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The physical properties of the NC also directly impact their

physiological performance. It has been shown that polystyrene-

based (hard) NCs show a strong propensity for phagocytosis4,

which makes them amenable for easy capture by macrophages5.

Altering the shape of these NCs can enhance their adhesion to

the endothelium6, however biocompatibility is usually a concern

with such NC constructs. Micelles and related amphiphilic assem-

blies represent the smallest of the deformable NC constructs, but

are typically faced with low drug encapsulation and low storage

stability7,8. Liposomes are soft NCs, which offer a better control

of size, and better drug encapsulation compared to their micel-

lar counter-parts, but are typified by short shelf lives and high

degrees of drug leakage9. In the deformable NC category, poly-

mersomes offer a nice middle ground as they are mechanically ro-

bust and stable, and can fuse with cellular membranes to transfer

cargo to cells10; however, in terms of biocompatibility, they leave

more to be desired, as they can trigger pseudoallergic reactions

due to the activation of the immune system. Other deformable

NCs such as crosslinked polymers and polyvalent conjugates11,12

promise control over size, rigidity, drug encapsulation, and stor-

age stability13,14, but their optimization in design is in the early

stages. Although significant amount of research has been done

on this topic, little has been achieved on the optimization of sur-

face properties, payload capacity and other design concerns. Vari-

ous combinatorial techniques, for functionalizing these constructs

with ligands for diagnostic markers and encapsulation of drugs

have opened new directions. However the lack of mechanistic

understanding of how the nanostructure and dynamics of such

NCs impact their pharmacokinetics has been a major impediment

in their clinical translation, which is still in in vivo animal testing

in terms of bench-to-bedside development15.

In this article, we focus on a new class of biocompatible

core-shell polymer-based NC consisting of a lysozyme rich core

with dextran-rich corona, which has the capability to host small-

molecule drugs as well as larger metal-oxide nanoparticles11,16.

This unique architecture can be exploited in a range of biotech-

nology and biomedical applications involving diagnostic imaging

and therapeutic delivery. However, its response to, and its perfor-

mance in, the physiological environment remains to be quantita-

tively assessed, which currently limits its utility in rational design.

In the aforementioned core-shell polymer construct, the lysozyme

constitutes a defined central rigid core and the dextran brushes

constitute a fluid and soft corona. The overall size of the NC as-

sembly is tunable in the range of 100−500 nm in diameter and is

determined by the molecular weight of the dextran. The softness

of the NC assembly is controlled by the degree of crosslinking

interactions.

In previous studies in the literature which have focused on

quantitative mechanisms applicable to NC interactions, the be-

havior of star like carriers has been modeled as multi-arm star

shaped microstructures. Grest and Kremer 17 , Grest et al. 18 have

shown a way to compute microstructural conformations of star

polymers at constant temperature using Langevin dynamics sim-

ulations. For large molecular weight of the polymer, i.e., for

star-polymers with long arms, these authors17,18 have computed

static and dynamic properties such as structure factor, relaxation

rates, and compared them with known results19. At time-scales

larger than the inertial relaxation time, the free-draining fluid-

like chain assumption made by these authors causes the frictional

forces of all the arms of star polymer to be additive and to be

equal to the frictional forces of isolated chain segments in the

solvent. However, in general, due to solvent hydrodynamics, the

frictional forces on the arms of the star polymer will be different

when compared to isolated chain segments. Ripoll et al. 20 and

Singh et al. 21 have introduced the effect of solvent hydrodynam-

ics in calculating the dynamics of star shaped polymers using the

multiple collision dynamics (MPC) model, while studying the ef-

fect of shear on the deformation of star-shaped microstructures.

Similar treatments including hydrodynamic interactions but ex-

cluding inertial effects have been used to probe the effect of flow

on microstructure deformation. For e.g., Foss and Brady 22 , Hur

et al. 23 , Petera and Muthukumar 24 have characterized the grad-

ual deformation of microstructures under weak flow conditions,

and Schroeder et al. 25 , Hsieh et al. 26 , Jendrejack et al. 27 have

considered the effect of hydrodynamic interactions under strong

flow.

Most of the studies described above have focused on large ra-

tios of end-to-end distances with respect to size of beads. In

the core-shell cross-linked polymer11, however, the length of the

arms is on the same order as that of the core, such that their

behavior will be less signified by self-entanglements within a

chain/strand, while the crosslinking density will have a signifi-

cant impact on the static and dynamic properties. In this limit,

how precisely the internal hydrodynamics of the deformable NC

relaxation is coupled to the external hydrodynamics, will deter-

mine core-shell polymer deformability, multivalent adhesion, and

drug release kinetics, which will ultimately influence the efficacy

and performance of these carriers in pharmacological and clinical

settings15. For example, mixing of dextran brushes increases en-

tropy, whereas crosslinking opposes the motion and imposes an

entropic penalty. The shear stress near the endothelial surface

in the microvasculature drives the system away from equilibrium

(flow-free) conformations. Such hydrodynamic and thermody-

namic constraints are explicitly captured in the coarse-grained

model of the lysozyme-core/dextran-shell crosslinked star poly-

mer model we have proposed here. We include stochastic and

hydrodynamic shear forces to model the internal dynamics of

these deformable carriers under physiologically relevant condi-

tions. Brownian dynamics simulations are carried out to under-

stand their equilibrium properties as well as the response to shear.

We also include intra-particle hydrodynamic interactions28 in or-

der to resolve the internal relaxation of hydrodynamic modes and

how they couple to the external flow-field. That is, depending on

the inter-bead positions, radii, and the viscosity of solvent, this

long-range interaction impacts the transient temporal response of

the core-shell polymer. In Section 2 we describe the polymer con-

figurations, in Section 3 we describe the simulation methodology,

in Section 4 the static properties (including structure factors, ra-

dius of gyration) are computed as a function of crosslinking, and

in Section 5 deformation and tumbling under shear are shown

in terms of normal strain differences and shear strain. We also

focus on extending this method to resolve the effect of inhomo-
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geneity on intrinsic stresses, carrier deformation, and relaxation

dynamics.

2 Core-Shell Cross-linked Polymer NC

Model

Fig. 1 Construction of the coarse-grained model for the core-shell

polymer based NC and comparison with the experimental protocol.

We model the polymer microstructure as a fixed number of

strands attached to a core, which mimics the experimentally in-

ferred architecture for this material, see Figure 1, where each

strand is modeled as connected segments of freely jointed chains

(FJCs). The core radius is set to a = 10 nm following the experi-

mental estimates of Coll Ferrer et al. 11,16 . For simplicity, we set

the size of each bead in the arms to be the same as that of the core,

i.e., a = 10 nm. The initial microstructure is a unit star polymer

with 25 arms attached to a core, with each arm modeled by beads

connected through four links in series; that is, each link connect-

ing two adjacent beads in an arm is modeled as a Kuhn spring.

Following Liu et al. 29 , Pelton et al. 30 , the stiffness of each link

and the equilibrium distance is determined using a freely jointed

chain model.

The molecular weight of a dextran monomer (denoted by M) is

162 Da30. For a typical molecular weight of 70 kDa of the dextran

polymer used to synthesize the NC (see Figure 1), the number of

monomers per arm is 70,000
162 and the number of monomers per per

bead is N = 70,000
4×162 . If the number of Kuhn’s segments per bead is

Nk and size of each Kuhn’s segment is bk, we impose Nkbk = Nb,

where b is the size of each monomer. For dextran, bk is 0.44 nm29

and the size of the monomer (b) is 1.5 nm using which we calcu-

late the stiffness (ks) of the links between beads as derived from

the FJC model, i.e., ks =
3kBT

Nkb2
k

. We also model the stiffness of the

coarsegrained crosslinks to be identical to the stiffness of each

link.

We mimic the experimental protocol to obtain a relaxed struc-

ture of the polymer assembly (see Figure 1): (1) we use molecular

dynamics simulations to relax the structure at 1200K. (2) At this

high T , we track individual beads and the inter-bead distances

between pair of beads from two different chains. If the center-

to-center distance between beads is less than 19.7 nm – this is

the distance from a given bead at which the probability to find

a neighboring bead approaches zero, as evident from the radial

distribution functions discussed below – , we assign a crosslink

between the beads. (3) We repeat the crosslinking process for

different pairs of beads until we reach the desired crosslinking

density. (4) Once crosslinked, the interaction between beads is

augmented by a harmonic potential. (6) We then follow a sim-

ulated annealing protocol described by Beers 31 in order to re-

lax the crosslinked structure of the assembly to 300K. For each

crosslinking density we model 4−5 configurations (replicas) and

then carry out Brownian dynamics simulations as described equa-

tion (11) in each of the replicas. The error bars of the reported

quantities are determined through the standard deviations of the

five replicas.

3 Simulation Methodology

We solve the equations of motion of a system of connected beads

in a solvent with the following parameters: the mass of each bead

is m, the radius is a, the velocity is vvv, the fluid viscosity is µ and

fluid velocity is vvv∞. The equations of motion for one bead are

given by:

m
dvvv

dt
+6πµa(vvv− vvv∞) = FFFbr +FFFnbr, (1)

where Fbr denotes Brownian forces and Fnbr denotes non-

Brownian forces due to inter-bead interactions such as due to

harmonic potentials constraining the beads and excluded volume

interactions between beads. We consider time scales larger than

the inertial relaxation time i.e., t ≫ m
ξ

, where ξ = 6πµa, for which,

following Ermak and McCammon 32 we reduce equation (1) to:

drrr

dt
= vvv∞ +M (FFFbr +FFFnbr) . (2)

Here, for a given bead, M = 1
ξ

is the mobility, and rrr is the position.

We consider unconstrained Brownian forces as white noise which

yields the following expressions:

〈FFFbr(t)〉 = 000

〈

FFFbr(t)FFFbr(t
′)
〉

= 2kBT ξδ(t − t ′)III.

Here, III is the unit second-order tensor, kB is the Boltzmann con-

stant, T is the temperature, and δ(t − t ′) is the Dirac delta func-

tion.

In addition to Brownian forces, the beads experience the fol-

lowing non-Brownian forces: (1) Fs represents the spring restor-

ing forces derived from a harmonic potential between adjacent

1–15 | 3
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connected beads:

Us =
1

2
ks (r− ro)

2 , (3)

where ro is the equilibrium bond distance, which is set to 2a. Ex-

cluded volume interactions between beads is considered through

the Weeks-Chandler-Anderson potential33:

UWCA = 4ε

[

(σ

r

)12
−
(σ

r

)6
+

1

4

]

, (4)

for r ≤ rC and = 0 for r > rC; here, ε
kBT is the scaled interaction

strength and σ is the excluded volume radius which we set to

σ = 2a; the cut-off radius for the WCA potential is rC = 21/6σ and

we set ε = 0.7kBT .

So far, the equations of motion were described just for one

bead. Below, we consider multiple beads and hydrodynamic

interactions (HI) between two beads mediated by the solvent

by adopting the Rotne–Prager–Yamakawa hydrodynamic mobility

tensor34,35 to introduce the effect of bead-to-bead hydrodynam-

ics. For a pair of beads i and j, the pair-wise mobility is a function

of configuration and is given by:

MMMHI,i j

=
1

6πµa
III , for i = j

=
1

8πµr

[(

1+
2a2

3r2

)

III +

(

1− 2a2

r2

)

rrrrrr

r2

]

, for i 6= j,r > σ

=
1

6πµa

[(

1− 9r

32a

)

III +
3r

32a

rrrrrr

r2

]

, for i 6= j,r < σ, (5)

where the superscript HI indicates hydrodynamic interactions,

rrri j = rrr is the relative position vector between bead i and j while

rrrrrr/r2 is the product of normalized vectors. Since the mobility, for-

mally valid at large separations, i.e., for r > σ, as shown in equa-

tion (5), decays slowly, (i.e., as 1
r ), the pairwise additive contri-

bution of the hydrodynamic interaction term is still significant for

interactions with the image beads of the periodic system, which

is conceived as a 3D lattice system of identical cells of volume V ;

each image cell is denoted by an index lll (see below) and contains

the same number of beads N. We follow the Ewald summation

method described by Beenakker 28 to account for the interactions

from the periodic images. The resultant velocity is a product of

the mobility resulting from the Ewald sum, and the forces acting

on the bead, i.e.:

vvvi =
N

∑
j=1

∑
lll

MMMHI,i j
(

rrr
i j

lll

)

·FFF j, (6)

where rrr
i j

lll
is the distance between bead i in the central simulation

box and bead j in the image replica indexed by lll, which is com-

prised by the components of the 3D lattice vector expressed as

lll = (l1L, l2L, l3L) and L is the length of the simulation box. The

central simulation box is given by lll = 0 and the distance between

bead i and bead j in the central box is therefore rrr
i j

lll=0
which for

simplicity is just denoted by rrri j; with this simplification in no-

tation, rrr
i j

lll
= rrri j + lll. The mobility term for r < σ, does not con-

tribute to the long-ranged hydrodynamic interaction, and hence

it is added separately only for lll = 0. These, considerations collec-

tively lead to the relationship:

6πµavvvi = 6πµa
N

∑
j=1

MMMHI,i j
(

rrri j
)

·FFF j

+

(

−6
ζa√

π
+

40

3

ζ3a3

√
π

)

FFF i

+ ∑
lll

(l 6=0)

N

∑
j=1

MMM(1)
(

rrri j + lll
)

.FFF j

+
1

V
∑
k

kkk 6=000

N

∑
j=1

MMM(2) (kkk)cos
(

kkk · rrri j
)

.FFF j. (7)

equation (7) defines the pair-wise mobility MMMi j, which includes

hydrodynamic interactions and contribution from image-replicas:

6πµavvvi = 6πµa
N

∑
j=1

MMMi j
(

rrri j
)

·FFF j. (8)

Here, MMM(1) and MMM(2) are functions of the inter-bead distance, de-

rived by Beenakker 28 . The lattice sum over MMM(2) is in recipro-

cal space over reciprocal lattice vectors kkk, where kkk = 2πMMM/L, and

mmm = (m1,m2,m3), which all take integer values. We check for the

convergence of the mobility tensor in determining the number

of lattice vectors, k-points, and to justify the value of ζ; specif-

ically, we use 125− 216 k-points, 27-125 lattice vectors, and set

ζ=
√

πV−1/3. The sum mentioned in equation (7) is only for valid

r > 2a, and hence, to introduce the effect of overlapping beads,

the term shown in equation (5) for r < 2a is added to keep the

Rotne-Prager-Yamakawa tensor (MMMi j) positive-definite for all con-

figurations36. Since, the term associated with r < 2a does not con-

tribute to the long-ranged part of the Rotne–Prager–Yamakawa

tensor (i.e., it only survives for n = 0), it is kept out of the real

space lattice sum, and is added outside the sum.

The resulting equations of motion are given by:

drrri

dt
= vvv∞ +

N

∑
j=1

MMMi j ·
(

FFF
j
WCA +FFF

j
s

)

+
√

2
N

∑
j=1

BBBi j ·nnn j. (9)

Here, BBB is a weight factor and nnn is a random vector chosen from

a Gaussian distribution of zero mean and unit variance. BBB is com-

puted by the domain decomposition of MMM, i.e.,

MMM = BBB ·BBBT . (10)

We follow the Cholesky decomposition for the domain decompo-

sition of the Rotne–Prager–Yamakawa tensor.

We scale time t with the relaxation time of diffusion a2

Do
(where

Do is the unconstrained diffusivity of a Brownian bead given by
kBT

ξ
), we scale r with a, M is scaled by Do

kBT , and F with kBT
a . We use

a nondimensional form of the spring energy, in terms of k̄ = ka2

kBT ,

which is a non-dimensionalized stiffness constant. In general, we
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Fig. 6 (a) Radius of gyration of NC for various crosslinking densities;

the radius of gyration is nondimensionalized with the radius of the

beads. (b) Diffusivity of the beads and of the core of the NC against the

radius of gyration, Rg.

based on radius of gyration of 160% crosslinked nanocarrier and

compute corresponding diffusivity based on Einstein’s correction

to intrinsic viscosity of hard spheres, i.e., DEinstein
s (φ) =

Ds(φ=0)
1+2.5φ .

The calculated diffusivity of the NC based on MSD is i.e. Ds

Do
(φ) =

0.68. This computed value is in close agreement with the estimate

based on the Einstein correction; for a hard sphere of radius 4.3a,

φ = 0.15 and
DEinstein

s

Do
= 0.71, suggesting that the 160% crosslinked

NC shows diffusion very similar to that of hard spheres. We plot
Ds

Do
(φ) against Rg for the NC and for the NC-core in Figure 6(b).

The diffusivity varies inversely with the radius of gyration for the

NC as well as for the NC-core. It is clear from Figure 6(b) that

the core of the NC microstructure also exhibits Brownian motion.

Since, the environment surrounding the core has the highest den-

sity of beads, the diffusivity of the NC-core is reduced relative to

that of the NC. However, since the core follows the center of mass

of the NC, the self-diffusivity of the core tracks that of the center

of mass of the NC microstructure, and with increasing diffusivity

of NC, the self-diffusivity of the core also increases (see Figure

6(b)).

The characteristic size of the NC can be estimated from the

root-mean-squared end-center distance, which is a closely related

quantity to the radius of gyration. If there are f number of arms,

with Nb number of beads in each arm, then the mean-squared

end-center distance is defined as:

〈

R2
arm

〉

=

〈

1

f

f

∑
k=1

[

rrrcore − rrrk,Nb

]2
〉

, (16)

where rrrcore is position of core and rrrk,Nb is the position of the last

bead in the kth arm. We compute the end-to-center distance (Rarm)

of the NC using equation (16). Significantly, the simulated end-

to-center distance of the polymer is estimated to be 144−184nm

(for crosslinking density in the range 20−160%), which compares

very favorably to the measured size of 120−180nm for the NC16.

This favorable comparison justifies our choice of utilizing 25-arms

per NC in our coarse-grained model.

4.3 Structure factor

To complete our analysis of the NC structure, we compute the

structure factor, defined as:

S(kkk) =

〈

1

N

∣

∣

∣

∣

∣

N

∑
j=1

exp
(

−ikkk · rrr j
)

∣

∣

∣

∣

∣

2〉

, (17)

where kkk is the wave vector, rrr j represents the position of bead j,

and the average represents an average over the trajectory. In Fig-

ure 7, we choose kkk = (k,0,0) and plot S(k) against k. The large

k behavior characterizes the NC internal structure (form factor),

while the small k behavior characterizes the overall NC packing.

In particular, we argue that S(k = 2π
Rg
) will track the overall com-

pressibility of the NC. This value of k can also be regarded as

differentiating between the large k behavior and the small k one.

We note that the justification for scaling k with Rg (instead of with

a) is based on the model proposed by Grest et al. 18 and by Pren-

tis 19 , where equation (17) is approximated in the limit kRg ≪ 1

as:

S(k)≈ N

(

1− 1

3
k2
〈

R2
g

〉

+ . . .

)

. (18)

Hence, when we rescale k with 2π
Rg

and plot
S(k̄)
S(0)

in Figure 7, we

find that the data collapse into a single master curve for kRg ≪ 1

(specifically for k̄ ≪
√

3
2π ). The terrace-like behavior for k̄ ≪ 1 is

also consistent with the trends reported in other computational

studies of star polymers of large molecular weight, and in neutron

scattering of microgels38. The differences in the curves for k̄ > 1

reflects the differences in internal structure of the NC (or in form

factors) caused by changing the crosslinking densities.

Since, with increasing crosslinking, the radius of gyration de-

creases (see Figure 6(a)), we surmise that the normal stress or

pressure (P) should scale as P
kBT ∼ R−d

g , (i.e. increase with in-

creasing crosslinking). We show in Figure 7 (inset) that S
(

2π
Rg

)

decreases with increasing crosslinking, which indicates an in-

crease in compressibility as a consequence of increased pressure.

In this discussion, the scaling exponent d can simply represent the

dimensionality for dilute systems, or can be significantly different

from dimensionality for strongly correlated systems; we explore

this scaling of pressure with Rg in a latter section dealing with the

direct calculation of stresses.

The static properties discussed here will also be impacted by

the deformation of the NC under shear flow, which is discussed in

Section 5.
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5.1 Shape of NC under shear

Deformation of the NC is computed from the components of ra-

dius of gyration tensor (G). Eigen values of the radius of gyration

tensor defined in equation (13) are used to calculate degree of

prolateness, defined as,

S =

27

〈

3

∏
i

(

λi − λ̄
)

〉

〈(

3

∑
i

λi

)3〉
, (19)

where λ̄ = 1
3

(

3

∑
i

λi

)

. In prior studies S has been shown to vary

from −0.25 to 2, where the change in sign from ‘-ve’ to ‘+ve’ sig-

nifies an oblate to a prolate shape change43. In Figure 10, S is

plotted against the shear rate, and as evident, with increasing

shear rate the NC undergoes deformation and assumes a shape

that is similar to a prolate spheroid. In particular, the NC without

crosslinking undergoes a large deformation (see inset of Figure

10), and with increasing crosslinking densities, the degree of pro-

lateness is smaller, Figure 10.
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Fig. 10 Prolateness of NC versus shear (Pe) and crosslinking density.

Ripoll et. al.20 have investigated the effect of shear on the

asphericity of a star polymer, which is a measure analogous to S.

To quantify the extent of deformation due to shear, the asphericity

is computed as λ1

λ3
−1, where λ1 > λ2 > λ3, see Figure 11; we note

that λ1

λ3
−1 = 0 corresponds to a sphere. We find that for NC with

0% crosslink which is closest to the star polymer approximation,

our results are in close agreement with those of Ripoll et. al.20 as

shown in Figure 11.

With increasing crosslinking the resistance to deformation in-

creases and hence our results deviate from the 0% crosslink den-

sity case. In particular, the deformation is low and shows a much

weaker dependence on Pe. However, as discussed later, the de-

formation along the gradient direction offers information on the

effect of shear on the stiffness of of the NC.

10
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10
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Ripoll el. al.(2006)  Star polymer with # arms=25
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  60% Crosslink
100% Crosslink
160% Crosslink

Fig. 11 Degree of deformation of NC for various shear rates and

crosslinking densities, quantified in term of the asphericity.

5.2 Internal structure of NC under shear

We now consider how the spatial distribution of beads is per-

turbed in the shear flow field. Unlike the zero shear case consid-

ered in Section 4, we consider the radial distribution function as

a perturbation expansion along the plane of shear, and compute

the 1st perturbation to the radial distribution function shown in

equation (20). Strating 44 has showed that

g(r) = go(r)+2Pe
r1r2

r2
g1(r)+O(Pe2).

(20)

Here, go(r) is equilibrium radial distribution function, g1(r) is 1st

perturbation to radial distribution function g(r). The orientation

in the stretch direction is represented by θ, and φ represents the

azimuthal angle. In Figure 12, we plot g1(r), which we calculate

using the relationship:

g1 (r) =
1

Nρ

〈

N

∑
i

N

∑
j 6=i

δ
(

r− ri j
)

sin2θsinφcosφ

〉

. (21)

0 1 2 3

r/2a
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g
1
(r

)

20% Crosslink at Pe=1
20% Crosslink at Pe=5
60% Crosslink at Pe=5

x

y

x

y

Downstream

Upstream

Fig. 12 1st perturbation to radial distribution function in shear flow field

for different crosslinking and Péclet number.
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In a shear field, two beads approach each other in the upstream

configuration and rotate to a downstream configuration. In the

upstream configuration, the g1(r) is negative while in the down-

stream configuration it is positive; however, the spring restoring

force acts against shear, and since the beads are connected, a

given pair of beads that rotates from upstream to downstream

also show spring and tumbling relaxations that depend on Pe and

the degree of crosslinking of NC. Hence, the internal structure of

the NC gets perturbed by the shear, and the degree of perturba-

tion is strongly dependent on Pe and % crosslinking.

Due to the prolate shape of the NC (see Figure 10), the major-

ity of the bead-to-bead contacts originates from the orientation

orthogonal to the shear direction, chiefly contributed by the de-

formation. Since, the difference in the area under the g1(r) curve

is anti-symmetrical (i.e. the depletion upstream is matched by

the enhancement downstream), the collisional stresses contribute

less to the overall shear stress. Hence, for a given crosslinking

density, there is no significant change in the g1(r) function with

Pe. For a similar shear rate, however, with increasing crosslink-

ing, there is a significant shift in the g1(r) curve, suggesting that

the increased crosslinks cause the NC to resist shear deformation,

and perhaps contribute significantly to the build-up of internal

stress. In Subsection 5.4, stresses computed independently from

the Virial expression, also support the observations gleaned from

the 1st perturbation to the radial distribution function.

5.3 Comparison of NC deformation under shear with related

models of polymer assemblies

The stresses induced are caused by the stretching of bonds which

results in deformation of the microstructure and the correspond-

ing strain is computed from components of radius of gyration ten-

sor (G). The configuration thickness (δ2) is defined as

δ2 =
√

G22, and δ̄2 =
δ2

δ2(Pe = 0)
. (22)

The ratio of shear and normal strain difference determines the

orientation45 of the NC, given by:

tan(2θ) =
2G12

G11 −G22
, (23)

where θ is configurational orientation of the NC. The configura-

tional thickness and configurational orientation calculated from

equation (22) and equation (23) are plotted in Figure 13, where

〈θ〉 and
〈

δ̄2

〉

for various shear rates and crosslinking densities are

depicted. Since the applied shear is in the r1 direction, with r2

being the gradient direction, G12 represents the shear strain, and

G11 −G22 represents the 1st normal strain difference. We plot the

configuration thickness as well as the NC orientation against time

in Figure 14(a), which together indicate how the configuration

thickness associated with change in shape of the NC is related

to the NC tumbling motion. The correlated motion in θ versus

t and δ versus t clearly suggests that the tumbling motion is a

mechanism by which the system relieves the build-up of internal

stress. It is also intriguing to note that the tumbling relaxation

time is highly sensitive and decreases with increasing degree of
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(b)

Fig. 13 (a) Configurational orientation and (b) configurational thickness

for various Wi and crosslinking densities.

crosslinking.

In a linear response model, the ratio of the applied force

to the deformation represents a "stiffness": for e.g., in the

case of a Hookean spring, the stiffness constant Kspring =

|force|/|displacement|. Since, δ2 depends on Wi, Teixeira et al. 45

have introduced a general relationship: δ2 ∼ Wi−n in order to

compare various models. Since Wi can be regarded as an ap-

plied force and 1/δ2 as an effective deformation, the stiffness or

resistance to configurational thickness can be measured by the

product 〈δ2〉Wi. Figure 14(b) shows the averaged configurational

thickness resistance (〈δ2〉Wi). Fits to the data indicate the config-

urational thickness resistance increase with increasing crosslink-

ing. That is, the configuration thickness scales as Wi−0.01 for

0% crosslinking and as Wi−0.11 for 160% crosslinking. Teixeira

et al. 45 have previously shown that for a linear worm-like chain

(WLC) polymer system 〈δ2〉 ∼ Wi−0.26. Here, compared to the

Teixeira et al. 45 result for a soft linear system, 〈δ2〉 is relatively

weak function of Wi for all NC.

Due to the prolate shape of the NC under shear, the stresses

are not only dependent on the deformation but also on the ori-

entation of the nanocarrier, which is evident from Figure 13 and

Figure 14. In particular Figure 10 and Figure 11 show that under

shear, a large degree of crosslinking leads to sphere-like shapes,

while smaller degree of crosslinking leads to NC shapes approach-

ing rod-like geometries. Moreover with the deformation field

along the r1 − r2 direction, and increasing shear, the NC tum-

bles (Figure 14(a)) and the average orientation over the tum-
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Fig. 14 (a) Time evolution of configurational thickness and NC

orientation for various crosslinking densities at Pe = 5. (b)

Configurational thickness resistance for various Wi and crosslinking

densities.

bling cycle gives important information regarding ratio of shear

strain to normal strain difference, see equation (23). The rheolog-

ical response of rod-like particles, under small shear, is described

by G12 ∼ Pe and (G11 −G22) ∼ Pe2 46,47, for which tan(2θ) ∼ 1
Pe .

Since Wi ∼ Pe, the scaling for rod-like particles corresponds to

tan(2θ)∼Wi−1, as indicated in Figure 15.
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   0% Crosslink, m=0.65, 0.75

 20% Crosslink, m=0.16

 60% Crosslink, m=0.08

Star polymer, m=0.42

Rod-like particles, m=1

Fig. 15
tan(2θ)|

Wi
Wi

tan(2θ)|
Wimin

for various Wi and crosslinking densities.

In contrast, a star polymer’s orientation can be expressed as

function of the Wi and it has been shown that tan(2θ) ∼ Wi−m,

where m ∼ 0.35− 120,21,45. In Figure 15 we plot
tan(2θ)

Wi
for var-

ious shear rates and crosslinking densities, and show the corre-

sponding fits to the data by reporting the values of m; we omit

results for large crosslinking densities (100% and 160%) due to

their spherical shape (see Figure 13). It is evident that the be-

havior of NC with smaller degrees of crosslinking approach the

scaling for rod-like particles.

For ultra soft colloids investigated by Singh et al. 21 m= 0.43, by

Ripoll et.al.20 m = 0.35, while Teixeira et al. 45 have shown that

for long linear WLC polymers, m = 0.46. Our results in Figure

15 indicate that m decreases with decreasing crosslinking; stated

differently, m decreases as the degree of deformation (shown as
λ1

λ3
−1 in Figure 11) of the NC increases.
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Teixeira el. al.(2005) , n=-0.28
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100% Crosslink,  n=0.14

160% Crosslink,  n=0.06

Fig. 16 G12

a2Wi
for various Wi and crosslinking densities. The data are fit to

a power law curve: G12 ∼Win.
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In Figure 16, the ratio of shear strain G12 to Wi is plotted

for various shear rates and crosslinking densities. A decrease

in G12

Wi indicates a decrease in the first normal strain coefficient

which is akin to the effective viscosity of a single NC45, which

is observed for increasing crosslinking. In particular, the expo-

nent governing the decrease in the first normal strain coefficient

with Wi of the crosslinked NC is similar to that reported in sin-

gle molecule experimental results shown by Teixeira et al. 45 . The

0% crosslinked NC at large shear rate, is highly stretched and ap-

proaches G12 ∼ Wi, which is close to that for a rod-like polymer

response to steady shear flow.

5.4 Internal stresses and stiffness of the NC under shear

We calculate internal stresses to estimate the response of NC

to the observed structural changes. Following Irving and Kirk-

wood 48 , (see Appendix A for derivation) stresses are calculated

using the expression:

σ̄σσ =−
〈

∑
i j

r̄rri jF̄FF i j

〉

(24)

where σσσ is the stress tensor, FFF i j is force on bead i due to bead j,

and rrri j is the distance vector between the beads i and j.

In Figure 17(a) the shear stresses ( σ̄12

Pe
Pe∗
σ̄∗

12
) is plotted for vari-

ous shear rates, confirming that the NC under shear, shows shear

thinning akin to Figure 16, and the shear thinning effect is signif-

icantly higher than that reported for hard spheres suspensions49.

We have shown that with increasing crosslinking the radius of

gyration of the NC decreases (Figure 6) and the stiffness of the

NC increases (Figure 7), causing us to hypothesize that there is a

likely build-up of normal stress. To directly test this hypothesis,

we compute the trace of the stress tensor, i.e., P
ρkBT =

3

∑
i=1

σ̄ii. In

Figure 17(b), the computed normal stress ( P
ρkBT ) is plotted for

various shear rates and for different crosslinking. For smaller

crosslinking the normal stress increases with shear, and the shear

dependence gets weaker with increasing crosslinking density; for

the largest crosslinking we consider the normal stress is inde-

pendent of shear. This trend is also consistent with those dis-

cussed in Figure 11, which shows that the deformation of a highly

crosslinked NC is a weak function of shear. Our data in Figure

17(c) validates our hypothesis that the stiffness of the NC orig-

inates from the osmotic pressure by clearly showing that with

decreasing radius of gyration, the normal stress increases. For di-

lute suspensions, the osmotic pressure ∼ R−3
g , however as shown

in the figure, the exponent of −8.28 indicates that the intrinsic

stress build-up is significantly larger than that expected from a

dilute system. Below, we explore the mechanism contributing to

the intrinsic stress through a simple theoretical model from the

literature.

In their textbook, Dill and Bromberg 50 have described a net-

work of freely jointed chains to explain the elasticity of networked

polymers and have expressed the free energy (F) as a function of

strain subject to a volume conservation constraint, given by:

∆F = E
(

L2
1 +L2

2 +L2
3 −3L2

o

)

(25)
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Fig. 17 (a) Shear stress σ̄12
Pe

/
σ̄∗

12
Pe∗ ); (b) normal stress at different crosslink

densities; (c) normal stress plotted versus the radius of gyration.
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where, the elongation ratio L̄ = L
Lo

(where Lo = LWi=0) and E
Lo

is

a modulus of elasticity. We approximate the volume of the NC

at Wi = 0 as a sphere of diameter Lo (i.e.Lio = Lo). For Wi > 0,

the normal stress difference (based on the direction of stretching)

deforms the NC from a sphere to an ellipsoid. From the volume

conservation condition we get:

4π

24
L1L2L3 =

4π

24
L3

o

∴ L1L2L3 = L3
o. (26)

The normal stress difference defined as:

σ′
N = σ′

1 −
1

2

(

σ′
2 +σ′

3

)

(27)

where σ′
1 is the stress along the direction of stretch and σ′

2 and

σ′
3 are stresses orthognal to σ′

1. We assume that the deformation

of NC is symmetric along the directions orthogonal to stretching

direction i.e. L1 = L and L2 = L3. We obtain from equation (25)

and equation (26):

∆F = E

(

L2 +
2L3

o

L
−3L2

o

)

∴ σ′
N =

d∆F

dL
=

2E

L2L3

(

L− L3
o

L2

)

=
2EL

L3
o

(

L− L3
o

L2

)

∴ σ′
N =

2E

Lo

(

L̄2 − 1

L̄

)

. (28)

In the above-described model, it can also be stipulated that the

network consists of m freely jointed chains each with Nk links of

length bk, and one can relate the force ( f1) needed for a given

elongation L1, from which the force per unit area can be written

as:

f1

L2L3
=

3mkBT

Nb2L2L3

(

L− Vo

L2

)

∴ σ′
N =

3mkBT

Nkbk
2Lo

(

L̄2 − 1

L̄

)

. (29)

Comparing equation (28) and equation (29), E = 3mkBT

2Nkbk
2 . For

small elongation we assume that L̄ = 1+ ε and we get:

σ′
N =

6E

Lo
ε. (30)

If C is the modulus of elasticity of the NC, then C = 6E
Lo

. We cal-

culate the eigenvalues of radius of gyration tensor equation (13).

We define the elongation L as
√

λ1

λ1Wi=0
where λ1 is the eigenvalue

of the radius of gyration tensor along the direction of elonga-

tion. Similarly, we calculate the eigenvalues of the stress tensor

equation (24) and the normal stress difference is calculated from

equation (27). In Figure 18 the normal stress difference σ̄′
N is

plotted against elongation L̄.

We fit the data for the normal stress difference for each

crosslinking density (dotted lines in Figure 18) for small elonga-

tions as shown in equation (28), from which we further estimate

the elasticity modulus (C). We find that with increasing crosslink-
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Fig. 18 Normal stress difference versus elongation for various

crosslinking densities.

ing the elasticity modulus increases from 0.4 to 15 kPa.

Table 1 Computed stiffness of the NC and the measured structural

stiffness of common biomaterials.

Material type Method Stiffness Ref.

Confluent en-
dothelial mono-
layers

experimental 0.1−0.8Pa Dewey et al. 51

Chondrocytes experimental 0.5kPa Hochmuth 52

Human platelets experimental 1.5−4kPa Mathur et al. 53

Endothelial cells experimental 1.4−6.8kPa Mathur et al. 53

Nanocarrier calculated 0.4−15 kPa

Skeletal muscle
cells

experimental 24.7±3.5kPa Mathur et al. 53

Cardiac cells experimental 100.3±10.7kPa Mathur et al. 53

We also compare the calculated stiffness of the NC with pre-

viously measured stiffness of soft and hard biomaterials in Table

1, and we find that the stiffness of the NC falls in the range of

moderately soft materials.

6 Conclusion

We have developed a model for a new class of highly deformable

polymer based NC synthesized by Coll Ferrer et al. 11,16 and Fer-

rer et al. 15 . We explored zero shear properties of the microstruc-

tures as well as demonstrated the effects of physiologically rel-

evant shear on the structure and dynamic properties of the NC.

Our findings are also consistent with other theoretical findings in

limiting cases. We believe that the development of such models

is essential to gain useful insights that can be translated into the

optimal design of nanocarriers for targeted drug delivery. Future

work will focus on combining this model with previous models for

functionalized NCs54,55 to include adhesive interactions, along

with experimental investigation in-vitro and in-vivo. Together,

these will advance our understanding of the binding affinities of

soft crosslinked NCs to cells.

We acknowledge support from NIH through grants NIH

1R01EB006818-05.
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A Intrinsic Stress

Following Irving and Kirkwood 48 , the stress tensor is given by:

σσσ(rrr, ttt) =− 1

V

[

∑
i

mi (ṙrri − vvv∞)+
1

2
∑
i j

rrri jOi jFFF i j |rrri=rrr

]

, (31)

where, Oi j is the differential operator given by:

Oi j = 1− 1

2!
rrri j.

∂

∂rrr
+ · · ·+ 1

n!

[

−rrri j.
∂

∂rrr

]n−1

+ · · · (32)

We scale stresses by nkBT , where n is the number density of

beads, kB is the Boltzmann constant, and T is the temperature,

and rewrite the expression for stresses as:

σ̄σσ(rrr, ttt) = − 1

N

[

∑
i

miDo

kBTa
( ˙̄rrri − v̄vv∞)+

1

2
∑
i j

r̄rri jŌi jF̄FF i j |rrri=rrr

]

= − 1

N

[

∑
i

τI

τD
( ˙̄rrri − v̄vv∞)+

1

2
∑
i j

r̄rri jŌi jF̄FF i j |rrri=rrr

]

= − 1

2N
∑
i j

r̄rri jŌi jF̄FF i j |rrri=rrr . (33)

Here, τI is the inertial relaxation time and τD is the relaxation

time due to diffusion. Following equation (3), we impose a force

balance in the limit of t ≫ τI

τD
. The stresses are computed using

equation (33), with the differential operator truncated to the 1st

order approximation, i.e. with Oi j = 1. This leads to equation

(24).
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