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Abstract 

“Fragile” glassy materials, which include most polymeric materials and organic liquids, 

exhibit a steep and super-Arrhenius dependence of relaxation time with temperature upon the 

glass transition and have been extensively studied. Yet, a full understanding of strong glass 

formers that exhibit an Arrhenius dependence on temperature is still lacking. In this work, we 

have investigated the glassy dynamics of Poly(N-isopropylacrylamide) (PNIPAM) microgel 

particles of varied elasticity in dense aqueous suspensions, giving rise to a full spectrum of 

strong to fragile glass-forming behaviors. We have observed the dependence of particle motions 

and structural relaxation on particle volume fraction can be weakened by decreasing particle 

elasticity, due to particle deformation and the resulting interparticle elastic interaction upon 

intimate particle contacts at high particle concentration. Both measured α-relaxation time scales 

and dynamic length scales for cooperative rearranging motions of microgels in suspensions show 

similarly dependence on particle volume fraction and elasticity, thereby quantifying the glass 

fragility of dense microgel suspension of varied particle elasticity.   
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Glass-forming liquids are ubiquitous in nature and technology. Their dynamics and 

viscoelastic properties play a significant role in diverse applications from coating, lubrication, to 

polymer nanoimprinting. The glass transition remains to be one of the most contentious topics in 

complex fluids and condensed matter physics. [1-3] Upon approaching the glass transition, the 

viscosity (η) and relaxation time of a glass-forming liquid can grow by many orders of 

magnitude while the order of control parameters, such as T,[4-7] volume fraction, φ,[8] or film 

thickness by spatial confinement,[9] only changes by a factor of 1-2. However, the problem is 

incredibly more complex than the viscosity enhancement as arrays of glass formers display 

surprisingly diverse behaviors upon approaching the glass transition temperature, Tg that itself is 

difficult to define. [1] Fragile glass formers, such as ortho-terphenyl, polystyrene (PS), and 

poly(methyl methacrylate) (PMMA), show a steep super-Arrhenius increase with decreasing 

temperature while strong glass formers, such as silica, show only an Arrhenius increase. [10] A 

fragility index, m, defined as m = dlogη/d(Tg/T),
 
[10] has been introduced as a unifying concept 

to describe the glassy behaviors across various glass-forming liquids. Strong glass formers have 

low values of m, implying the change of viscosity with temperature is very modest as Tg is 

approached from above. In contrast, fragile glass formers have high values of m, indicating that 

the change of viscosity is steep for a modest reduction in temperature. Most polymeric materials 

and organic liquids fall into the category of fragile glass formers. [11] It is recently demonstrated 

that the fragility of glass formers can be tuned by adding substituents or increasing density.[7,12-

13]
 
 For instance, PMMA has a fragility index of m = 80; when adding a cyclohexane ring as a 

substituent to make poly(cyclohexyl methacrylate), m is reduced by a factor of three [14]. In 

addition, by increasing the pressure of the liquid, Tg can be extended to higher temperatures, 

which will further modify the fragility of the glass. [15] Recently, the ratio between the 
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activation enthalpy and energy has been found to determine the fragility of the glass, yet there is 

limited adequacy of this relationship. [16] Further, a unique feature that contrasts strong glasses 

from fragile ones is that strong glasses possess highly directional bonding, resulting in 

anisotropic interaction potentials. [1,17]
 
Yet, it is unclear how such directional interaction affects 

the process of microscopic structural relaxation.  

Despite extensive experimental and theoretical investigations, the relaxation dynamics of 

glass forming liquids remains inadequately understood [2-5]. The Adam-Gibbs theory (AGT) 

proposed an entropic-driven relaxation process for glass formers and attributed the viscosity 

growth to the presence of dynamically heterogeneous sub-regions designated as “cooperatively 

rearranging regions” (CRRs). [8] The growth of the length scale associated with CRRs implies a 

random first-order transition (RFOT) from a liquid state to a glass state. [18-19] However, the 

AGT gives no explicit description of the structural relaxation for glass formers of different m or 

how the CRRs grow in strong glasses. Furthermore, while recent work using the AGT developed 

a highly specific relationship for the configurational entropy of the glassy material, a single 

equation detailing the slow-down dynamics for an arbitrary glass may not exist. [20] A similar 

dilemma is encountered with the mode-coupling theory (MCT) [12]. The MCT described the 

glass transition as the structural arrest of particles by the “cages” generated by their nearest 

neighbors and predicted the β- and α-relaxation times corresponding to the ballistic motion inside 

their cages and the long time scales for cage escaping, respectively. For molecular liquids, this 

model is only valid for low viscosity and diverges in the low temperature, ultra-viscous domain. 

[21] While these theories have been tested with both molecular and colloidal fragile glass 

formers to show good agreement with experimental [22] and computational results, [23] little 

insight is offered to the underlying physics responsible for the origin of glass fragility. There are 
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very few direct microscopic details of colloidal glasses to elucidate the relationship between 

heterogeneous dynamics and intermittent glass fragility.  

 Dense colloidal liquids have been examined by microscopy to reveal ϕ-dependent 

dynamic characteristics similar to the T-dependent behaviors of molecular glasses. [2,24-25] 

Colloidal liquids present an ideal system to study glassy dynamics over molecular glasses as the 

particles in a dense suspension are directly observable via optical microscopy and their dynamics 

is measurable in real time and real space. Therefore, this study focuses on colloidal glasses of 

tunable fragility and varied volume fraction to further elucidate the phenomena of glassy 

dynamics. Extensive microscopic studies on model “hard-sphere” colloidal liquids have 

confirmed the slow-down of particle motion in the super-cool region starting at ϕ≈0.53 and the 

onset of the glass region at ϕg≈0.58. [11,24-25] Yet, until recently, most colloidal systems are 

regarded as fragile glass formers. Highly deformable particles in liquid suspensions are 

demonstrated to make strong glasses, exhibiting a delayed onset of a glass state due to their 

elastic interparticle interactions. [11,26-27] However, a direct and quantitative study of glassy 

dynamics in a full range of m has been very few. [28] Distinct from previous studies which 

inferred glassy dynamics from dynamic light scattering and rheology measurements, [8,27] in 

this paper, we report the real-space and real-time microscopic study of the glassy dynamics in a 

single microgel system with varied particle elasticity, allowing us to tune fragility and examine 

its effect on structural relaxation. We tracked individual particle motions and analyzed structural 

relaxation of deformable microgel particles in aqueous suspensions of increased particle 

concentration toward the glass transition. We thus examined the relationship between particle 

elasticity, glass fragility, and structural relaxation of dense microgel suspensions.  
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 Poly(N-isopropylacrylamide) (PNIPAM) microgels of varied crosslinking densities were 

synthesized using the method of free radical polymerization described elsewhere [29] and 

detailed in supplemental materials. Fluorescence-labeled PNIPAM microgels of five different 

crosslinker-to-monomer (CL) ratios of CL=0.9%, 1.6%, 2.2%, 3.3%, and 6.6% to vary the 

particle elasticity ranging from soft to model “hard” spheres were examined. Particle dynamics 

of PNIPAM microgel in bulk suspensions of volume thickness ≥ 150 µm were examined by 

three-dimensional visualization using a confocal laser scanning microscope (CLSM) (Zeiss LSM 

5 Pascal) with an oil-immersion objective lens (NA = 1.4, 100x). 

 For non-“hard-sphere” colloidal suspension, ϕ-dependent phase behavior has not been 

explicitly defined and could strongly depend on particle elasticity. In this work, we have chosen 

ϕ ranging from the liquid regime to the values far exceeding the random close packing limit of 

ϕ=0.64 predicted for model “hard-sphere” suspensions. [8, 18] At all the ϕ studied in this work, 

microgel particles in aqueous suspensions exhibit disordered and amorphous static structures as 

confirmed by the Voronoi tessellation analysis (see Supplemental Figure 1). Considering the 

deformability of microgel particles upon intimate particle contact at high concentrations, we 

define the effective average radius, reff, of a microgel particle by the geometric mean of the 

unperturbed particle hydrodynamic diameter, dH, and the center-to-center interparticle distance 

Ro, determined from the peak value of the pair correlation function, g(r) in Supplemental Figure 

2, as ���� = �
���	
� . Accordingly, the effective volume fraction is defined as ���� = 
 ∙

����������
� , where n is the total number of particles tracked in the box volume, V. As R0 and dH 

underestimates and overestimates the size of the microgel, respectively, there is a degree of error 

associated with reff and ϕeff. However, our ϕeff is consistent with the ones determined from the 

scaling of suspension viscosity with particle concentration. [27-28] Therefore, we expect the 
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values of reff and ϕeff are within acceptable degree of error for this study. We have observed that 

the primary peak in g(r) for PNIPAM particles of low CL=0.9 and 2.2 % shifts to smaller r with 

increased ϕeff, in sharp contrast to the ϕeff-independent, stable peak position for particles of 

CL=6.6 % that resemble “hard-sphere” colloids and ϕeff = ϕ (see Supplemental Figure 2). Using a 

simple Hertzian model, [26] the elastic modulus, E (unit: Pa) of these microgel particles is 

estimated from g(r) following	���� = −�� !
"��� = #
�$%�1 −

�
'�$ �⁄ )* at � ≤ , = 2����, where 

U(r) is the chemical potential energy, r is the radial distance from center of the particle, and Vc is 

the volume of the contact area and approximated as )* ≈ #
/0�

12345
� �/, and averaged over the 

values at different φeff. This model is valid for single contact between any two adjacent particles 

and therefore applicable for an intermediate concentration range as explored in this work. E of 

PNIPAM particles corresponding with varied CL is summarized in Table 1.  

We start with measuring the mobility of PNINPAM particles of different E in aqueous 

suspensions against φeff. The particle mobility is quantified by the mean squared displacement 

(MSD) along the x-coordinate direction against lag time, τ [31-32]  

< ∆8� >= �
:∑ < [8=�>� − 8=�?�]� >:=A�                                          (Eq.1), 

which is averaged over all the N particles in the scan area and initial time, t. We did not analyze 

the MSDs along the z direction due to insufficient temporal resolution, which has been typically 

neglected in previous studies of particle dynamics using confocal microscopy. [9, 24, 31] On the 

other hand, the resolution in the x and y directions is equivalent and therefore < ∆8� >≈<
∆B� >. Due to the size difference in the microgels of different E, we have normalized τ by a 

scaling factor, � = 12,CD
12,CDEF.F%,	the size ratio of particle at CL=6.6% to the ones at different CL. 

For the stiffest microgel of E=2.6×10
4
 Pa whose elasticity is comparable to that of common 
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microgels, [27,33] a strong dependence of MSD on ϕeff is observed in Figure 1c, exhibiting the 

characteristic “super-cooled” dynamics. As ϕeff increases, the mobility of particle decreases and 

becomes arrested at ϕeff=0.58, the same as the predicted for model “hard sphere” colloidal glass 

transition. [25] In contrast, for the softest PNIPAM particles of E=166 Pa, minimal change in 

mobility is observed in Figure 1 as increasing ϕeff from 0.49 to 0.61. At ϕeff =0.74 and 0.82, 

arrested particle motion is observed with the emerging plateau in MSD, where particles become 

caged by their neighbors over long timescales, and followed by sub-diffusive motion at τ > 

5×10
3
 sec due to cage escape. The weak dependence of MSD on ϕeff reflects the characteristics of 

non-fragile liquid behavior. For the PNIPAM particles of intermediate E=179 Pa, the dynamic 

behavior shown in Figure 1b falls between the “hard-sphere” and the soft ones. Substantial 

reduction in particle mobility is observed as increasing ϕeff from 0.38 to 0.61, yet the onset of an 

arrested state is measured at much higher concentrations, ϕeff =0.79. Furthermore, the plateau at 

intermediate ϕeff  =0.61-0.68 is surprisingly short, suggesting caging is not fully enhanced. This 

is likely due to the deformation of particles upon intimate contact with their neighbors, which 

may facilitate the cage escape for structural relaxation.  

Results shown in Figure 1 indicate that the onset ϕeff for dynamic arrest strongly depends 

on microgel elasticity. We then examine the E-dependent structural relaxation by measuring the 

overlap order parameter,  

IJ�?� = 	 �:∑ K�|�M�?� − �N�0�|�:MA�                                            (Eq. 2), 

where K = 1	P�	0	QR	|�M�?� − �M�0�| < P� > S , respectively. IJ�?�  quantifies the average 

number of “overlapping” particles separated by a distance, a, over a given τ, thereby evaluating 

the localization of particles. The parameter, a, is a “coarse graining” length scale that is typically 

larger than the vibration amplitude of particle motion in the β-regime. For “hard-sphere” 
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colloidal glasses, the particle radius is often chosen as a to give the best distinction between 

localized and delocalized particles. [9] In this work, considering the deformation of particles at 

high ϕeff, we have taken a = reff for the analysis. For PNIPAM particles of E=179 and 2.6×10
4
 Pa 

as shown in Figure 1e-f, respectively, we have observed the glassy dynamics: IJ�?� remains the 

unity at ϕeff ≥ 0.61 and 0.51, respectively, where the particles are deeply localized over τ 

approaching 10
5
 sec. In contrast, the softest PNIPAM particles of E=166 Pa become localized 

over much shorter τ from 10
3
 sec to 4×10

4
 sec at ϕeff =0.66-0.82, respectively. The α-relaxation 

time,τα, characterizing the super-exponential decay of qs(τ), is extracted by fitting qs(τ) with the 

Kohlrausch-Williams-Watts (KWW) formula, [33]  

IJ�?� = TU8V�−�?/?X�Y�	                                                      (Eq. 3), 

where A is a freely floating parameter for varied ϕeff and E and β is the stretching exponent. τα as 

a function of ϕeff for PNIPAM microgel of different E is summarized in Figure 2. Within a 

degree of error associated with this fitting procedure, two contrasting behaviors of τα are 

apparent. Softer microgel particles exhibit a gradual growth of τα with ϕeff while there is a much 

more abrupt, Super-Arrhenius growth for the stiffer microgel particles. The dependence of τα on 

E suggests that the MCT can be applied to strong glass-forming liquids. β against ϕeff /φg for 

PNIPAM microgel of different E is summarized in Supplemental Figure 3. As expected, the 

relaxation stretches with increasing ϕeff  through the super-cooled phase approaching the glass 

transition. Interestingly, the relaxation becomes more stretched at smaller volume fractions for 

the softer microgel, providing further evidence of the E dependence of the microgel phase 

behavior. 
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 We have determined the phase diagram from τα for non-“hard-sphere” PNIPAM 

microgels of different E in Figure 3. A liquid phase is characterized by a simple exponential 

decay of qs(τ) without noticeable dynamic arrest. A glass phase is defined by τα ≥τg, where 

τg=10
5 

sec is chosen as it recovers the onset volume fraction, φg=0.58 for the stiffest PNIPAM 

microgel resembling “hard-sphere” colloids. [11] φg for non-“hard-sphere” PNIPAM particles is 

determined by interpolating φeff at τα=τg. The intermediate super-cooled phase between the liquid 

and glass states exhibits significant slow-down of particle dynamics with τα<τg. Representative 

micrographs at each phase for PNIPAM microgels of E=166 and 2.6×10
4
 Pa are exhibited in 

Supplemental Figure 4. For the particles of E= 436 and 2.6×10
4
 Pa, their phase diagrams appear 

similar to ones reported for “hard-sphere” colloids, where the glass transition is determined at ϕg 

=0.58. Decreasing E leads to an extended super-cooled regime and shifts the ϕg to higher ϕeff, 

indicating a much more gradual transition as specified in the plot of kτα against ϕeff/ϕg in Figure 

2. In agreement with the AGT, τα is observed to scale as UZ/[��� , where A is a constant related to 

configurational entropy. For the two stiffest microgels, there is a sharp increase in τα as the glass 

transition is approached. For soft microgels of E=166-179 Pa, the increase of τα with ϕeff becomes 

much more gradual, exhibiting the characteristic of strong glass formers. We thus determine the 

fragility index, m, from the results of τα shown in Figure 2 as \] = ^1[_`	�]a�]1�[ [b�⁄ c
[A[b

 (Eq. 4) and 

plotted against E in Figure 5. The stiffest microgels show the highest index value of \]≈10, 

which agrees with the value reported for model “hard-sphere” colloidal glass. [35] 	\] decreases 

sharply to ≈4 for the two softest microgel systems. This behavior is similar to molecular glasses 

where the fragility index drops precipitously from 80 for PMMA fragile glass to 20 for SiO2 

strong glass. [10] We also observe the presence of an intermediate regime at intermediate E, 
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which does not fall into either strong or fragile glass former groups as described in the Angell’s 

plot. [4] Nevertheless, it suggests that tuning particle elasticity, giving rise to varying 

interparticle elastic interaction, could cause the transition between strong and fragile glasses.  

 Results shown in Figure 1 and 2 also suggest that highly deformable microgel particles 

are less caged even at volume fractions beyond close packing. Thus, we expect that decreasing 

particle elasticity enhances the cooperative motion responsible for the structural relaxation. We 

have quantified the CRRs by the correlation length scales using the four-point correlation 

function, g4(r,τ) of the dynamics measured in two different points of time and space:  

"#��, ?� = �
:d∑ < ef� + �h�0� + �M�0�i ∙ K ��M�0� − �=�?�� ∙ Kf�h�0� − �j�?�i > −< kl�]�

: >�			M=hj  (Eq. 

5), where the first term is a pair correlation function, g4
ol

(r,τ) for overlapping particles and the 

second term is the square mean value of qs(τ) in Eq. 2. We have calculated  

"#∗��, ?� = 	"#nj��, ? � < IJ�?⁄ �/o >�− 1                                (Eq. 6) 

and shown g4*(r,τ) at varied τ and ϕeff for PNIPAM microgel of varied E in Supplemental Figure 

5. Consistent with our prior work [9], we have confirmed that g4*(r,τ) captures the dynamic 

heterogeneity of the stiffest PNIPAM microgels where the range of dynamic correlations reaches 

a maximum at an intermediate time scale and decrease at shorter and longer time scales. 

Surprisingly, for soft microgel particles, g4*(r,τ) do not show any growth over the observation 

period. We have applied an “envelop fitting” method to extract the dynamic length scale, ξ4, on 

the time scales where g4*(r,τ) is peaked using "#∗��, ?� = TU8V�−� p#�⁄ 	over a range of 2 µm < 

r < 9 µm where A is a free floating variable. [9,36-37] ξ4 is a time-dependent property that reveals 

the growth of CRRs in the super-cooled regime. We have observed the presence of a 

characteristic peak in ξ4 at long lag times for both the softest and stiffness microgels as shown in 

Figure 4a-b, respectively. It suggests that the growth of CRRs to their maximum sizes is a slow 
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process that could be independent of liquid fragility. Consistent with our previous observations, 

[9] we have observed the largest ξ4 with the stiffest microgel of E=2.6×10
4
 Pa as shown in Figure 

4b. The peak values of ξ4 are typically considered the equilibrium sizes of the CRR, [9] shown as 

a function of E in the inset of Figure 4c. Consistent with the behavior of g4*(r,τ), ξ4 does not 

significantly vary for the softer microgels and increases abruptly for the stiffer microgels. The 

maximum ξ4, normalized by ξ4,glass at ϕeff is plotted against ϕeff/ϕg in Figure 4c. Evidently, the 

growth of ξ4 with ϕeff is much more gradually for the microgels of lower E. Although the AGT 

did not explicitly predict how the CRRs grow in strong glass former, the results shown in Figure 

4 suggest a similar process for the fragile and strong glass-forming liquids. The extended super-

cooled phase for the softer microgels likely leads to the gradual growth of CRRs, where the 

abrupt growth CRRs observed for stiff microgels results from the small super-cooled phase. We 

have also derived the fragility index from ξ4 as \q = ^ 1q�
1�[ [b�⁄ c

[A[b
 (Eq. 7). As shown in Figure 

5, the striking similarity between \]	and \r and their dependence on E provide direct evidence 

of the strong relationship between cooperative motions and glass fragility. 

 In conclusion, we have examined the transition between strong and fragile glass formers 

in a single microgel system of varied particle elasticity. PNIPAM microgel particles of high 

elasticity resemble the model “hard-sphere” colloidal liquids as fragile glass formers, where both 

τα and ξ4 show a super-Arrhenius increase with ϕeff. Highly deformable microgel particles of 

decreasing elasticity exhibit a delayed glass transition at higher ϕeff and an extended super-cooled 

regime. The dependence of τα and ξ4 on ϕeff is weakened by lowering elasticity, leading to the 

transition from fragile to strong glasses. This is further revealed by the elasticity dependence of 

the fragility indices, mτ and mξ. It suggests that the glass fragility and structural relaxation 
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processes of glass-forming liquids can be modified by particle elasticity due to particle 

deformation that gives rise to enhanced elastic interaction between particles.  
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Table 1. Materials properties of PNIPAM microgel particles of different crosslinking density 

(CL) that leads to varied hydrodynamic diameter (dH), elastic modulus (E), scaling factor (k), and 

onset volume fraction for glass transition (ϕg). φg for non-“hard-sphere” PNIPAM particles of 

different E is determined by interpolating φeff at τα=τg. 

 

 

 

 

CL (%) 0.9 1.6 2.2 3.3 6.6 

dH (µm) 1.77 1.34 1.95 1.85 1.4 

E (Pa) 166±106 169±24 179±34 436±24 (2.6±1.5)×104 

k 2.02 0.88 2.70 2.31 1 

ϕg 0.96 0.87 0.72 0.58 0.58 
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Figure caption 

Figure 1. Mean-squared displacements (MSD) plotted against scaled lag time, kτ, for dense 

PNIPAM microgels of (a) E = 166 Pa at ϕeff = 0.49 (black squares), 0.54 (red circles), 0.61 (green 

triangles), 0.66 (inverted blue triangles), 0.74 (cyan diamonds) and 0.82 (magenta left-facing 

triangle), (b) E = 179 Pa at ϕeff = 0.38 (black squares), 0.51 (red circles), 0.61 (green triangles), 

0.68 (inverted blue triangles), and 0.79 (cyan diamonds), and (c) E = 2.6×10
4 

Pa at ϕeff = 0.38 

(black squares), 0.48 (red circles), 0.51 (green triangles), 0.56 (inverted blue triangles) and 0.58 

(cyan diamonds). (d)-(f) Overlap order parameter, qs(τ), corresponding to PNIPAM microgels 

shown in (a)-(c), respectively, with the same symbol colors and shapes. 

 

Figure 2. Scaled α-relaxation time, kτα, is plotted against ϕeff normalized by ϕg for PNIPAM 

microgels of E = 166 Pa (black squares), 169 Pa (red circles), 179 Pa  (green triangles), 436 Pa 

(inverted blue triangles), and 2.6×10
4 

Pa (cyan diamonds). Solid lines represents the scaling of 

the data points with the Adam-Gibbs model, ?X~UZ [���⁄  Inset: kτα is plotted against ϕeff. 

 

Figure 3. Phase diagram of PNIPAM microgels of different E versus ϕeff, exhibiting three 

distinct phases, liquid (black circles), super-cooled (red triangles), and glass (green inverted 

triangels.) Arrows and dash-lines are drawn as the guideline for eyes. 

 

Figure 4. Dynamic length scale, ξ4, scaled by corresponding reff, for PNIPAM particle of (a) E = 

166 Pa at ϕeff = 0.47 (black squares), 0.60 (red circles), 0.75 (green triangles), and 0.81 (inverted 

blue triangles) and (b) E= 2.6×10
4 

Pa
 
at ϕeff = 0.49 (black squares), 0.52 (red circles), 0.56 (green 

triangles), and 0.58 (inverted blue triangles). (c) Normalized ξ4 by the one upon the glass 
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transition, ξ4,g, is plotted against ϕeff /ϕg for PNIPAM microgels of E = 166 Pa (black squares), 

169 Pa (red circles), 179 Pa  (green triangles), 436 Pa (inverted blue triangles), and 2.6×10
4 

Pa 

(cyan diamonds). Inset: ξ4/ξ4,g is plotted against ϕeff. 

 

Figure 5. Fragility indices mτ (black squares) and mξ (red circles) against E. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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ToC Graphics 
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