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We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-

diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power

potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the

case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to

define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing

point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even

though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare

the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship

based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing

transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to

identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively,

we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger

shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find

different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-

thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with

shear. Our results provide a systematic evaluation of the role of particle softness in equilibrium and nonequilibrium transport

properties and their underlying connection with thermodynamic and structural properties.

1 Introduction

Concentrated suspensions of soft particles, such as micro-

gel suspensions, polymer coated colloids and compressed oil

in water emulsions, have attracted a lot of scientific inter-

est1,2. These soft particles which are deformable and im-

penetrable can be packed beyond the random close packing

fraction for hard spheres3. Purely repulsive inter-particle in-

teractions have been widely used to model soft particle sus-

pensions and to understand the fundamental questions related

to their behavior4,5. Among various soft repulsive potentials,

the inverse-power potential (IPP) has been studied extensively

due to its simple form and ability to capture interesting phys-

ical phenomenon6–10. For large values of n, the behavior

of the IPP approaches the hard sphere limit11. The interac-

tions between poly-12-hydroxystearic acid (PHSA) particles4

and several types of core-shell microgel particles5,12–14 have

been successfully mapped to the IPP. The IPP model has sim-

ply two phases: the fluid phase and the crystal phase, with

a well-known universal phase diagram15–17. The thermody-
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namic state of an IPP fluid is governed by a single dimension-

less parameter that couples the temperature and density.

The relationship between particle softness and the static and

dynamic properties has been a major topic of interest for soft

particles18,19. Recent simulations of IPP fluids attempted to

establish the scaling relation between the transport coefficients

(e.g., diffusion coefficient or viscosity) and the particle soft-

ness. A scaling law derived from the perturbation theory was

proposed to collapse transport coefficients for extremely soft

systems (n ≤ 12), while it was deemed ineffective for higher

n due to the lack of higher order terms in the expansion of

the interaction energy20. More recently, for intermediate n

(18 ≤ n ≤ 36), a scaling relation based on the freezing point

is able to collapse the transport coefficients21. In addition to

the scaling relations specifically for the IPP, Rosenfeld pro-

posed a simple quasi-universal relationship between reduced

transport coefficients and excess entropy22. This relationship

is supported by many studies on various fluid models23,24 and

real fluids25,26.This treatment has also been extended to bi-

nary fluid mixtures23,26–28, anomalies in water-like model flu-

ids29–38 and particles under confinement39,40.

In the first part of this paper, we test the freezing-point scal-

ing relation for soft sphere fluids for an extended parametric

space (n ≥ 4) through molecular dynamics simulations. We
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find that the reduced diffusion coefficient and viscosity data

for IPP fluids collapse when plotted against the reduced cou-

pling parameter for a broader set of potential softness; the

quality of the collapse deteriorates away from the freezing

transition. We also report data to test the scaling relation be-

tween the reduced transport coefficients and the two-body ex-

cess entropy. An almost perfect collapse of all the data be-

low the freezing transition is observed in this case, which fur-

ther highlights the usefulness of entropy-based scaling rela-

tionships.

Colloidal suspensions exhibit nonlinear response to the ap-

plied flow rate, i.e., shear thinning, thickening or a combina-

tion of the two types of responses. Understanding the shear

rheology of dense colloidal suspensions still remains a chal-

lenge. Many experimental studies and computer simulations

have attempted to relate changes in particle configurations to

the nonlinearity of these phenomena41–50. Recently, simulta-

neous appearance of layering and shear thinning was observed

by Cheng et al.43. However the results of Xu et al.51 indicated

that the simultaneous appearance of layering and shear thin-

ning is coincidental rather than causal. They demonstrated

that pair structure in the suspension has a stronger correla-

tion with shear-thinning phenomenon, whereas the layer for-

mation can be enhanced by the presence of planar boundaries,

e.g., walls in experiments or simulations51. Several groups

observed hydroclusters in the shear thickening regime43,45,

which is consistent with the prediction by Brady and cowork-

ers52–55 that shear thickening is caused by the formation of

transient hydroclusters induced by shearing.

Shear rheology of hard sphere systems, such as silica, poly-

methyl-methacrylate (PMMA) and polystyrene (PS), have

been extensively studied due to its simplicity and abundance

of relevant theoretical work56,57. Soft sphere systems, span-

ning from ultrasoft polymeric coils and star polymers such as

core-shell microgels and emulsions, show richer rheological

behavior than their hard sphere counterparts1–3. Understand-

ing and predicting the relation between structure and macro-

scopic rheological properties of soft sphere fluids is much

more challenging. The rheological properties of soft particle

systems are closely linked to the interparticle interaction soft-

ness, which implies the tunability of the rheological behavior

by varying the particle softness. Nazockdast and Morris58 in-

vestigated the effect of steepness of repulsive interactions on

the structure and rheology of sheared colloidal suspensions

from both simulations and theory. In their study, soft colloids,

modeled by a combination of hard-sphere and Yukawa inter-

action potentials, exhibited only the shear-thinning behavior

and lack of shear thickening. They proposed that lubrication

forces are significantly reduced in soft colloidal systems, and

the interparticle repulsive force balances the shearing force to

determine the pair microstructure. Recently, Zhou et al.12 ex-

amined the effect of microgel softness on its shear thicken-

ing behavior using core-shell microgel particles. The mea-

sured interaction potentials between microgel particles were

successfully mapped to the inverse-power potential. With an

increase in the effective volume fraction or temperature, or

decrease in the shell thickness, the shear thickening behavior

became more obvious. Xu et al.41 also examined the effect

of particle softness on the structure of colloidal suspension by

tuning electrostatic interactions, which effectively changes the

particle diameter, thereby affecting the direct contact distance

between the particles. They found that electrostatic interac-

tions played a complex role in the suspension structure.

In the second part of this paper, we investigate the ef-

fect of particle softness on the microstructure and rheology

of soft sphere fluids using nonequilibrium molecular dynam-

ics (NEMD) simulations. Qualitatively, we observe a simi-

lar shear-thinning behavior for particles with different soft-

ness, though softer particles exhibit stronger shear-thinning

tendency. By investigating the microstructure of these sys-

tems, we find a strong correlation between the structural

changes and particle softness in the presence of shear. Specif-

ically, shear slightly enhances the overall translational order

of quasi hard-sphere fluids by strengthening correlations be-

tween nearest-neighbor particles, while significantly decreas-

ing the translational order in the case of softer particles by

weakening the long-range correlations. Shear has a more pro-

nounced effect on enhancing the correlation along the flow

direction for quasi-hard sphere fluids, while inducing a pro-

nounced secondary depletion region for ultrasoft particles.

These different responses to shear can explain the extent of

shear-thinning behavior observed for different particle soft-

ness.

2 Model and methods

The soft sphere potential has the form:

U(r) = ε
(σ

r

)n

, (1)

where r is the distance between two particles, σ is the parti-

cle diameter, ε sets the energy scale and n determines the in-

creasing particle softness with decreasing n. Throughout this

paper we use reduced Lennard-Jones (LJ) units, where σ is

the unit of distance, ε is the unit of energy, and mass is mea-

sured in units of particle mass m. The cutoff distance is set to

rc = 2.5σ . We simulate a system of 500 particles in a canon-

ical ensemble (constant N, V, and T) using the Nosé-Hoover

thermostat59. Equations of motion are integrated using the

velocity Verlet algorithm with a time step of 0.001 in reduced

LJ units. Because the thermodynamic state of IPP fluid is gov-

erned by the coupling parameter Γ= ρσ3(ε/kBT )3/n, where ρ

is the number density, kB is Boltzmann’s constant and T is the

absolute temperature, the density and temperature essentially

2 | 1–8

Page 2 of 8Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



play the same role. In this study we set T = 1.0 for simplic-

ity. The state points employed in simulations and values of the

coupling parameter at the freezing point, Γf, for different parti-

cle softness n are tabulated in Table S1†. The initial configura-

tion is an fcc lattice, which is first melted at very high temper-

ature (T = 4.0), and then the system temperature is quenched

to the temperature T = 1.0 for further equilibration. The diffu-

sion coefficients are calculated from the mean square displace-

ment via the Einstein relation60, while the zero-shear viscosity

is determined by using the Green-Kubo relation61. For NEMD

simulations, the thermostatted SLLOD equations of motion

with continuous deformation of the box shape, which is con-

ceptually similar to the Lees-Edwards boundary condition, are

used to study the system under shear62. The x-direction is set

as the flow direction, while the velocity gradient is applied in

the y-direction. Shear rate is defined as γ̇ = dvx/dy, and the

shear viscosity is calculated as η = 〈Σxy〉/γ̇ , where Σxy is the

xy component of the stress tensor. The two-body translational

structural order parameter or excess entropy s2 is computed

using the expression63:

s2 =−
ρ

2

∫

{g(r)lng(r)− [g(r)−1]}dr, (2)

where ρ is the number density and g(r) is the pair distribution

function. This expression stems from an expansion of entropy

in terms of the partial N-body distribution functions64,65. s2

is zero for completely disordered systems, and becomes neg-

ative infinity for a perfect crystal. Although excess entropy

can be rigorously calculated via simulations28,40,64, it has been

shown in earlier studies that the two-body excess entropy is a

reasonable approximation for the full excess entropy in the

case of many atomistic fluids23,24. The cumulative order inte-

gral Is2
is defined as:

Is2
(r) =

ρ

2

∫ r

0
dr′

∫ 2π

0
dθ

∫ π

0
dφr′2sin(φ) f (r′,θ ,φ), (3)

where f (r′,θ ,φ) = g(r′,θ ,φ)lng(r′,θ ,φ)− [g(r′,θ ,φ)− 1].
Is2

measures how interparticle correlations on length scales

less than r impact the structural order. As defined, Is2
ap-

proaches -s2 as r approaches ∞.

3 Results and discussion

3.1 Equilibrium transport coefficients

Lange et al.21 proposed a scaling law based on the coupling

parameter at the freezing point, Γf, to scale the diffusion coef-

ficient and viscosity data for n ≥ 18 . They observed that the

long-range structure is almost identical for systems with dif-

ferent particle softness at the freezing point, while structural

differences at short distances appeared because of the differ-

ent shapes of the interaction potential. The reduced coupling
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Fig. 1 (top panel) Reduced diffusion coefficient,

Dρ1/3(kBT/m)−1/2, and (bottom panel) reduced viscosity,

ηρ−2/3(mkBT )−1/2, versus reduced coupling parameter Γ/Γf for

different particle softness, n, as indicated in the legend.

parameter Γ/Γf basically measures how far the system is away

from the freezing transition, which can be treated as a key pa-

rameter for comparing systems with different softness. In this

study, we first test this scaling law for an extended parametric

space. Specifically, we investigate n = 4, 6, 8, 10, 12, 24, 36

and 0.01 ≤ Γ/Γf ≤ 1.

We use the reduced transport coefficients, D∗ =
Dρ1/3(kBT/m)−1/2 and η∗ = ηρ−2/3(mkBT )−1/2 as

suggested by Rosenfeld22 to account for trivial changes in

D and η due to temperature and density. Figure 1 shows the

reduced diffusion coefficient, D∗ (top panel), and viscosity,

η∗ (bottom panel), as a function of the reduced coupling

parameter Γ/Γf for different particle softness, n. The un-

scaled D and η data are plotted as a function of Γ and Γ/Γf in

Figures S1 and S2†. Both D∗ and η∗ appear to collapse onto

single curves when plotted versus Γ/Γf. Although the scaling

law leads to a collapse of both diffusion and viscosity data,

one can notice that the width of the master curve is still large.

Due to the large statistical uncertainty in estimating viscosity,

the master curve for viscosity is thicker than that for diffusion.

The quality of the collapse improves with increasing n as the

system approaches the hard-sphere limit. Also, as the density

(or Γ) increases and approaches freezing, the quality of the

collapse improves in both cases as one might expect.

Another useful thermodynamic quantity that can also be

measured easily in a simulation is the two-body excess en-

tropy s2
66. Rosenfeld22 observed that reduced transport coef-

ficients exponentially depend on the excess entropy of a liquid.
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Fig. 2 (top panel) Reduced diffusion coefficient,

Dρ1/3(kBT/m)−1/2, and (bottom panel) reduced viscosity

ηρ−2/3(mkBT )−1/2, versus negative two-body excess entropy, -s2,

for different softness, n, as indicated in the legend.

In fact, this relation is approximately true for many “strongly

correlating” simple liquids67.

The quantitative link between the reduced transport coef-

ficient and -s2 is tested here for soft sphere fluids. Figure 2

shows the reduced diffusion coefficient D∗ (top panel) and vis-

cosity η∗ (bottom panel) data as a function of -s2 for different

particle softness n (see legend). Both D∗ and η∗ appear to

collapse onto narrow single master curves when plotted ver-

sus -s2, with a significantly better quality of collapse than the

scaling based on Γ/Γf. Our results clearly indicate that both

Γ/Γf and s2 correlate well with the transport coefficients when

systems are near the freezing transition, while s2 plays a better

role even away from the freezing transition.

3.2 Nonequilibrium structure and dynamics

3.2.1 Rheological properties. As shown in the previous

section, by maintaining equal Γ/Γf, systems with different

particle softness have similar equilibrium dynamics near the

freezing transition. Therefore, we select the state points close

to the freezing transition, Γ/Γf = 0.85, for the shear simula-

tions. The shear rate dependence of η(γ̇) for different particle

softness is shown in Figure 3. The extrapolation of the finite

shear rate values to zero shear rate are consistent with the val-

ues obtained from the Green-Kubo relation as shown by hori-

zontal dashed lines. The rheological behavior is Newtonian at

low shear rates, where η approaches its zero-shear viscosity

value η0. At high shear rates, shear-thinning is observed in all

cases. We note that the shear-thinning behavior is dependent
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Fig. 3 Shear viscosity η versus shear rate γ̇ for the different particle

softness n described in the legend at Γ/Γf = 0.85. Dashed lines

represent zero-shear viscosity η0.

on the softness of particle interactions even by maintaining

the same Γ/Γf; softer particles exhibit stronger shear-thinning

tendency.

We have also calculated the first and second normal stress

difference as a function of the shear rate. First and second

normal stress differences are defined as N1 = Σxx − Σyy and

N2 = Σyy−Σzz, which are both zero at equilibrium (zero shear)

and become nonzero under shear68. As can be see in Figure 4,

the sign of N2 is negative for both n = 36 and 4 under shear,

while N1 is positive for n = 4 and slightly negative for n =
36 (see Figure S3 for other n values). The finding N1 > 0

and N2 < 0 for ultrasoft particles is consistent with previous

results for charged colloids69. The finding N1,N2 < 0 for quasi

hard-sphere particles resembles hard sphere behavior54. In

addition, we also observe that an increase in particle softness

(n from 36 to 4) leads to a more positive first normal stress

difference (data not shown).

3.2.2 Microstructure. In order to investigate how par-

ticle softness relates to the changes in fluid structure under

steady shear, pair distribution functions (PDF), g(x,y), in the

shear plane (x-y plane) were calculated for each of the systems

for different shear rates. Figure 5 shows g(x,y) for n = 36

(left) and 4 (right). For better contrast, upper cut-off values

are imposed at g(x,y) = 4 and 6 for n = 4 and 36, respectively.

At low shear rate, the structure is nearly isotropic and no an-

gular variations are observed in the first and second nearest-

neighbor rings. As the shear rate increases, there is a buildup

of particles in the compressive axis (θ ≈ 135◦) and a deple-

tion of particles in the extensional axis (θ ≈ 45◦) at γ̇ = 1.0
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Fig. 6 (Top panels) Angularly averaged pair distribution function

gs(r) for n = 36 (left column) and n = 4 (right column) at several

shear rates, γ̇ . (Bottom panels) Calculated cumulative order integral,

Is2
(r), corresponds to top panels.

pared to n = 36. The contact values at θ = 40◦ and 150◦ are

found to decrease with increasing shear rate.

To summarize, the area under the g(rc,θ) curve is slightly

increased with shear for n = 36, while the corresponding area

is clearly decreased with shear for n = 4. The weakened first

peak for n = 4 is closely related to the formation of a sec-

ondary depletion region at θ = 150◦ and to the weaker cor-

relations along the flow direction. These observations help

understand the structural changes underlying enhanced shear

thinning in the case of softer particles.

Figure 8 summarizes the effect of shear on the translational

structural order for different particle softness by comparing

shear viscosity with -s2, the latter of which is calculated based

on gs(r). The data in Figure 8 suggest that the effect of shear

for lower n, n = 12,10,8,6 and 4, is to monotonically de-

crease both viscosity and translational order. In the case of

higher n, n = 24 and 36, shear appears to decrease the viscos-

ity but slightly increase the translational order. Recent sim-

ulations have also shown that the average translational struc-

tural order is weakened with increasing shear for fluid parti-

cles interacting with the Debye-Huckel repulsive potential53,

while enhanced nearest-neighbor correlations were found for

hard-sphere suspensions70. Even though hydrodynamic inter-

0

1

2

3

4

5

6

7

g(
r c, θ

)

0.0
0.01
0.1
1.0
2.0
2.9

0 20 40 60 80 100 120 140 160 180
θ

1

1.5

2

2.5

g(
r c,θ

)

0.0
0.01
0.1
1.0
2.0
3.0
4.0

Fig. 7 Angular variation of PDF, g(rc,θ), at the distance of the first

peak of gs(r) for the particle softness n = 36 (upper) and 4 (bottom).

actions (HIs) were included in these previous simulations, we

also observe similar behavior in the absence of HIs, which

suggests that HIs do not alter the qualitative dependence of

the translational order as a function of shear rate. We note

that when HIs are considered, enhanced nearest-neighbor cor-

relations for quasi hard-sphere particles can facilitate the for-

mation of hydroclusters, which was confirmed in previous ex-

periments43,45 and simulations52–55 as the main cause of shear

thickening. For softer particles, decayed nearest-neighbor cor-

relations tend to suppress the formation of hydroclusters, and,

therefore, the difficulty in observing shear thickening.

4 Conclusions

In this paper, we test the freezing-point scaling relation for

soft particle fluids over a broad range of particle softness. The

freezing-point scaling relation, to a good approximation, can

adequately collapse diffusivity and viscosity data for different

particle softness. The freezing-point scaling relation is, there-

fore, a convenient and effective parameter for comparing the

structure and dynamics of the system with different softness,

especially when these systems are close to the freezing transi-

tion.

We apply the freezing-point scaling relation as a reason-
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Fig. 8 Shear viscosity, η , versus order parameter, -s2, for particles

with different softness, n. Arrow indicates increasing shear rate.

able starting point to study the shear rheology and the mi-

crostructure of particles with different softness using NEMD

simulations. Our results show a similar shear thinning be-

havior for particles with different softness, though softer par-

ticles exhibit stronger shear thinning tendency. By inves-

tigating the microstructure of these systems, we find that

shear slightly enhances the overall translational order in quasi

hard-sphere fluids by strengthening the correlations between

nearest-neighbor particles, and by slightly weakening the

long-range ordering, while significantly decreasing the order

in the case of softer particles. By examining the angular vari-

ation of the pair distribution function, we find that shear has

a more pronounced effect on enhancing the correlations along

the flow direction for quasi hard-sphere fluids, while at the

same time inducing a pronounced secondary depletion region

for ultrasoft particles. The strong correlation between the

structural changes and the particle softness in the presence of

shear might explain the extent of shear thinning behavior for

different particle softness.
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