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Coarse-graining atomic displacements in a solid produces both local affine strains and “non-affine” fluctuations. Here we study
the equilibrium dynamics of these coarse grained quantities to obtain space-time dependent correlation functions. We show how
a subset of these thermally excited, non-affine fluctuations act as precursors for the nucleation of lattice defects and suggest how
defect probabilities may be altered by an experimentally realisable “external” field conjugate to the global non-affinity parameter.
Our results are amenable to verification in experiments on colloidal crystals using commonly available holographic laser tweezer
and video microscopy techniques, and may lead to simple ways of controlling the defect density of a colloidal solid.

1 Introduction

While a large body of work has accumulated over many
decades on the physics of crystal defects!, the microscopic
causes of defect nucleation and yielding in solids remain ac-
tive areas of recent research?3. A small external stress on
a crystalline solid at non-zero temperatures affects atomic
configurations in two ways: (1) an affine deformation char-
acterised by the elastic strain and (2) a modification of the
relative probabilities of thermally excited lattice defects*©.
Within a linear response picture> local strain fluctuations mea-
sured from particle coordinates determine the elastic moduli
of the solid, which in turn govern the magnitude of the affine
response ®10_ It is therefore natural to ask the complementary
question viz. fluctuations of which quantity, derivable solely
from the configuration of the atoms, measure the susceptibility
of a crystalline solid to creation of defects? In this paper, we
pursue this issue by extending and generalising an approach
introduced in'! based on coarse-graining of atomic displace-
ments. Soft, precursor fluctuations which give rise to defects
appear as a natural outcome of this coarse-graining process.
We explore some of the interesting consequences of this con-
nection — such as the ability to engineer equilibrium defect
concentrations, at least in a colloidal crystal 2, by subtly al-
tering the statistical weights of these precursors using dynamic
light fields 3.

Consider a system consisting of i = 1...N particles with
instantaneous positions {r} vibrating about a set of refer-
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ence coordinates {R}. To begin, we first elevate a mea-
sure of non-affinity introduced in'* to identify elastic hetero-
geneities in sheared amorphous solids, to the role of a fully-
fledged thermodynamic, collective coordinate. This variable,
X =N"'Y¥, x(R;), a scalar functional of both the instanta-
neous and the reference coordinates, measures the magnitude
of non-elastic deviations of the positions of all particles away
from their reference configuration coarse-grained over a refer-
ence volume Q. The local x(R;) is a function of the instanta-
neous and reference positions r and R of the particles in the
neighbourhood Q of a given particle i with reference particle
position R;. We had earlier obtained the equilibrium statistics
of x (spatial dependence suppressed for brevity), in crystals !
at finite temperatures. We had shown that under an external
stress X, particles undergo both affine and non-affine devia-
tions, with ) always increasing as 22 within the harmonic ap-
proximation.

In this paper, we go beyond Ref. [11] in several important
ways which we list below:

Firstly, an analysis of the vibrational modes contributing to
non-affine distortions of Q reveals that most of y arises from
two degenerate non-affine displacements that tend to replace
four 6 coordinated particles with two pairs of particles with 5
and 7 neighbours: an incipient, or precursor, dislocation-anti-
dislocation pair. We argue, therefore, that one should be able
to change defect probabilities by applying a field sy, thermo-
dynamically conjugate to the global non-affinity parameter X.
We show that, indeed, hy, unlike external stress X, is a scalar
field that couples linearly to X. One can therefore increase
as well as decrease X (and, consequently, defect probabili-
ties) depending on the sign of hy, without introducing spatial
anisotropy.

Secondly, since X is given entirely in terms of the parti-
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cle coordinates and {R}, hy can be directly introduced into
the Hamiltonian and the dynamics of system calculated us-
ing standard molecular dynamics !°. For a colloidal solid, it is
even possible to apply sy in the laboratory using laser tweez-
ers!316 This allows us to propose a specific way in which
the properties of a soft solid may be tuned using a light field.
For example, one may be able to create novel colloidal crys-
tals that resist the formation of defects or reversibly dismantle
colloidal crystals by nucleating defects!

Finally, our work is relevant to some recent studies of
the mechanical response of soft amorphous solids!” and
glasses 8. In such solids, it is impossible to define the kinds
of defect configurations encountered in crystals such as vacan-
cies, dislocations, stacking faults or grain boundaries '°. How-
ever, given any reference configuration and a set of particle
coordinates, ¥ and much of everything else discussed in our
work can still be defined and computed. The precursor modes
in this case should be related to non-affine droplet fluctuations,
which have been extensively studied in recent years #2028,
Unlike crystals, however, the identification of defect precur-
sors with actual defects is much more problematic for amor-
phous solids due to the lack of a simple and unique reference
{R} and is, therefore, a subject of ongoing lively debate?~3!.
We hope that some of the ideas discussed here may be useful
in illuminating this issue.

The rest of the paper is organised as follows. In section 2 we
set up the calculation and define the coarse-graining process
used to calculate spatio-temporal correlation functions. Parts
of this calculation have previously appeared in Ref. [11], but
we include the relevant aspects here for completeness and to
make the paper self-contained. While the treatment outlined in
section 2 is perfectly general and is applicable to any solid in
any dimension for which {R} and the interactions are known,
in 3 we present our results for the time dependent fluctua-
tions of x and strain in the two-dimensional triangular lattice.
In 4 we identify defect precursors and obtain their statistics.
We also introduce the non-affine field 4y and study its effect
on these precursor fluctuations. In section 5 we suggest how
hx may be produced in the laboratory using laser tweezers.
We discuss our results and conclude by giving indications of
future directions in section 6.

2 Coarse graining and dynamic correlation
functions

We begin by first extending the work reported in Ref. [11] to
time-dependent correlation functions for ¥ and strains at zero
stress. This part of our treatment is similar in spirit to that of
Vineyard3? where the dynamical density correlations are anal-
ysed in terms of a sum over harmonic degrees of freedom33.
On application of an external stress or as a result of thermal

fluctuations, particles i within a solid undergo displacements
u; = r; — R; away from some chosen reference configuration
R; to their displaced positions r;. In a homogeneous solid at
vanishing temperature, such displacements are affine, imply-
ing that they can be expressed as u; = DR;, where D = K~'Z
is the deformation tensor related to the external stress X via the
tensor of elastic constants K. To derive the closest approxima-
tion to this simple zero temperature scenario in the presence
of thermal fluctuations we proceed as follows.

Consider a neighbourhood, , larger than the unit cell,
around a central particle labelled O consisting of Ng particles
i within a cut-off distance Rq in a d dimensional lattice. The
reference, zero temperature lattice configurations are labelled
by Ri—o..n, While the fluctuating atom positions are ri—o.. -
The particle displacements are then as before u; = r; — R;.
Now define relative displacements, A; = u; —uy =1; — g —
(R; —Ry) of particle i compared to particle 0. The “best fit” !4
coarse-grained local deformation tensor D is the one that min-
imises ¥';[A; — D(R; — Ry)]? with the non-affinity parameter
being the (positive definite) minimum value of this quantity.

In [11] we showed that the result of this minimisation pro-
cedure may be expressed as a projection of the particle dis-
placements A; into mutually orthogonal subspaces as defined
by two projection operators P and RQ. In terms of these,
% = ATPA while the elements of the affine deformation ten-
sor (strains and local rotation), D4y, arranged as a linear array
e = (Dy1,D12,...,D14,D21,...,D44), are given by e = QA.
Here A is a column vector with Nd elements containing the
components of the A;. The projectors are given explicitly by
RQ = R(RTR)’lRT and P = | — RQ. The Nd x d? matrix R
appearing here has elements R;q yy = Oay(Riy — Roy) where
the R;y and Ry, are the components of the lattice positions
R; and Ry, respectively. Now define the correlation matrix
C with elements, Ciq, jy = (AiaAjy) Where the angular brack-
ets (...) indicate an average over the equilibrium ensemble.
One can then easily obtain the statistics of )} and e in terms
of C. For example the probability distribution for the affine
distortions e is a d> dimensional Gaussian with zero mean and
co-variance matrix QCQT whose elements are proportional to
the elastic moduli. On the other hand, y is distributed as the
sum of the squares of Nod — d” independent Gaussian random
variables with variances given by the eigenvalues of PCP. A
comparison of the projected atomic displacements, i.e. eigen-
vectors of PCP and (1 — P)C(1 — P), that give rise to the ¥
and e shows that while the latter consist of local volume, uni-
axial and shear distortions of Q together with local rotations,
non-affine displacements, which contribute to ¥, correspond
to small wavelength distortions of particles within Q. Appli-
cation of an external stress, X, shifts the strain probability dis-
tributions to non-zero mean strain in accordance with Hooke’s
law and fluctuation response relations but does not affect y to
linear order. The lowest order variation of )y with X is given
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by (x)x = (X)g—0 +ETQC[P,C]QTE, where [P,C] is a com-  should apply even to amorphous solids with displacements
mutator. being measured from a set of particle coordinates obtained

In order to calculate the spatio-temporal correlation func-
tions of the non-affinity y and strains e, we need to consider si-
multaneously displacement differences in two neighborhoods
Q and Q centered on lattice positions Ry and Ry at time ¢ and
t' respectively. The vector A(r) is defined as the displacement
corresponding to the reference lattice position Ry at time ¢,
with an analogous definition for A(¢'). The local affine strain
e(Ro,?) = QA(r) and non-affinity y(Ro,?) = AT()PA(r) are
defined as before. For time ¢’ and position Ry we have the
corresponding quantities e(Ro,#’) = QA(t') and x(Ry,?') =
A" (¢')PA(¢"). The covariances may now be defined as

Ciajy = (Aia(1)Ajy (1)) = (Aia(0)Aj4(0)),
Ciwjy = (A)iaA(") jy) = (A(0)iaA(0) y)
Ciajy = (AD)iaA)}y). (nH

Obviously the first two averages are identical and reduce to the
space and time independent second-order moments (A AT> 1

the third quantity yields the required correlation functions. To
derive the expressions for the time-dependent strain and non-
affinity auto-correlation functions we use their definitions in

terms of the relative displacement projections. We obtain,
therefore,
Ce(Ro,7,Ro,#") = (e(Ro,1)e" (Ro,1"))
= (QAMA'(1)Q")
= QCQ". 2

The correlation functions between any pair of affine strains
may now be obtained by taking appropriate linear combina-
tions of the elements of C,. In the next section we focus on
one such component, viz, the shear strain €. Similarly, the
correlation between x(Ro,?) and x(Ry,?’) can be calculated
using Wick’s theorem as

Cy(Ro,,Ro,1') = (x(Ro,0)x(Ro,1")) — (x)?
= 2Tr(PCP)(PCP)T 2202 3)

where, in the final equation, the c_)'j2 denote the Nod — d? non-
zero eigenvalues of the matrix (PCP)(PCP)T. Of course, in
a homogeneous solid in equilibrium, these correlation func-
tions are functions only of the relative coordinates Ry — Rg
and times ¢ —¢. We will denote these simply by R and ¢ in
what follows.

Note that so far we have not made any assumptions about
the structure and interactions of the particles i and all our
results apply equally well for any system in any dimension
as long as a well defined reference configuration {R} ex-
ists. Indeed, we believe that a fair fraction of our results

from a zero temperature energy minimisation. To obtain an-
alytic results we need to evaluate the covariances and for the
rest of this paper we specialise to periodic lattices of particles,
whose interactions we may approximate as being harmonic.
Alternately, the covariance matrix may also be obtained ex-
perimentally® in the case of colloidal solids using video mi-
croscopy without any a priori assumption concerning the form
of the interactions. One may directly measure (uqgu® q,> =
21(q)vz8(q —q'), where Z(q) is the dynamical matrix,
and vpz the volume of the Brillouin zone. Given the dynam-
ical matrix, C_‘ia’ jy may be evaluated as follows. We substi-
tute for the relative displacements their expansion in terms
of the vibrational modes of the lattice viz., Ai(t) =u; —ug =
[vgh L, [ dqula,(q)a,(q)(¢¥® — e@®0) cos[w, (q)r], into the
third of the equations (1) to obtain,

- cos[ay(q)1]
Ciajy = sz - /dq asa(q avy (q) Zq)
( iqR; zqRO)( q-Rj zqRO) 4)

In the above expressions / is the lattice parameter and a(q)
and s(q) are the eigenvectors and eigenvalues (phonon fre-
quencies) respectively of the dynamical matrix corresponding
to the s™ phonon branch. The g—space integrals are over the
Brillouin zone. Knowing Cig, jy one can derive space-time cor-
relation functions for ) and the strains. The relaxation of any
observable arises from the gradual de-phasing of incoherent
phonon oscillations 333,

3 Results for the 2d triangular crystal

The formulation for the spatio-temporal correlation functions
given in the previous section (section 2) is applicable for any
periodic crystal as long as the dynamical matrix @ay is known.
In this section we present our results for the simple but impor-
tant case of a triangular network of N particles connected by
harmonic springs defined by the Hamiltonian,

= Z : 5)

where u;, p; and m are displacement, momentum and mass of
the particle i respectively. The sum in the second term in (5)
runs over all bonds in the network, each with spring constant
K. The unit of distance will be the lattice parameter from now
on while time will be measured in units of y/m/K. The tem-
perature may also be rescaled to unity without loss of general-
ity. Because of its simplicity, the harmonic triangular net has
been studied extensively and is known to be a good approxi-
mation for many real crystalline solids in two dimensions -,

N

Hparm = %
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The dynamical matrix and hence the dispersion relation ®(q)
for this system is also known3*; for small q it is given by
Ws—1 1 = ¢s—71.|q] With the transverse and longitudinal sound

velocities cp = % % and ¢y, = %
graining volume £ consisting of a central atom and its No = 6
nearest neighbours in the triangular lattice 1. The normalised

\/g . We consider a coarse-
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Fig. 1 (a) C,(0,7) from computation (line) compared with that
obtained from molecular dynamics simulations (points) of a

500 x 500 site harmonic lattice with unit particle masses. Note that
the error bars are smaller than the size of the symbols. (b) Plot of
C¢(0,1) for the same system as in (a).

correlation functions for y and € fluctuations are given by

0,0)x (R, 1)) — {x)?
C,(R1) = {x( <9)c}2(>( <[9)c>>2 )

and
(e(0,0)e(R, 1))

()
where € = (D12 +D21)/2 = e3 is the shear strain. Note that the
temperature (or coupling constant) scales out for these quanti-
ties.

In Fig.1(a), we plot C;(0,7). The integrals over the Bril-
louin zone were computed numerically using a 256 point
Gauss quadrature for each real space lattice position. Our re-
sults are compared with those obtained from molecular dy-
namics simulations > of a 500 x 500 site harmonic triangular
net. To obtain the simulation results, the solid was first al-
lowed to equilibrate for 4 x 10° MD steps with a time-step

C:(R,t)=

of 5x 10™* in the canonical (NVE) ensemble. Data was col-
lected from 4 x 10° to 4.2 x 10° MD steps at intervals of 400
MD steps. Correlation functions were obtained by averaging
over particles.

It is clear that our results agree with simulation data within
the error bars of the latter. The decay of Cy is not monotonic
but oscillatory, a feature arising from the time-periodic lattice
vibrations of the solid, which are all in phase at = 0, grad-
ually de-cohering for larger times>2. Similar oscillations are
also observed in C; shown in Fig.1(b) for the same system and
both y and € relax over similar time scales.

The complex relaxation of the dynamic correlations is even
more in evidence when we evaluate these functions in both
space and time. In Fig.2(a)-(c) we plot the full Cy(R,¢) for
the first few nearest neighbour lattice points of the 2d triangu-
lar lattice. For small times, this correlation function is sharply
peaked at the origin and decays rapidly to zero after the sec-
ond neighbour shell (Fig.2(a)). At larger times, the function
decays but becomes longer ranged extending up to the sixth
neighbour shell for 1 = 5 (Fig.2(c)), corresponding to a spread
with a speed comparable to cr; finally, C,(R,t) — 0 every-
where for large time differences . In Fig. 3(a)-(c) we show the
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Fig. 2 Cy(R,) calculated at different times (a) =0, (b} =2, (c)
t = 5 for the harmonic triangular lattice. The parameters are the
same as in Fig.1. Note changes in scale between the three subpanels.

corresponding space-time correlation functions for the shear
strain. The equal time spatial correlation Fig.3(a) has been
calculated before!! and has also been measured from video
microscopy of colloidal solids'®. The typical four-fold sym-
metry (butterfly pattern) of this correlation function has also
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been observed in experiments on amorphous colloids>®. This
pattern is easy to understand since C¢ (R, 0) represents the re-
sponse of a solid to a delta function shear load at the origin,
which may arise from a small inclusion or “Eshelby” defect
21 At subsequent times, the correlation function retains its
significant four-fold symmetry, although it shows wave-like
oscillations in space and time; these eventually decay to zero.
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Fig. 3 C¢(R,1) calculated for times (a)z =0, (b)r =2, (c) t = 5 for
the same set of parameters as in Fig. 1. Note changes in scale
between subpanels.

The four-fold symmetry of the strain correlation function
can also be understood from a momentum space formulation
as described in Ref. [11], where the Fourier transform of the
shear strain correlation function is simply given by

Ce(q,1) = Eya12 + Eain1 +2E1001,
with

Eococ’yy’(qa[) = Qa’qwz%{s}y@

N

cos(ms(q)t)  (6)

Substituting the expressions for E into C; and expanding all q
dependent quantities to leading order in the wavenumber, we

finally get (g = |q|)

- 4434, (@ — @)
Ce(q,t) = c;i]zy cos(cLqt) + #cos(cht).
L T

The four-fold symmetry of C; is now obvious.

4 Defect precursors in the 2d triangular crystal

In the previous two sections we derived a systematic pro-
cedure for analysing particle displacements within a coarse-
graining volume Q as affine or non-affine. The affine dis-
placements can be identified as elastic strains whose fluctu-
ations determine the elastic constants of the solid. In this sec-
tion we turn to the identity of the non-affine fluctuations and
show that the soffest fluctuations, with the highest contribution
to yx, represent precursors to the formation of pairs of lattice
defects. We also show that they are statistical fluctuations that
obey standard fluctuation-response relations and thereby iden-
tify the conjugate field Ay . Positive values of hy enhance and
negative values suppress lattice defects. Finally we calculate
space-time correlation functions for these lattice distortions in
the presence of nonzero hy, using results derived in the earlier
sections.

Recall that!! in the 2d triangular lattice (x) = 22:1 oy
where the oy, are the eight non-zero eigenvalues of the Ng d x
Ngod = 12 x 12-dimensional matrix PCP. The eigenvectors
b, corresponding to these eigenvalues represent non-affine
distortions of the coarse graining volume, their relative con-
tributions to y being determined by the value of o,. In Fig. 4
we plot the magnitudes of o, 1. It is immediately clear that
there are three groups of terms. The eigenvalues of the two de-
generate, non-affine modes correspondingto g =1l and yu =2
are separated from the next higher one y = 3 by a large gap
— a factor of 4 — and from the rest by an order of magnitude.
A close look at the eigenvectors corresponding to these eigen-
values reveals that these non-affine distortions tend to increase
the distance between nearest neighbour particles and reduce
next nearest neighbour bond lengths. If a nearest-neighbour
bond is actually replaced by a next-nearest-neighbour one,
then the coordination number of the particles changes and a
pair of particles with 5 and 7 neighbours each would emerge
out of the reference 6-coordinated triangular structure. Each
pair of neighbouring 5- and 7-coordinated atoms contains a
dislocation (or an anti-dislocation depending on the orienta-
tion). These dislocation-anti-dislocation pairs can then sepa-
rate from each other by subsequent non-affine fluctuations that
change the coordination number of neighbouring atoms.

Of course in a harmonic lattice defects do not nucleate,
though non-affine precursor fluctuations exist. Indeed, the
overlap of particle displacements with a non-affine eigenvec-
tor by, given by s, = blTLA, is a Gaussian random variable with
probability distribution,

2
Su

1
————exp| — ,
\/27b5Chy, b Chy,

an expression analogous to the one for strains. The quantity
blTLCb,L = o, appears as a susceptibility for defect precursor

P(su) =
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35 ¢

30+t

Fig. 4 Plot of the inverses of the eigenvalues o, of the non-affine
projection PCP together with the eigenvectors for the three largest
eigenvalues that indicate the most prevalent fluctuations. Note that
there are two degenerate soft modes 1,2 separated by a large gap
from the next most important contributor 3. The two soft modes
tend to increase the nearest neighbour bond length a — b, at the same
time decreasing the distance between next nearest neighbours ¢ —d
(shown by gray dashed line).

fluctuations. The fluctuation-response relation connects this
susceptibility with a response function measuring the response
of s, to a conjugate field. We investigate this connection be-
low. For the rest of this paper, we present results only for
i = 1. The corresponding results for the degenerate yu = 2
eigenvector are either identical or completely analogous.

To proceed further, we consider the global non-affinity
X =N"'YY x(R;) averaged over all particles i = 1...N and
introduce a field conjugate to this quantity in (5) to obtain,

H = Hpgpy —hx NX. N

The extra term in (7), though still quadratic in the particle co-
ordinates, introduces a many-body force (see section 5) that
depends on the positions of all particles in a given neighbour-
hood Q. A change in the coordinate of particle i modifies not
only the local y at that particle but also those of its neighbours.
The force also depends on the reference lattice positions {R},
which act as constant parameters. A purely affine transforma-
tion of £, such as a volume rescaling for example, does not
produce a non-affine force. This force therefore tracks only
non-affine distortions away from the reference configuration.
The dynamical matrix corresponding to (7) can be computed
without difficulty and therefore the statistics of the local ¥
and the local strains, together with their space-time correlation
functions can be obtained for arbitrary hx using the procedures
outlined in Ref. [11] and sections 3 and 4. This holds true as
long as the structure of the solid is maintained, i.e. as long as

0.7

06

05 r

04

0.3

(AX?)

02 r

0.1 ¢

0
0.000 0.002 0.004 0.006 0.008 0.010

Nfl

Fig. 5 Plot of ((AX)?) as a function of N~! at ix = 0 from our MD
simulations for N =10 x 10, 12 x 12, 14 x 14, 16 x 16, 18 x 18,
100 x 100 and 500 x 500 lattices. The straight line is the prediction
from (8) without any fitting parameters. Note that for smaller
lattices there are significant deviations from the asymptotic slope.

the reference configurations {R} remain the global minimum
of the modified Hamiltonian (7). Note that, for our MD simu-
lations, in addition to the term proportional to iy, we have also
included a small hard core repulsion of the Weeks,Chandler,
Anderson (WCA) form 3. This prevents atoms from overlap-
ping at large values of hx and also introduces anharmonicity
in a controlled fashion such that the relative contribution of
this term to the energy provides us with a measure of anhar-
monic contributions. The hard core diameter dy = 0.6] was
chosen to be small enough so that anharmonic effects vanish
for small values of hx and all our results based on harmonic
analysis hold in this limit.

The statistics of the global X and the local y are clearly
related to each other. For example, the thermal averages are
equal, (X) = (). The variance of X is

(Aax?) = ()= (x)
N’2<§Z(R)Z}C(Rl>> —(x)*
R/
= N! ;[<x(0)x(R)> —{x)’]
= N*1<(Ax)2>§CX(R,O) (8

The cross-correlation (A (R)AX) has the same expression for
any R.

The variance of X vanishes in the N — oo limit as expected
for an intensive thermodynamic variable (see Fig. 5); the dis-
tribution, P(X ) therefore becomes a delta function centred at
(x). To obtain the response (X(hy)), for small hx we first
compute ((Ax)?) at hy = 0 and then use the linear response
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Fig. 6 Plots of (a) (X) and (b) (sla), for u = 1, as a function of hy.
The points are MD simulation data from an N = 200 x 200 lattice.
Error bars are smaller than the size of the symbols. The solid curves
through the data are the analytic results obtained from direct
computation. The dashed straight lines are the linear response
predictions (9) & (10) respectively.

relation,

= (A2 ECxR0), ©

The non-affine field also changes the statistics of the dom-
inant displacement fluctuations s;. Since the global non-
affinity X is quadratic in particle displacements, the field hy
cannot break the symmetry of s;,. The probability distribution
P(sy,) remains Gaussian but with a variance (s;,) that depends
on hy. Again, a linear response calculation gives,

{si)
dhy

= <XS;21>0* <X>0<S;21>0

= 2) b,CPC'by. (10)
R

with C as given in (4).

In Fig. 6 we have plotted (X) and (s;;) as functions of hx.
For hx > 0, both of these quantities increase making defects
more likely to form. In contrast a negative hy suppresses those

' (a) T

08 fft

008 &

Fig. 7 Plots of the normalised (a) Cy (0,7) and (b) Cs(0,1) for three
values of iy compared with results from MD simulations of

500 x 500 particles. Note that the precursor fluctuations become
more long-lived as Ay increases.

fluctuations that give rise to defects. The points are simulation
results that are compared with the linear response results as
well as the full nonlinear calculation obtained by evaluating
the dynamical matrix for the Hamiltonian (7).

Space-time correlations of the defect precursors may
be computed quite straightforwardly from the formalism
presented in section 3. Indeed, the correlation of the
dominant non-affine displacement s, is (s;)Cs(R,1) =
(51:(0,0)s4 (R, 1)) = by, Chy,. Fig. 7 shows plots of C; (0,) and
C;(0,¢) against time ¢ for a few values of hx. The displace-
ment correlations, like those shown in section 4, are oscilla-
tory and decay slowly in time due to destructive interference of
the large number of mutually incommensurate phonon modes
that make up these localised fluctuations. More importantly,
Fig. 7 shows that the lifetime of these defect precursors grows
as hy increases; the time period of the correlation function os-
cillations also increases as expected. Finally in Fig. 8 we plot
the full C¢(R,) for three values of iy = 0.00,0.03 and 0.05
as well as for three values of the time 7 = 0,2 and 5 as in Figs.
2 and 3. Unlike the correlation functions for ¥ and &, the cor-
relations of s, are “anti-ferromagnetic”, i.e. a fluctuation s,

This journal is ©@ The Royal Society of Chemistry [year]
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Fig. 8 Plot of the normalised Cs(R, ) for ix = 0.00,0.03 and 0.05 for = 0, 2 and 5. Note that the precursor fluctuations are spatially
anisotropic and anti-correlated at all times. The non-affine field makes the correlations stronger. We have plotted the correlations for g = 1;

the corresponding functions for it = 2 are essentially rotated by 90°.

of any sign at some lattice point induces a fluctuation of s, of
the opposite sign at the neighbouring lattice point.

What is the effect of external stress X on the defect precur-
sors? It is again easy to answer this question by a straight-
forward calculation: one only needs to include the term
=TyY e(R;) in the Hamiltonian (5), where e(R;) is now
the Jocal strain at particle i. The probability P(sy) remains
Gaussian with the same variance but now the + symmetry
of s, is explicitly broken and P(sy) is shifted with a mean
(su) =YR blTL CQTE # 0. To lowest order, therefore — or ex-
actly in a harmonic solid — stress biases the distribution of
defect precursors without changing their variance. Similarly,
¥ does not affect the space-time correlation functions of s;.

5 Generating i1y using laser tweezers

In this section, we propose an experimental realisation of the
many-body term in the Hamiltonian (7) using dynamic laser
traps — a technology currently available within most sophis-
ticated experimental optics research groups. Colloidal parti-

cles are dielectric and therefore become polarised in an elec-
tric field. Fairly intense light from a laser may be used to trap
these particles, which experience a force proportional to the
gradient of the light intensity /(r) and therefore prefer to accu-
mulate in regions of large I(r). This effect is extremely useful
in manipulating colloidal beads in the lab to investigate myri-
ads of phenomena from biology to material science. There are
many reviews and books on the subject, such as Ref. [13].
More specifically, optical traps have been used to manipulate
colloidal solids, introduce defects and watch their dynamics
using video microscopy *6.

The term proportional to hy in (7) depends only on the ref-
erence lattice set {R} and the instantaneous particle positions
and can be generated for every particle i once a particular con-
figuration is known. For example, one can explicitly write,

xi=Y (0 —u) Py (e —w;)
Jk

where we gather the cartesian components of P for a given pair
of particles into a matrix Py}, and assume that this matrix is
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zero when j or k are outside the neighbourhood Q around i.
Then
NX =) (u;— w) Py —w)
ijk
The force on particle i is F; = —(d/dr;)(—hxyNX). Direct
differentiation of the expression for X then gives

Fi=2mx ) [Pj s i(wi—w) +Pijij(we—u;)] (1)
Jjk

The first contribution comes from y;, the second from y; with
J#IL

The fact that the above forces can be worked out from the
positions of the particles and their nearby neighbours (nearest
and next-nearest neighbours, if the coarse-graining volume
contains exactly the nearest neighbours) suggests the follow-
ing algorithm for generating a uniform non-affine field iy for
a set of N colloidal particles:

1. At any instant obtain the coordinates of the N particles
through video microscopy.

2. Randomly choose a subset of M of these particles that
will have hy-forces applied to them.

3. For each of the M particles obtain the values of the nec-
essary forces from the coordinates of their neighbors.

4. Apply the forces by constructing a set of M laser traps.
The traps will need to be placed slightly away from the
respective present particle positions so that the particles
experience exactly the forces calculated from (11). The
exact displacements of the traps will depend on /(r) and
therefore vary with the specific apparatus and implemen-
tation.

5. In the next instant repeat steps 1 — 4 above, choosing an-
other random subset of M particles to track.

If these steps are repeated on a time scale much faster than
the typical diffusion time of colloids, then one should be able
to simulate a uniform field hx applied across all the N parti-
cles. It is possible to update dynamical traps at 200 — 600 Hz,
and set up at least M = 300 traps simultaneously for micron
sized colloidal particles using spatial light modulator (SLM)
technology 3. This should be enough to generate a uniform
hy as long as the ratio of the dynamical timescale to the up-
date timescale is larger than N /M. Alternatively, one may also
look at the effect of a local iy which couples to the x of a sin-
gle particle and can create local defect precursors. Statistics
of such local and non-uniform, dynamic, light fields may also
be computed, if desired, from the formalism outlined in this
work.

6 Discussion and conclusions

In this paper we have calculated the space-time correlation
functions for thermally generated non-affine fluctuations and
elastic strains in a harmonic ideal crystal. The non-affine and
elastic strain fields were obtained by projecting atomic dis-
placements into orthogonal affine and non-affine sub-spaces
defined by coarse-graining over a fixed volume Q. Our re-
sults show that these correlation functions decay to zero with
time and over distance although the relaxation to the late time
value is oscillatory rather than monotonic. The time correla-
tion functions for non-affine fluctuations and strains have not
been described so far in the literature though we feel that they
may be obtained easily for colloidal solids using video mi-
croscopy. This should allow verification of our results against
experimental data’-'%. Note that the harmonic approximation
that we have used throughout has been demonstrated to de-
scribe colloidal solids rather well®.

In addition we have identified particular non-affine fluctua-
tions in the 2d triangular lattice which, we demonstrate, are
precursors to the production of dislocation- anti-dislocation
pairs and arise naturally from a systematic coarse-graining
procedure. We emphasise that the defect precursors s, are not
themselves defects since the equilibrium average (s ) = 0.

In order to form dislocation pairs, these localised fluctua-
tions need to condense by escaping over a, possibly stress de-
pendent, barrier Af, a process not describable within harmonic
theory®. Indeed, if the bond c-d in Fig. 4 were to form, a
Burgers circuit around particle O would yield a non-zero Burg-
ers vector. One can argue, as below, that the non-affine field
hx will actually greatly enhance the formation of such dislo-
cation dipoles in a real solid. The rate of barrier crossing is
proportional to exp(—BAf) with a prefactor, the so called “at-
tempt frequency” which is a product of the characteristic fre-
quencies of oscillation of the system in its parent state and at
the saddle point>>. Consider the neighbourhood Q of a single
particle. In a solid with anharmonic forces between particles,
the free energy for producing a precursor fluctuation of am-
plitude s, has the form f(sy) = Asj, — Bsj, +Cs{;, where A, B
and C are, possibly temperature (and stress) dependent, phe-
nomenological parameters. Note that, in the harmonic limit
B=C=0and A o (sf)’l. This form for the free energy
ensures that the £s, symmetry is preserved and a non-zero
barrier for the nucleation of a dislocation dipole ({sy) # 0),
given by the saddle point value of f(sy), exists. When hy is
turned on, this has the effect of increasing (si) (see (10)). This
has two consequences: it decreases both the attempt frequency
and A f with the latter effect far outweighing the former and ef-
fectively causing an overall increase in the rate of production
of dislocation dipoles. For negative &y, on the other hand Af
is increased and dislocation nucleation is suppressed.

To test this proposal we simulate a two-dimensional system
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Fig. 9 (a) Plot of (X) as a function of hy in WCA units for (8€)~! = 1 and po? = 1. The points are MD simulation data from a N = 50 x 50
lattice. For each state point, the solid was equilibrated for 2 x 10° MD steps with a step size of 0.0005 (WCA units) and data was collected for
a further 3 x 10° steps at intervals of 500 steps. The straight line is the linear response prediction (9) where we have fitted the dimensionless
constant Y p Cx (R, 0). The fitted value is & 2.99 while the computed number for the harmonic lattice is 2.54, showing that the system is
almost harmonic for this temperature and density. (b) - (d) Particle configurations for zx = 0.0, 0.3 and 0.6 respectively. The colours track the
local non-affine parameter ¥ (see colour bars). Note the appearance of a defect pair (black arrow) in (c). The configuration shown in (d) is
obtained after 1.2 x 10°> MD steps; at later times, defects progressively proliferate.

of 2500 particles which interact via the WCA potential >, viz.

12 6
[(2)7-(2) v, forr<2be
r

7
= 0

vi(r)

otherwise (12)

The WCA potential, which is purely repulsive, has been used
in the past to model “almost hard-sphere” colloids '>>7. The
energy and length scales in this system are set by € and ©
respectively and the mass of all the particles is chosen to be
unity. Our results for X as a function of the field, iy are plot-
ted in Fig. 9(a) for the WCA crystal. The resemblance with
Fig. 6(a) is obvious, showing that, as expected, the harmonic
approximation is quite accurate at high densities and low tem-
peratures even for this explicitly anharmonic solid. We show
typical particle configurations in Fig. 9(b)-(d). For hy =0,
(Fig. 9(b)), the solid contains no defects, i.e. the defect con-
centration is too small for us to measure, although non-affine
precursor fluctuations exist. These fluctuations become more
prevalent and longer lasting as hy is increased (Fig. 9(c)).
Note that the sense in which a small positive hy increases the
defect concentration of the solid is statistical; the future fate of
any particular defect pair, i.e. whether it disappears by annihi-
lation or separates out, is, of course, a temperature dependent,
random event. The equilibrium value of X and hence the prob-
ability of obtaining defects nevertheless increases with hy. Fi-
nally, at large values of hy, the solid is de-stabilised with de-
fects quickly beginning to proliferate (Fig. 9(d)) throughout
the system in a series of correlated events® that ultimately
destroy the periodicity of the lattice.

The dynamics considered in our formulation is entirely
composed of lattice vibrations. In a crystalline solid one needs
to consider, in addition, the slow vacancy diffusion mode 39,

Since the vacancy concentration in crystalline solids at tem-
peratures far from melting is vanishingly small, this contri-
bution is mostly negligible at low temperatures. However,
close to the melting transition, the diffusion of vacancies does
contribute significantly. Within a harmonic theory, there is,
of course, no description of vacancy diffusion. On the other
hand, vacancy diffusion over large distances occurs by small
movements of atoms across distances of the order of the lat-
tice spacing — and so of the sort involved in the nucleation
of a dislocation pair. Hence precursor fluctuations for vacancy
diffusion may be similarly described as a non-affine distortion
of a volume € containing a single vacancy. A calculation of
vacancy migration precursors using a procedure similar to the
one described in this work is in progress.

Our calculations may also be generalised to amorphous
solids. In such solids, the lack of a clearly defined reference
configuration makes the identity of the relevant non-affine
fluctuations debatable. The dominant deformation mecha-
nisms in amorphous solids are local atomic rearrangements
that resemble, somewhat, our defect precursor modes. How-
ever, it is not clear whether, in a particular realisation of the
amorphous structure, such precursors are “frozen in” 2> even
at zero stress or are produced during the deformation proto-
col®!. We believe that a generalisation of our calculation may
be able to elucidate this point by looking at neighbourhoods
with large non-affine susceptibility and determining the re-
sponse to both stress and the non-affine field Ay .

The results presented here may be verified in experiments
on colloidal solids or dusty plasmas in the presence of a field
hy produced using laser tweezers'>1®. Since functionalised
colloidal assemblies have many technological applications,
control over their structure may be of some use'?. In sec-
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tion 5, we outline an algorithm which, we believe, can be im-
plemented in practice. Similar ideas have been reported in the
literature ' where light fields have been used to create dislo-
cations and grain boundaries by manipulating individual col-
loidal particles. We believe our approach allows greater con-
trol by targeting, instead, defect precursor fluctuations. First
of all, one is able to both increase as well as suppress defect
densities in a crystal by an external light field. Also, if hyx
is applied sufficiently slowly, the solid may be persuaded to
remain in thermodynamic equilibrium at a given temperature
throughout the process without producing unwanted stresses
and deformations. Finally, the specific dynamics of such pro-
tocols (switching hx off or on at some rate) can be computed
within the formalism discussed here. It is also, in principle,
possible to excite a local non-affine displacement or even a
specific non-affine mode, say s, at a specific point using our
ideas. For the latter case, however, one needs to know be-
forehand the eigenvectors of the local PCP, which involves a
knowledge of the interactions embodied in the C matrix. This
introduces uncertainties that are not encountered while impos-
ing hy. For dusty plasmas '?, the equations we have used for
the space-time correlation functions are immediately applica-
ble. For colloidal particles dispersed in a liquid, of course,
one needs to account for damping and Brownian noise terms in
the dynamical equation (4) to compare time-dependent quanti-
ties with experiments. Equilibrium predictions, though, would
continue to be valid. Also anharmonic interactions, always
present in real colloids, would lead to metastable defects at
positive hx. Our calculations are then directly valid for small
values of the field before such nucleation events actually take
place. We believe that in this case, our results will be of much
value for checking and validating the relevant experiments.
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