
dominate their structure and dynamics. In our model, we specify a crosslinking density and em-
ploy the simulated annealing protocol to mimic the experimental synthesis steps in order to obtain
the appropriate internal structure of the core-shell polymer. We then compute the equilibrium as
well as steady shear rheological properties as functions of the Péclet number and the crosslinking
density, in presence of hydrodynamic interactions. We find that with increasing crosslinking, the
stiffness of the nanocarrier increases, the radius of gyration decreases, and consequently the
self-diffusivity increases. The nanocarrier under shear deforms and orients along the direction of
the applied shear and we find that the orientation and deformation under shear are dependent on
shear rate and the crosslinking density. We compare various dynamic properties of the NC as a
function of the shear force, such as orientation, deformation, intrinsic stresses etc., with previously
reported computational and experimental results of other model systems. The computational ap-
proach described here serves as a powerful tool for the rational design of NCs by taking both the
physiological as well as the hydrodynamic environments into consideration. Development of such
models is essential in order to gain useful insights that may be translated into the optimal design
of NCs for diagnostic as well as targeted drug delivery applications.
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1 Introduction

a definite shape and size which make it relatively easier to ratio-

Targeting nanocarriers (NCs) loaded with drugs to specific patho- nally account for physical effects such as hydrodynamic interac-
logical tissues in the body promises to improve the treatment and tions, it is constraining because when functionalized, the target-
the early/correct detection of many diseases. Optimal targeting  ing molecules (antibodies) are rigidly anchored providing very lit-
requires for the tuning of the physicochemical properties of the (e compliance to facilitate multivalent binding interactions. Soft
NCs in order to achieve the required pharmacodynamics'™. In NG, in contrast, deform under the application of external stress
general, NCs can be classified into non-deformable (or hard) and or when approaching a confining boundary, which can offer a
deformable (or soft) categories. Non-deformable NCs are often larger area for adhesion (leading to an increased propensity for
made of a dense polymer matrix which undergoes erosion or multivalent binding). However, deformable NCs are also typi-
swelling to release the drug. While the hardness gives the NC fied by an enhancement in drug loss under high shear condi-

tions in the vasculature, when the NC is away from the target
site. Moreover, the irregular geometry of a deformed NC makes
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phia, PA.
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but the deformability itself can impose entropic penalties which
can severely compromise the propensity for multivalent binding
interactions.
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The physical properties of the NC also directly impact their
physiological performance. It has been shown that polystyrene-
based (hard) NCs show a strong propensity for phagocytosis®,
which makes them amenable for easy capture by macrophages®.
Altering the shape of these NCs can enhance their adhesion to
the endothelium©, however biocompatibility is usually a concern
with such NC constructs. Micelles and related amphiphilic assem-
blies represent the smallest of the deformable NC constructs, but
are typically faced with low drug encapsulation and low storage
stability7-8. Liposomes are soft NCs, which offer a better control
of size, and better drug encapsulation compared to their micel-
lar counter-parts, but are typified by short shelf lives and high
degrees of drug leakage?. In the deformable NC category, poly-
mersomes offer a nice middle ground as they are mechanically ro-
bust and stable, and can fuse with cellular membranes to transfer
cargo to cells19; however, in terms of biocompatibility, they leave
more to be desired, as they can trigger pseudoallergic reactions
due to the activation of the immune system. Other deformable
NCs such as crosslinked polymers and polyvalent conjugates 11:12
promise control over size, rigidity, drug encapsulation, and stor-
age stability 1314, but their optimization in design is in the early
stages. Although significant amount of research has been done
on this topic, little has been achieved on the optimization of sur-
face properties, payload capacity and other design concerns. Vari-
ous combinatorial techniques, for functionalizing these constructs
with ligands for diagnostic markers and encapsulation of drugs
have opened new directions. However the lack of mechanistic
understanding of how the nanostructure and dynamics of such
NCs impact their pharmacokinetics has been a major impediment
in their clinical translation, which is still in in vivo animal testing
in terms of bench-to-bedside development 1°.

In this article, we focus on a new class of biocompatible
core-shell polymer-based NC consisting of a lysozyme rich core
with dextran-rich corona, which has the capability to host small-
molecule drugs as well as larger metal-oxide nanoparticles 1116,
This unique architecture can be exploited in a range of biotech-
nology and biomedical applications involving diagnostic imaging
and therapeutic delivery. However, its response to, and its perfor-
mance in, the physiological environment remains to be quantita-
tively assessed, which currently limits its utility in rational design.
In the aforementioned core-shell polymer construct, the lysozyme
constitutes a defined central rigid core and the dextran brushes
constitute a fluid and soft corona. The overall size of the NC as-
sembly is tunable in the range of 100 — 500 nm in diameter and is
determined by the molecular weight of the dextran. The softness
of the NC assembly is controlled by the degree of crosslinking
interactions.

In previous studies in the literature which have focused on
quantitative mechanisms applicable to NC interactions, the be-
havior of star like carriers has been modeled as multi-arm star
shaped microstructures. Grest and Kremer 17, Grest et al. '® have
shown a way to compute microstructural conformations of star
polymers at constant temperature using Langevin dynamics sim-
ulations. For large molecular weight of the polymer, i.e., for
star-polymers with long arms, these authors !7-18 have computed
static and dynamic properties such as structure factor, relaxation
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rates, and compared them with known results°. At time-scales
larger than the inertial relaxation time, the free-draining fluid-
like chain assumption made by these authors causes the frictional
forces of all the arms of star polymer to be additive and to be
equal to the frictional forces of isolated chain segments in the
solvent. However, in general, due to solvent hydrodynamics, the
frictional forces on the arms of the star polymer will be different
when compared to isolated chain segments. Ripoll et al. 20 and
Singh et al. 2! have introduced the effect of solvent hydrodynam-
ics in calculating the dynamics of star shaped polymers using the
multiple collision dynamics (MPC) model, while studying the ef-
fect of shear on the deformation of star-shaped microstructures.
Similar treatments including hydrodynamic interactions but ex-
cluding inertial effects have been used to probe the effect of flow
on microstructure deformation. For e.g., Foss and Brady 2, Hur
et al. 23, Petera and Muthukumar 24 have characterized the grad-
ual deformation of microstructures under weak flow conditions,
and Schroeder et al. 25, Hsieh et al. 26, Jendrejack et al. 27 have
considered the effect of hydrodynamic interactions under strong
flow.

Most of the studies described above have focused on large ra-
tios of end-to-end distances with respect to size of beads. In
the core-shell cross-linked polymer!!, however, the length of the
arms is on the same order as that of the core, such that their
behavior will be less signified by self-entanglements within a
chain/strand, while the crosslinking density will have a signifi-
cant impact on the static and dynamic properties. In this limit,
how precisely the internal hydrodynamics of the deformable NC
relaxation is coupled to the external hydrodynamics, will deter-
mine core-shell polymer deformability, multivalent adhesion, and
drug release kinetics, which will ultimately influence the efficacy
and performance of these carriers in pharmacological and clinical
settings 1°. For example, mixing of dextran brushes increases en-
tropy, whereas crosslinking opposes the motion and imposes an
entropic penalty. The shear stress near the endothelial surface
in the microvasculature drives the system away from equilibrium
(flow-free) conformations. Such hydrodynamic and thermody-
namic constraints are explicitly captured in the coarse-grained
model of the lysozyme-core/dextran-shell crosslinked star poly-
mer model we have proposed here. We include stochastic and
hydrodynamic shear forces to model the internal dynamics of
these deformable carriers under physiologically relevant condi-
tions. Brownian dynamics simulations are carried out to under-
stand their equilibrium properties as well as the response to shear.
We also include intra-particle hydrodynamic interactions 8
der to resolve the internal relaxation of hydrodynamic modes and
how they couple to the external flow-field. That is, depending on
the inter-bead positions, radii, and the viscosity of solvent, this
long-range interaction impacts the transient temporal response of
the core-shell polymer. In Section 2 we describe the polymer con-
figurations, in Section 3 we describe the simulation methodology,
in Section 4 the static properties (including structure factors, ra-
dius of gyration) are computed as a function of crosslinking, and
in Section 5 deformation and tumbling under shear are shown
in terms of normal strain differences and shear strain. We also
focus on extending this method to resolve the effect of inhomo-

in or-
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geneity on intrinsic stresses, carrier deformation, and relaxation
dynamics.

2 Core-Shell
Model

Cross-linked Polymer NC

Experimental details

iy
~N~x 7

Simulation strategy

Star polymer

Freely ’\:\_—1—
jointed Molecule with

olecule wi
chain ’\< terminal carbonyl
model group

Protein

Millard
Reaction

Langevin dynamics
at elevated temperature

Chain ’\Z
interaction

Detect probable cross

-link and allow the

attainment of steady

state with crosslink Heat
) Gelation
constraint

Attain a
cross linking
density

70,000 Daltons

Simulated annealing
for structure relaxation
at the required final
temperature

1200m - 180nm

Fig. 1 Construction of the coarse-grained model for the core-shell
polymer based NC and comparison with the experimental protocol.

We model the polymer microstructure as a fixed number of
strands attached to a core, which mimics the experimentally in-
ferred architecture for this material, see Figure 1, where each
strand is modeled as connected segments of freely jointed chains
(FJCs). The core radius is set to a = 10 nm following the experi-
mental estimates of Coll Ferrer et al. 11,16, For simplicity, we set
the size of each bead in the arms to be the same as that of the core,
i.e., a =10 nm. The initial microstructure is a unit star polymer
with 25 arms attached to a core, with each arm modeled by beads
connected through four links in series; that is, each link connect-
ing two adjacent beads in an arm is modeled as a Kuhn spring.
Following Liu et al. 2%, Pelton et al. 39, the stiffness of each link
and the equilibrium distance is determined using a freely jointed
chain model.

The molecular weight of a dextran monomer (denoted by M) is
162 Da®0. For a typical molecular weight of 70 kDa of the dextran
polymer used to synthesize the NC (see Figure 1), the number of
monomers per arm is 701’230 and the number of monomers per per
bead is N = %. If the number of Kuhn’s segments per bead is
N; and size of each Kuhn’s segment is b;, we impose Nyb;, = Nb,
where b is the size of each monomer. For dextran, by is 0.44 nm2°
and the size of the monomer () is 1.5 nm using which we calcu-
late the stiffness (ky) of the links between beads as derived from

This journal is © The Royal Society of Chemistry [year]
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the FJC model, i.e., k; = %‘5; We also model the stiffness of the
k
coarsegrained crosslinks to be identical to the stiffness of each

link.

We mimic the experimental protocol to obtain a relaxed struc-
ture of the polymer assembly (see Figure 1): (1) we use molecular
dynamics simulations to relax the structure at 1200K. (2) At this
high T, we track individual beads and the inter-bead distances
between pair of beads from two different chains. If the center-
to-center distance between beads is less than 19.7 nm - this is
the distance from a given bead at which the probability to find
a neighboring bead approaches zero, as evident from the radial
distribution functions discussed below — , we assign a crosslink
between the beads. (3) We repeat the crosslinking process for
different pairs of beads until we reach the desired crosslinking
density. (4) Once crosslinked, the interaction between beads is
augmented by a harmonic potential. (6) We then follow a sim-
ulated annealing protocol described by Beers3! in order to re-
lax the crosslinked structure of the assembly to 300K. For each
crosslinking density we model 4 — 5 configurations (replicas) and
then carry out Brownian dynamics simulations as described equa-
tion (11) in each of the replicas. The error bars of the reported
quantities are determined through the standard deviations of the
five replicas.

3 Simulation Methodology

We solve the equations of motion of a system of connected beads
in a solvent with the following parameters: the mass of each bead
is m, the radius is a, the velocity is v, the fluid viscosity is u and
fluid velocity is v... The equations of motion for one bead are
given by:
dv
m5—|—6717/,la(v—vo<,):Fhr—O—Fnbr7 €}

where F,, denotes Brownian forces and F,,, denotes non-
Brownian forces due to inter-bead interactions such as due to
harmonic potentials constraining the beads and excluded volume
interactions between beads. We consider time scales larger than
the inertial relaxation time i.e., t > %, where & = 6mua, for which,

following Ermak and McCammon 32 we reduce equation (1) to:
dr
E:vw—‘rM(Fer’_Fﬂbr)' )

Here, for a given bead, M = % is the mobility, and r is the position.
We consider unconstrained Brownian forces as white noise which
yields the following expressions:

(Fy(®) = 0

(Fp()Fp (1)) = 2kpTES(r—1")I.

Here, I is the unit second-order tensor, kg is the Boltzmann con-
stant, T is the temperature, and 8(¢ —¢') is the Dirac delta func-
tion.

In addition to Brownian forces, the beads experience the fol-
lowing non-Brownian forces: (1) F* represents the spring restor-
ing forces derived from a harmonic potential between adjacent
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connected beads: ]

Us = Eks (r_r0)27 (3)
where r, is the equilibrium bond distance, which is set to 2a. Ex-
cluded volume interactions between beads is considered through

the Weeks-Chandler-Anderson potential 33:

UWCA=4€[(2>]2*<3>6+H, (@)

for r < rc and = 0 for r > r¢; here, ,(BLT is the scaled interaction
strength and ¢ is the excluded volume radius which we set to
6 = 2a; the cut-off radius for the WCA potential is rc = 2!/ and
we set € = 0.7kgT.

So far, the equations of motion were described just for one
bead. Below, we consider multiple beads and hydrodynamic
interactions (HI) between two beads mediated by the solvent
by adopting the Rotne-Prager—Yamakawa hydrodynamic mobility
tensor 343> to introduce the effect of bead-to-bead hydrodynam-
ics. For a pair of beads i and j, the pair-wise mobility is a function
of configuration and is given by:

ML

= 6;%I,fori:j

= ST:WK1+§%>I+(172VL)7} fori# j,r>

- 6;W (1_397;)1+3%%} fori# j,r<o, (5)

where the superscript HI indicates hydrodynamic interactions,
ri/ = r is the relative position vector between bead i and j while
rr/r? is the product of normalized vectors. Since the mobility, for-
mally valid at large separations, i.e., for r > ¢, as shown in equa-
tion (5), decays slowly, (i.e., as %), the pairwise additive contri-
bution of the hydrodynamic interaction term is still significant for
interactions with the image beads of the periodic system, which
is conceived as a 3D lattice system of identical cells of volume V;
each image cell is denoted by an index I (see below) and contains
the same number of beads N. We follow the Ewald summation
method described by Beenakker 28 to account for the interactions
from the periodic images. The resultant velocity is a product of
the mobility resulting from the Ewald sum, and the forces acting
on the bead, i.e.:

e o

j=1

where rjj is the distance between bead i in the central simulation
box and bead j in the image replica indexed by I, which is com-
prised by the components of the 3D lattice vector expressed as
1 = (LL,hL,13L) and L is the length of the simulation box. The
central simulation box is given by I = 0 and the distance between
bead i and bead ; in the central box is therefore r;A o Which for
simplicity is just denoted by ri/; with this simplification in no-

tation, rl’ = +-1. The mobility term for r < &, does not con-

4| Journal Name, [year], [vol.]1-15

tribute to the long-ranged hydrodynamic interaction, and hence
it is added separately only for I = 0. These, considerations collec-
tively lead to the relationship:

6mua Y. MHLiI (r’f) F/
j=1

611;,uavi =

3,3
o (o080,
+ ZZM <r"f+l>.pf
(£0)’
1o & N
+ Z ZM )cos (k~r’/>.FJ. (7
k;’iojzl

equation (7) defines the pair-wise mobility M*/, which includes
hydrodynamic interactions and contribution from image-replicas:

N
6nuav’ = 6mua Y M (r"f) FJ. (8)
j=1
Here, M) and M® are functions of the inter-bead distance, de-
rived by Beenakker2®. The lattice sum over M® is in recipro-
cal space over reciprocal lattice vectors k, where k = 2nM /L, and
m = (my,mp,m3), which all take integer values. We check for the
convergence of the mobility tensor in determining the number
of lattice vectors, k-points, and to justify the value of {; specif-
ically, we use 125 — 216 k-points, 27-125 lattice vectors, and set
{ = /aV~1/3. The sum mentioned in equation (7) is only for valid
r > 2a, and hence, to introduce the effect of overlapping beads,
the term shown in equation (5) for r < 2a is added to keep the
Rotne-Prager-Yamakawa tensor (M%) positive-definite for all con-
figurations3°. Since, the term associated with r < 2a does not con-
tribute to the long-ranged part of the Rotne-Prager-Yamakawa
tensor (i.e., it only survives for n = 0), it is kept out of the real
space lattice sum, and is added outside the sum.

The resulting equations of motion are given by:

dri N . . . N .

TVt Y MY (Flo +F) +V2Y B onl. (9)
J=1 J=1

Here, B is a weight factor and n is a random vector chosen from

a Gaussian distribution of zero mean and unit variance. B is com-

puted by the domain decomposition of M, i.e.,

M=B-B". (10)
We follow the Cholesky decomposition for the domain decompo-

sition of the Rotne-Prager—Yamakawa tensor.

. . . . . . 2
We scale time ¢ with the relaxation time of diffusion 7- (where
D, is the unconstrained diffusivity of a Brownian bead given by
k”T) we scale r with a, M is scaled by T Do and F with k‘*T . We use

a nondimensional form of the spring energy, in terms of k= ,’:“T,
which is a non-dimensionalized stiffness constant. In general, we

This journal is © The Royal Society of Chemistry [year]
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use an over-bar to signify the non-dimensionalized form of the
parent variable. We rewrite equation (9) in-terms of scaled vari-
ables to yield:

N . N
—=Pe+) M. (F{VCA+F£) +V2Y BV w.
j=1 j=1

(1D

Here, Pe is the Péclet number(%) and the overbar is used to
represent the scaled variables. We use the forward explicit Euler
time integration method to discretize equation (11) and solve for
the time evolution of the positions of the beads. We use viscosity
of the blood plasma (i) as 1.3mPa.s., and the temperature T as
300K.

For the WCA potential, the inertial time Ty 4 is G@ (where,
m is the mass of a bead), while for Brownian dynamics, the time
scale (tp,) is g—i. We find that for our system: % ~1.1x1073.
We note that one can estimate the collisional time for WCA parti-
cles in the condensed phase based on an effective thermodynamic
potential given by —kpT Ing(r), where g(r) is the radial distribu-
tion function introduced below; we find that the estimate for the
collisional time is larger than Tycy.

The value of the time step of integration we use ranges from
1075 -5%x 1077 g—zo, which is (much) smaller than both Twc4 and
Tpr, hence easily satisfies the linear stability criterion. The initial
configuration (generated by the simulated annealing protocol) is
allowed to equilibriate for 1 x 10* — 1 x 10° time steps; we note
below that this length of time exceeds the slowest timescales of
relaxation typical for our systems, thereby ensuring equilibrium.

The configurations are then subjected to Brownian dynam-
ics simulations. Following Grest et al. *> for 0% crosslink NC,
the largest relaxation time is 23.85—1. NC with large degree of
crosslinking will relax like a hard sphere of equivalent radius of
gyration, and the corresponding relaxation rate is smaller than
that for star polymers. We first simulate the production runs for
25%—20. We save the last configuration, which is then used as the
initial configuration for the next simulation run, which is exe-
cuted for a period of 25 — 505—20. For each configuration (replica),
we perform atleast 3 independent simulations with different ini-
tial conditions. We the repeat these steps for 4 —5 independent
configurations (replicas with varying internal structures). The
procedure for estimating the statistical error is based on comput-
ing the standard deviation across these replicas, as noted earlier.

Overall the position vectors of beads are recorded for 2.5 x
10° — 5 x 107 time steps. The computations for a typical trajec-
tory noted above require 4 CPU-weeks on a single core of an Intel
Xeon 2.7 GHz workstation.

4 Static Properties: Results and Discussion

4.1 Radial distribution function

The radial distribution function quantifies spatial variance of den-
sity of beads and it is defined as:

(12)

This journal is © The Royal Society of Chemistry [year]
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where p is the number density g With increasing degree of
crosslinking, each bead is connected to more number of beads
through harmonic interactions, which leads to crowding of the
beads in the nearest neighbor coordination shell around a given
bead. In Figure 2, g(r) is plotted against the scaled bead-to-bead
distance, with the relative height of the first peak indicating how
crowding is impacted by the degree of crosslinking. Since the

® WCA particles
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Fig. 2 Radial distribution functions of bead positions in NCs with
different crosslinking densities. For comparison, the g(r) for an
equivalent system of free WCA particles (i.e., not constrained by any
Kuhn or crosslinking interactions) is also depicted.

beads in NC are in close proximity, crowding of beads also likely
impacts the movement of each test bead. Hence, we use a Voronoi
diagram analysis in order to allocate a fluid volume element to
each bead, and we calculate the neighbor statistics and the vol-
ume of the Voronoi elements for each bead. We follow Rycroft 37
to generate a Voronoi volume around each bead (Figure 3(a)).
However, since the beads are clustered in a network, leading to
an inhomogeneity in the structure, an irregular Voronoi tessella-
tion is more appropriate for such structures, as depicted in Figure
3(b).

(a) b

Fig. 3 (a) Periodic Voronoi tessellation around the beads, (b} Irregular
Voronoi tessellation around the beads of the NC; here the gray spheres
represent the beads and the red lines represent the skeleton of the
Voronoi tessellated lattice.

A star polymer without any crosslinking shows arm retrac-
tions, which can be captured by collecting the volume of each
Voronoi cell and then plotting the probability density function of

Journal Name, [year], [vol.], 1-15 |5
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Fig. 4 (a)-(d) Distributions of Voronoi tessellated cell volumes (P(v)) for
different crosslinking densities, (¢) Number of nearest neighbors for
different crosslinking.

Fig. 5 Schematic of a star polymer configuration. The two headed
arrow shows the direction of arm retractions.
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the Voronoi-cell volumes of the beads. In Figure 4 the probabil-
ity distributions of Voronoi-cell volumes for different crosslinked
densities are shown. The characteristic bimodal distribution is a
reflection of the star-shaped conformation of the NC, where there
is a clear separation of the Voronoi-cell volumes associated with
the outer radial (arm) regions, and those in the inner-regions of
the NC including the core, see Figure 5. With increasing crosslink-
ing, the distribution of volumes shift and the demarkation of the
two afore-mentioned regions becomes increasingly nebulous with
increasing crosslinking.

With increasing crosslinking the distribution of nearest neigh-
bors is also altered. Specifically, to estimate the number of near-
est neighbors, we calculate the area around a bead and divide by
the projected area between a pair of beads, (which for spherical
beads would yield a value of 7 in scaled units). The average num-
ber of nearest neighbors (over a period of 75;—1 is estimated to
be between 16-20) and is plotted against % crosslinking in Figure
4(e), which clearly shows that with increase in crosslinking, there
is a corresponding increase in the crowding of beads.

4.2 Radius of Gyration and Diffusivity

In order to characterize the size of the NC, we compute the radius
of gyration (R,) based on bead positions. For a model with all the
beads being the same mass, the radius of gyration tensor (G) is
defined as

1y . .
G= ¥ ,:Zi (r’ - r”") (r’ - r”") , (13)
where cm denotes center of mass of the NC beads. The charac-

teristic size along three orthogonal directions is denoted by the
eigenvalues A; (i = 1,3) of the matrix G, and the radius of gyra-
tion is defined as :

3
=Y hm (19
m=1
In Figure 6(a), the radius of gyration is plotted against the
crosslinking density, showing that with increasing crosslinking,
the radius of gyration decreases.

Since, the NC size is shown to decrease with increasing
crosslinking, we hypothesized that the crosslinking will also in-
fluence the self diffusivity of NC. To test this hypothesis, we com-
pute mean squared displacement (MSD) and compute the self-
diffusivity (D) of the NC. MSD is defined as:

< [ri(to 1) — ri(to)] 2> = 6Dyt,

where » represents the absolute position of bead i, D; is self-
diffusivity of the NC and ¢ is the trajectory time. Here, the ensem-
ble average is taken over all the beads.

For 160% crosslinked NC, the radius of gyration R, /a~4.3+0.3
and the self-diffusivity is calculated to be Ds/D, = 0.15. It is
already evident from the g(r) data (Figure 2) that the 160%
crosslinked microstructures represent the highest degree of closed

(15)

packing in terms of conformations. We, therefore, compare the
diffusivity of the 160% crosslinked nanocarrier with theoretical
prediction for hard spheres: we compute the volume fraction

This journal is © The Royal Society of Chemistry [year]
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Fig. 6 (a) Radius of gyration of NC for various crosslinking densities;
the radius of gyration is nondimensionalized with the radius of the
beads. (b) Diffusivity of the beads and of the core of the NC against the
radius of gyration, R,.

based on radius of gyration of 160% crosslinked nanocarrier and
compute corresponding diffusivity based on Einstein’s correction

to intrinsic viscosity of hard spheres, i.e., DFnstein (¢) = legzs?
The calculated diffusivity of the NC based on MSD is i.e. g—; (0)=

0.68. This computed value is in close agreement with the estimate
based on the Einstein correction; for a hard sphere of radius 4.3a,
¢ =0.15 and D Egjem = (.71, suggesting that the 160% crosslinked
NC shows diffusion very similar to that of hard spheres. We plot
g—; (¢) against R, for the NC and for the NC-core in Figure 6(b).
The diffusivity varies inversely with the radius of gyration for the
NC as well as for the NC-core. It is clear from Figure 6(b) that
the core of the NC microstructure also exhibits Brownian motion.
Since, the environment surrounding the core has the highest den-
sity of beads, the diffusivity of the NC-core is reduced relative to
that of the NC. However, since the core follows the center of mass
of the NC, the self-diffusivity of the core tracks that of the center
of mass of the NC microstructure, and with increasing diffusivity
of NC, the self-diffusivity of the core also increases (see Figure
6(b)).

The characteristic size of the NC can be estimated from the
root-mean-squared end-center distance, which is a closely related
quantity to the radius of gyration. If there are f number of arms,
with N, number of beads in each arm, then the mean-squared
end-center distance is defined as:

()~ (L[ M)

k=1

This journal is © The Royal Society of Chemistry [year]
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where r°°’® is position of core and r*"» is the position of the last
bead in the k" arm. We compute the end-to-center distance (Ram)
of the NC using equation (16). Significantly, the simulated end-
to-center distance of the polymer is estimated to be 144 — 184nm
(for crosslinking density in the range 20 — 160%), which compares
very favorably to the measured size of 120 — 180nm for the NC16.
This favorable comparison justifies our choice of utilizing 25-arms
per NC in our coarse-grained model.

4.3 Structure factor

To complete our analysis of the NC structure, we compute the
structure factor, defined as:

2

>7 a7

S(k) = <]1v

where k is the wave vector, r/ represents the position of bead j,
and the average represents an average over the trajectory. In Fig-
ure 7, we choose k = (k,0,0) and plot S(k) against k. The large
k behavior characterizes the NC internal structure (form factor),
while the small k behavior characterizes the overall NC packing.
In particular, we argue that S(k = 1277:) will track the overall com-
pressibility of the NC. This value of & can also be regarded as
differentiating between the large k behavior and the small £ one.
We note that the justification for scaling k with R, (instead of with
a) is based on the model proposed by Grest et al. 18 and by Pren-
tis 1, where equation (17) is approximated in the limit kR, < 1
as:

N .
]; exp <—1k~ rj)

S(k)zN(l—%k2<R§>+...>. (18)
Hence, when we rescale k with 1%’: and plot % in Figure 7, we
find that the data collapse into a single master curve for kR, < 1
(specifically for k < \2/—3). The terrace-like behavior for k < 1 is
also consistent with the trends reported in other computational
studies of star polymers of large molecular weight, and in neutron
scattering of microgels38. The differences in the curves for k > 1
reflects the differences in internal structure of the NC (or in form
factors) caused by changing the crosslinking densities.

Since, with increasing crosslinking, the radius of gyration de-
creases (see Figure 6(a)), we surmise that the normal stress or
pressure (P) should scale as kBLT ~ Ry, (ie. increase with in-

creasing crosslinking). We show in Figure 7 (inset) that S (%)
decreases with increasing crosslinking, which indicates an in-
crease in compressibility as a consequence of increased pressure.
In this discussion, the scaling exponent d can simply represent the
dimensionality for dilute systems, or can be significantly different
from dimensionality for strongly correlated systems; we explore
this scaling of pressure with R, in a latter section dealing with the
direct calculation of stresses.

The static properties discussed here will also be impacted by
the deformation of the NC under shear flow, which is discussed in
Section 5.

Journal Name, [year], [vol.], 1-15 |7
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Fig. 7 Static structure factor S(k) and S(%) (inset) at various

crosslinking densities. The wave vectors are scaled with 1% ie k= %.

5 Dynamic Properties: Results and Discus-
sion

The dynamic properties are studied to investigate the response of
the NC to shear forces. The context we consider is that of blood
capillaries of radius typically 5 times the radius of red blood cells
(RBCs). The characteristic radius of a RBC is agpc = 2.5um. Un-
der flow, the RBCs in a capillary migrate to the center, therefore,
causing the NCs to marginate to the cell free layer®. The cell-free
layer represents the gap between the RBC-occupied core and the
wall of the capillary, which is 2agpc (see Figure 8). We consider
a physiologically relevant shear near the endothelium (shown in
Figure 8). Yeh and Eckstein 39 have measured wall shear in blood
flow in the range of 785-1250s~!. Considering viscosity of blood
plasma as 1.3mPa.s, and based on our bead radius a, we calcu-
late the maximum Péclet number Pe — ";ﬁ“ to be 5. However, we
explore the range of 0 < Pe < 5, where the lower end, the range
corresponds to flow rate in smaller capillaries as well as lymphatic
flows340,

In our simulations, a steady shear is applied along the r; — r;
direction, where r; is the shear direction and r; is the gradient
direction, see Figure 9(b). We solve equation (11) for bead po-
sitions with the Lees-Edward boundary condition*! for a given
shear rate. We mostly represent our results interms of the Weis-

senberg number (Wi), defined as Wi = ¥t,, where ¥ is the shear
2

rate, and T, is the relaxation time of the NC, i.e., T, = g—i. Since
Pe is defined interms of the radius of the beads, for linear poly-
mers % ~ I:—gg. Grest et al. #* investigated the relaxation of self-
entangled star polymers and showed that the star polymers re-
lax faster than their linear counter-parts, and that the ratio of
the relaxation times scales as f*%. Hence, for the present case,
wi_ gk

Under shear (see Figure 9(a)), the NC undergoes stretching
and the crosslinked bonds resist deformation (see Figure 9(b)).
Depending on the crosslinking density and the shear rate, the NC
orients at an angle © with the shear direction (see Figure 9(c)).

While, the angle 6 contains critical information about the strain
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Fig. 8 Schematic of a marginated NC in a blood capillary near the
endothelium.

response of the NC, due to crosslinking the deformation of the
NC along r3 (orthogonal to the shear plane) would also depend
on the shear rate (see Figure 9(d)). Internal stresses originate
from bead-to-bead interactions and stretching of the bonds. In
particular, the configurational stresses arise from bond stretching,
while forces due to deformation can lead to an increase in the
collisional stresses.

(a) Steady Shear (b)

Crosslink 20%

Pe=3

Pe=5

(d)

Fig. 9 (a) Direction of the applied shear; (b) schematic of a sheared
NG, (c) angle of inclination of the sheared NC; (d) simulation results of
representative bead positions showing connected bonds. With
increasing shear rate, an ellipsoid or a rod-like conformation is
observed, which inclines more towards the shear direction at an angle
to shear direction. With increasing crosslinking, the nanocarrier changes
the inclination angle as well as the shape.

In addition to the internal stresses, the tumbling of the NC can
cause an additional mode of relaxation to an already complex
phenomenon. Hence, below, we explore the effect the shear and
crosslinking on NC shape, deformability, tumbling behavior, shear
and normal stress distributions.

This journal is © The Royal Society of Chemistry [year]
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5.1 Shape of NC under shear

Deformation of the NC is computed from the components of ra-
dius of gyration tensor (G). Eigen values of the radius of gyration
tensor defined in equation (13) are used to calculate degree of

prolateness, defined as,
3 —
27 <H (7\.,‘ — 7»)>

1

§=—— 7+, (19)
()

~ 3
where A = % (Z 7»,). In prior studies S has been shown to vary
i

from —0.25 to 2, where the change in sign from ‘-ve’ to ‘+ve’ sig-
nifies an oblate to a prolate shape change*3. In Figure 10, S is
plotted against the shear rate, and as evident, with increasing
shear rate the NC undergoes deformation and assumes a shape
that is similar to a prolate spheroid. In particular, the NC without
crosslinking undergoes a large deformation (see inset of Figure
10), and with increasing crosslinking densities, the degree of pro-
lateness is smaller, Figure 10.
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Fig. 10 Prolateness of NC versus shear (Pe) and crosslinking density.

Ripoll et. al.20 have investigated the effect of shear on the
asphericity of a star polymer, which is a measure analogous to S.
To quantify the extent of deformation due to shear, the asphericity
is computed as % —1, where A; > A, > A3, see Figure 11; we note
that % — 1 =0 corresponds to a sphere. We find that for NC with
0% crosslink which is closest to the star polymer approximation,
our results are in close agreement with those of Ripoll et. al.2? as

shown in Figure 11.

With increasing crosslinking the resistance to deformation in-
creases and hence our results deviate from the 0% crosslink den-
sity case. In particular, the deformation is low and shows a much
weaker dependence on Pe. However, as discussed later, the de-
formation along the gradient direction offers information on the
effect of shear on the stiffness of of the NC.

This journal is © The Royal Society of Chemistry [year]
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Fig. 11 Degree of deformation of NC for various shear rates and
crosslinking densities, quantified in term of the asphericity.

5.2 Internal structure of NC under shear

We now consider how the spatial distribution of beads is per-
turbed in the shear flow field. Unlike the zero shear case consid-
ered in Section 4, we consider the radial distribution function as
a perturbation expansion along the plane of shear, and compute
the 15 perturbation to the radial distribution function shown in
equation (20). Strating 4 has showed that

8(r) = o) +2Pe 1 (1) +O(PP).

(20

Here, g,(r) is equilibrium radial distribution function, g (r) is 15t
perturbation to radial distribution function g(r). The orientation
in the stretch direction is represented by 6, and ¢ represents the
azimuthal angle. In Figure 12, we plot g (r), which we calculate
using the relationship:

N N
g1 (r) = Nip <ZZ§ (r— rij> sinzesin¢cos¢> . @2n

i i
T y T a T T
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Fig. 12 18t perturbation to radial distribution function in shear flow field
for different crosslinking and Péclet number.
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In a shear field, two beads approach each other in the upstream
configuration and rotate to a downstream configuration. In the
upstream configuration, the g;(r) is negative while in the down-
stream configuration it is positive; however, the spring restoring
force acts against shear, and since the beads are connected, a
given pair of beads that rotates from upstream to downstream
also show spring and tumbling relaxations that depend on Pe and
the degree of crosslinking of NC. Hence, the internal structure of
the NC gets perturbed by the shear, and the degree of perturba-
tion is strongly dependent on Pe and % crosslinking.

Due to the prolate shape of the NC (see Figure 10), the major-
ity of the bead-to-bead contacts originates from the orientation
orthogonal to the shear direction, chiefly contributed by the de-
formation. Since, the difference in the area under the g (r) curve
is anti-symmetrical (i.e. the depletion upstream is matched by
the enhancement downstream), the collisional stresses contribute
less to the overall shear stress. Hence, for a given crosslinking
density, there is no significant change in the g;(r) function with
Pe. For a similar shear rate, however, with increasing crosslink-
ing, there is a significant shift in the g;(r) curve, suggesting that
the increased crosslinks cause the NC to resist shear deformation,
and perhaps contribute significantly to the build-up of internal
stress. In Subsection 5.4, stresses computed independently from
the Virial expression, also support the observations gleaned from
the 15t perturbation to the radial distribution function.

5.3 Comparison of NC deformation under shear with related
models of polymer assemblies

The stresses induced are caused by the stretching of bonds which
results in deformation of the microstructure and the correspond-
ing strain is computed from components of radius of gyration ten-
sor (G). The configuration thickness (8,) is defined as

- oy
52 =/ (;227 and 62 = m (22)

The ratio of shear and normal strain difference determines the
orientation®® of the NC, given by:

2G12

tan(29) = m,

(23)
where 0 is configurational orientation of the NC. The configura-
tional thickness and configurational orientation calculated from
equation (22) and equation (23) are plotted in Figure 13, where
(6) and (8, for various shear rates and crosslinking densities are
depicted. Since the applied shear is in the r| direction, with r,
being the gradient direction, G|, represents the shear strain, and
G11 — Gy represents the 1% normal strain difference. We plot the
configuration thickness as well as the NC orientation against time
in Figure 14(a), which together indicate how the configuration
thickness associated with change in shape of the NC is related
to the NC tumbling motion. The correlated motion in 6 versus
t and J versus ¢ clearly suggests that the tumbling motion is a
mechanism by which the system relieves the build-up of internal
stress. It is also intriguing to note that the tumbling relaxation
time is highly sensitive and decreases with increasing degree of
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Fig. 13 (a) Configurational orientation and (b) configurational thickness
for various Wi and crosslinking densities.

crosslinking.

In a linear response model, the ratio of the applied force
to the deformation represents a 'stiffness": for e.g., in the
case of a Hookean spring, the stiffness constant Kping =
|force|/|displacement|. Since, &, depends on Wi, Teixeira et al. *°
have introduced a general relationship: 8, ~ Wi™" in order to
compare various models. Since Wi can be regarded as an ap-
plied force and 1/8, as an effective deformation, the stiffness or
resistance to configurational thickness can be measured by the
product (3,) Wi. Figure 14(b) shows the averaged configurational
thickness resistance ((8,) Wi). Fits to the data indicate the config-
urational thickness resistance increase with increasing crosslink-
ing. That is, the configuration thickness scales as Wi~90! for
0% crosslinking and as Wi~%!! for 160% crosslinking. Teixeira
et al. ** have previously shown that for a linear worm-like chain
(WLC) polymer system (8,) ~ Wi~92°, Here, compared to the
Teixeira et al. * result for a soft linear system, (5,) is relatively
weak function of Wi for all NC.

Due to the prolate shape of the NC under shear, the stresses
are not only dependent on the deformation but also on the ori-
entation of the nanocarrier, which is evident from Figure 13 and
Figure 14. In particular Figure 10 and Figure 11 show that under
shear, a large degree of crosslinking leads to sphere-like shapes,
while smaller degree of crosslinking leads to NC shapes approach-
ing rod-like geometries. Moreover with the deformation field
along the r| — rp direction, and increasing shear, the NC tum-
bles (Figure 14(a)) and the average orientation over the tum-

This journal is © The Royal Society of Chemistry [year]
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bling cycle gives important information regarding ratio of shear
strain to normal strain difference, see equation (23). The rheolog-
ical response of rod-like particles, under small shear, is described
by Giz ~ Pe and (Gi1 — Gap) ~ Pe? 4047, for which tan(20) ~ .
Since Wi ~ Pe, the scaling for rod-like particles corresponds to
tan(20) ~ Wi~!, as indicated in Figure 15.
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In Figure 16, the ratio of shear strain G, to Wi is plotted
for various shear rates and crosslinking densities. A decrease
in % indicates a decrease in the first normal strain coefficient
which is akin to the effective viscosity of a single NC#>, which
is observed for increasing crosslinking. In particular, the expo-
nent governing the decrease in the first normal strain coefficient
with Wi of the crosslinked NC is similar to that reported in sin-
gle molecule experimental results shown by Teixeira et al. *°. The
0% crosslinked NC at large shear rate, is highly stretched and ap-
proaches G, ~ Wi, which is close to that for a rod-like polymer
response to steady shear flow.

5.4 Internal stresses and stiffness of the NC under shear
We calculate internal stresses to estimate the response of NC
to the observed structural changes. Following Irving and Kirk-
wood *8, (see Appendix A for derivation) stresses are calculated
using the expression:

6'——<Zi‘,'jF[j> 249
ij

where 6 is the stress tensor, F;; is force on bead i due to bead j,
and r;; is the distance vector between the beads i and ;.

In Figure 17(a) the shear stresses (% gfz) is plotted for vari-
ous shear rates, confirming that the NC under shear, shows shear
thinning akin to Figure 16, and the shear thinning effect is signif-
icantly higher than that reported for hard spheres suspensions+°.

We have shown that with increasing crosslinking the radius of
gyration of the NC decreases (Figure 6) and the stiffness of the
NC increases (Figure 7), causing us to hypothesize that there is a
likely build-up of normal stress. To directly test this hypothesis,

3

we compute the trace of the stress tensor, i.e., pk% = Xic's,-i. In
i=
Figure 17(b), the computed normal stress (pk%) is plotted for
various shear rates and for different crosslinking. For smaller
crosslinking the normal stress increases with shear, and the shear
dependence gets weaker with increasing crosslinking density; for
the largest crosslinking we consider the normal stress is inde-
pendent of shear. This trend is also consistent with those dis-
cussed in Figure 11, which shows that the deformation of a highly
crosslinked NC is a weak function of shear. Our data in Figure
17(c) validates our hypothesis that the stiffness of the NC orig-
inates from the osmotic pressure by clearly showing that with
decreasing radius of gyration, the normal stress increases. For di-
lute suspensions, the osmotic pressure ~ R§3, however as shown
in the figure, the exponent of —8.28 indicates that the intrinsic
stress build-up is significantly larger than that expected from a
dilute system. Below, we explore the mechanism contributing to
the intrinsic stress through a simple theoretical model from the
literature.

In their textbook, Dill and Bromberg®® have described a net-
work of freely jointed chains to explain the elasticity of networked
polymers and have expressed the free energy (F) as a function of
strain subject to a volume conservation constraint, given by:

AF =E (L%+L§+L§ —3L3> (25)
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where, the elongation ratio L = L% (where L, = Ly,;—o) and L% is
a modulus of elasticity. We approximate the volume of the NC
at Wi =0 as a sphere of diameter L, (i.e.L;, = L,). For Wi > 0,
the normal stress difference (based on the direction of stretching)
deforms the NC from a sphere to an ellipsoid. From the volume
conservation condition we get:

47 4z
—Lilyl3 = —

3
24 24 L

LiloLy =L (26)
The normal stress difference defined as:

Gy =0} — 5 (05 + %) @7)
where o) is the stress along the direction of stretch and o}, and
o4 are stresses orthognal to ¢}. We assume that the deformation
of NC is symmetric along the directions orthogonal to stretching
direction i.e. L =L and L, = L3. We obtain from equation (25)
and equation (26):

203
AF =E (L2+T"—3L§)

dAF  2E L3 2EL L3
oy=—=—|L-—22)=""(L-=2
N7 gL L2L3( 12 L3 12

2E (., 1
=P -2 ). 28
on Lg( i (28)

In the above-described model, it can also be stipulated that the
network consists of m freely jointed chains each with Nj links of
length by, and one can relate the force (f;) needed for a given
elongation L, from which the force per unit area can be written
as:

fi 3mkgT (L V{))

LoLs  NB2LyLy \© 12
3mkpT (- 1
Oy = B (Ltf). 29)
Nibi"Lo L
Comparing equation (28) and equation (29), E = ;xkﬂ For
kPk
small elongation we assume that L = 1 4 ¢ and we get:
6F
/
Oy = —E€. 30
NE L (30)

If C is the modulus of elasticity of the NC, then C = 6L—E We cal-
culate the eigenvalues of radius of gyration tensor equation (13).

We define the elongation L as y/ 5 Ay

p— where A, is the eigenvalue
of the radius of gyration tensor along the direction of elonga-
tion. Similarly, we calculate the eigenvalues of the stress tensor
equation (24) and the normal stress difference is calculated from
equation (27). In Figure 18 the normal stress difference &}, is

plotted against elongation L.

We fit the data for the normal stress difference for each
crosslinking density (dotted lines in Figure 18) for small elonga-
tions as shown in equation (28), from which we further estimate
the elasticity modulus (C). We find that with increasing crosslink-
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Fig. 18 Normal stress difference versus elongation for various
crosslinking densities.

ing the elasticity modulus increases from 0.4 to 15 kPa.

Table 1 Computed stiffness of the NC and the measured structural
stiffness of common biomaterials.

Material type Method Stiffness Ref.

Confluent  en- experimental 0.1—0.8Pa Dewey et al. °*
dothelial mono-

layers

Chondrocytes experimental 0.5kPa Hochmuth >2
Human platelets experimental 1.5 —4kPa Mathur et al. >3
Endothelial cells experimental 1.4 —6.8kPa Mathur et al. >3
Nanocarrier calculated 0.4 —15 kPa

Skeletal muscle experimental 24.7+3.5kPa Mathur et al. >
cells

Cardiac cells experimental 100.3 +10.7kPa Mathur et al. >3

We also compare the calculated stiffness of the NC with pre-
viously measured stiffness of soft and hard biomaterials in Table
1, and we find that the stiffness of the NC falls in the range of
moderately soft materials.

6 Conclusion

We have developed a model for a new class of highly deformable
polymer based NC synthesized by Coll Ferrer et al. 11,16 and Fer-
rer et al. 1°. We explored zero shear properties of the microstruc-
tures as well as demonstrated the effects of physiologically rel-
evant shear on the structure and dynamic properties of the NC.
Our findings are also consistent with other theoretical findings in
limiting cases. We believe that the development of such models
is essential to gain useful insights that can be translated into the
optimal design of nanocarriers for targeted drug delivery. Future
work will focus on combining this model with previous models for
functionalized NCs°%>> to include adhesive interactions, along
with experimental investigation in-vitro and in-vivo. Together,
these will advance our understanding of the binding affinities of
soft crosslinked NCs to cells.

We acknowledge support from NIH through grants NIH
1RO1EB006818-05.
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A Intrinsic Stress

Following Irving and Kirkwood 48, the stress tensor is given by:

ij

1 1
c(rt)= —v [Zm, (Fi — Vo) + QZ’ijoijFij |r,-—r:| , 31
1

where, O;; is the differential operator given by:

1 2 1 91!
oijzl—jr,-j.—+~~+—{—r,< } 4

or n! I or (32)

We scale stresses by nkgT, where n is the number density of
beads, kp is the Boltzmann constant, and 7 is the temperature,
and rewrite the expression for stresses as:

1

_ miDy ,.  _ lw—_ = =
O'(r,t) = Y Zk;TZ(riVoo)+22rjj0ijF,'j|ri_,:|
i ij
1 T . l—_. = =
= Y Xi"%(ri—vw)-i-igrijoijl’ij |r,—r:|

= *%Z?UO_UFU lr=r - (33)
ij

Here, t; is the inertial relaxation time and tp is the relaxation
time due to diffusion. Following equation (3), we impose a force
balance in the limit of r > % The stresses are computed using
equation (33), with the differential operator truncated to the 15t
order approximation, i.e. with 0;; = 1. This leads to equation
@29.
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