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Abstract 

 A model is proposed that considers aging and rejuvenation in a soft glassy material as 

respectively a decrease and an increase in free energy. The aging term is weighted by inverse 

of characteristic relaxation time suggesting greater mobility of the constituents induce faster 

aging in a material. A dependence of relaxation time on free energy is proposed, which under 

quiescent conditions, leads to power law dependence of relaxation time on waiting time as 

observed experimentally. The model considers two cases namely, a constant modulus when 

aging is entropy controlled and a time dependent modulus. In the former and the latter cases 

the model has respectively two and three experimentally measurable parameters that are 

physically meaningful. Overall the model predicts how material undergoes aging and 

approaches rejuvenated state under application of deformation field. Particularly model 

proposes distinction between various kinds of rheological effects for different combinations 

of parameters. Interestingly, when relaxation time evolves stronger than linear, the model 

predicts various features observed in soft glassy materials such as thixotropic and constant 

yield stress, thixotropic shear banding, and presence of residual stress and strain. 
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I. Introduction 

Glassy soft materials such as concentrated suspensions and emulsions, foams, 

colloidal gels and variety of different pastes are routinely used in industry as well as in 

everyday life. In this class of materials either the crowding of constituting entities and/or 

inter-particle attractive/repulsive interactions kinetically restrict the same from achieving the 

equilibrium structures.
1-3
 However, microscopic mobility of the constituents arising from the 

thermal energy induces slow but steady structural evolution to form progressively stable 

structures. This process of structural recovery is also known as physical aging,
3
 wherein free 

energy of a material decreases as a function of time. If such material is subjected deformation 

field, the structure evolved during aging gets altered, which usually causes reversal of 

physical aging.
4
 The corresponding process is termed as rejuvenation. The rheological 

behavior of soft glassy materials (SGMs) is determined by competition between aging and 

rejuvenation for a given deformation field, which leads to many unusual and sometimes 

opposite effects such as time dependent yield stress,
5-8
 viscosity bifurcation,

9, 10
 shear 

banding,
5, 11-14

 delayed yielding,
15, 16

 delayed solidification,
17, 18

 overaging,
19-21

 presence of 

residual stresses
22
 and strains,

23, 24
 etc. In this paper we present a model that accounts for 

aging and rejuvenation in terms of evolution of free energy influenced by deformation field. 

In addition to describing many of the above mentioned experimental behaviors, the model 

prescribes criterion for their occurrence based on the behaviors under quiescent conditions. 

In a process of physical aging relaxation time and sometimes elastic modulus of a 

glassy material evolve as a function of time while attaining progressively low free energy 

states.
24-29

 As a result a solid-like character of a glassy material increases gradually as a 

function of time. Application of deformation field attenuates the rate of evolution of 

relaxation time and eventually causes decrease in relaxation time. In the limit of sufficiently 

strong deformation field, the time evolution of material stops and material (shear) melts to 

form a liquid.
15, 24, 27

 Subsequent to the shear melting the physical aging reinitiates in a 

material. In a traditional rheology literature this phenomenon is represented as thixotropy.
30
 

SGMs also demonstrate yield stress; and depending upon whether yield stress evolves with 

time or remains constant, the materials have been respectively termed as thixotropic and 

simple yield stress materials.
5
 While the recent literature indeed proposes existence of real 

yield stress in both thixotropic and simple yield stress materials, it has been long argued in 

the rheology literature that existence of real yield stress is a myth and in reality material only 

undergoes transition from a weak flowing regime to a strong flowing regime leading to so 

called engineering yield stress.
7
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The SGMs have also been observed to demonstrate shear banding 
31
. In the 

thixotropic yield stress materials, constitutionally the stress does not exist for the strain rates 

below the critical value.
5, 13

 Consequently, imposition of strain rate below the critical value 

leads to banding, wherein one band flows with the critical strain rate while the other does not 

flow. The relative width of each band depends on the values of imposed and critical strain 

rates. Existence of thixotropic yield stress also leads to viscosity bifurcation wherein 

application of stress below the threshold value cannot stop divergence of viscosity.
9
 On the 

other hand, application of stress above the threshold leads to viscosity to achieve a finite 

value as a function of time. Rather than showing viscosity bifurcation, some materials show 

delayed solidification or delayed yielding. In the former, application of stress, no matter how 

large it is, leads to either constant viscosity or decrease in viscosity for a prolonged period 

before showing sudden enhancement.
17
 In delayed yielding, on the other hand, application of 

stress cannot restrict enhancement in viscosity as a function of time in the initial period. 

However, in the limit of long times, material undergoes sudden yielding thereby inducing the 

fluidity.
15, 16

  

Under application of strong deformation field a material rejuvenates, and 

consequently material is in a liquid state. The aging of a material subsequent to rejuvenation 

can be monitored by applying no stress or constant strain. In the former case of no stress, 

strain recovers as a function of time. Interestingly, however, if a material is subjected to creep 

during the period of strain recovery, resultant strain may show a non-monotonic dependence 

on time, causing an apparent paradox as observed experimentally.
23, 24, 32

 Instead, if strain is 

kept constant subsequent to the rejuvenation, stress relaxes. However depending on the 

characteristic feature of an SGM, stress may show a complete relaxation, power law 

dependence on time or a non-zero plateau (residual stress) in the limit of long times.
22
 The 

effect of aging on both the phenomena, stress relaxation as well as strain recovery has, 

however, not ben studied theoretically. 

Various models that capture rheological behavior of the thixotropic materials have 

been proposed in the rheology literature.
33
 According to Mewis and Wagner,

30
 there are three 

aspects common in such modeling approaches. The first one is evolution equation of 

empirical structure parameter (usually represented by λ ), which indicates the instantaneous 

state of a material. The second aspect is a relationship between λ  and the rheological 

properties; while the third aspect is a constitutive equation that relates stress, strain and their 

derivatives through the rheological properties. Evolution equation of λ  essentially contains 

Page 3 of 44 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



4 | P a g e  
 

two terms: a buildup term and a destruction term representing aging and rejuvenation 

respectively. A comprehensive list of various expressions representing build up and 

destruction terms along with the constitutive equations have been reported in the literature.
30, 

33
 Coussot proposed that the models in this class can be represented by a simple evolution 

expression for an arbitrary structure parameter λ , given by:
34
  

( )
0

1d
Q

dt T

λ
λ γ= − & .         (1) 

This expression suggests that the structure builds up with a constant timescale 0T , while the 

destruction term is proportional to strain rate γ&  with a prefactor Q  that grows with λ . 

Coussot and coworkers
9
 showed that steady state stress and strain rate shows a non-

monotonic relation for a suitable choice ( )Q λ  and viscosity ( ( )η λ ). A class of models has 

also been proposed by representing λ  as a fluidity that is as an inverse of characteristic 

relaxation time.
35, 36

 By considering various functional forms for decrease in fluidity as a 

function of time (aging) and increase in the same as a function of deformation field 

(rejuvenation), Derec et al.
35
 and Picard et al.

36
 proposed different kinds of relationships 

between steady state stress and strain rate, including non-monotonic, which lead to variety of 

rheological phenomena shown by SGMs. Particularly the non-monotonic relation between 

steady state stress and strain rate leads to qualitative prediction of various important 

rheological behaviors reported for SGMs such as viscosity bifurcation, thixotropic yield 

stress and shear banding. 

 While thixotropy/fluidity models tend to capture essence of the physics associated 

with soft glassy dynamics, more rigorous models such as soft glassy rheology (SGR) model 

and mode coupling theory (MCT) have been developed to study the soft glassy dynamics. 

MCT is developed, in principle, for colloidal glasses wherein cage diffusion is known to get 

progressively sluggish as particle concentration increases.
37
 MCT considers that since the 

cages are nothing but the surrounding particles, whose diffusion is also similarly affected, 

there exists a forward feedback mechanism that impedes relaxation of the fluctuations in 

density. Consequently at certain concentration the relaxation time diverges causing glass 

transition. MCT predicts an onset of glass transition well, and has been modified to include 

the effect of deformation field.
6
 The present versions of MCT, however, do not demonstrate 

any physical aging. SGR model,
38
 on the other hand, is primarily based on aging dynamics 

considered in Bouchaud’s trap model.
39
 SGR model divides a material in mesoscopic 
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domains and tracks evolution of each as a function of time for a given deformation field. The 

effect of deformation field in SGR model is considered through strain and is modeled as an 

activated process. The relaxation time of an individual mesoscopic element directly depends 

on strain as: ( )21
20 exp E k xτ τ γ = −  , where E  is the depth of energy well in which an 

element is trapped, 0τ  is an inverse of attempt frequency and 21
2
kγ  is energy gained by the 

element due to strain γ . Noise temperature x  suggests energy available for activation, and in 

a normalized form x =1 is a point of glass transition below which material shows physical 

aging. Upon cage diffusion element gets trapped in a new cage whose depth is obtained from 

a prior distribution. For a given deformation field and at any point in time, distribution of 

energy well depths, in which elements are trapped, is related to stress that gives the 

constitutive equation. Both MCT and SGR model demonstrate many experimentally observed 

rheological behaviors of SGMs;
1
 and although mathematically and computationally 

demanding, these models render microscopic insight into the glassy dynamics intercepted by 

the deformation field.  

 Physical aging takes place not just in SGMs but also in polymer glasses, wherein 

enthalpy decreases as a function of time.
40, 41

 Aging in polymer glasses is usually modelled 

by considering decrease in specific enthalpy to be a first order process.
41-43

 Typically the 

departure from equilibrium is defined as: h h hδ ∞= − , where h  is the specific enthalpy at any 

instance, while h∞  represents specific enthalpy at equilibrium. Under isothermal conditions, 

Kovacs, Aklonis, Hutchinson and Ramos (KAHR) in their seminal contribution proposed 

that:
42, 44, 45

 

( )

h h

h

d

dt

δ δ
τ δ

= − ,         (2) 

where τ  is relaxation time that depends on departure from equilibrium hδ . If τ  is small, the 

time taken to establish equilibrium is also small. The dependence: ( )hτ τ δ=  is obtained from 

Adam-Gibbs Theory and is given by
46, 47

 

( )exp cB C Tsτ = ,         (3) 

where B  and C  are constants, T  is temperature while cs  is configurational entropy, which 

can be obtained by knowing the difference in heat capacity of material in crystal and liquid 

state. Interestingly this simple model, which considers aging to be a first order process, 
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allows excellent prediction of the time dependent physical behavior of variety of amorphous 

polymers at different temperatures and upon step up and down temperature jumps.
45, 47

 As 

material ages 
cs  decreases, which causes increase in τ . As a result, decrease in 

hδ  becomes 

increasingly sluggish as aging progresses. Similar to specific enthalpy, specific volume of a 

glassy material decreases upon aging. Consequently equivalent model has been developed by 

KAHR
45
 by expressing departure from equilibrium in terms of specific volume and replacing 

equation (3) by the empirical relation proposed by Doolittle,
48
 which relates relaxation time 

to the free volume. 

 

II. Model 

The SGMs are thermodynamically out of equilibrium materials. Every material, 

which is not at thermodynamic equilibrium, has a natural tendency to approach the 

thermodynamic equilibrium state.
49
 However in order to facilitate such approach, the 

microscopic constituents of the SGMs are needed to be sufficiently mobile (thermal energy). 

Typically the soft materials are exposed to constant P  (pressure) and constant (controlled) T  

conditions. In addition, by virtue of incompressible nature of the same, these materials also 

do not undergo any change in υ  (specific volume) as a function of time. Under such 

conditions, the equilibrium state in these materials can be characterized by minimization of 

either Gibbs ( g ) or Helmholtz free energy (a ).
49
 Since g a Pυ= + , when P  and υ  are 

constants, minimization of g  and a  are equivalent. Therefore, in the analysis below we 

discuss this scenario, only in terms of free energy. In the process of aging, under quiescent 

conditions, structure of an arrested soft material undergoes spontaneous evolution such that it 

progressively attains lower free energy as a function of time. 

Typically in SGMs solid to liquid transition occurs upon application of a strong 

deformation field, a process typically known as rejuvenation or shear melting. The 

completely shear melted samples, immediately after the shear melting is stopped, can be 

considered to possess the highest free energy: 0g . On the other hand, the minimum value of 

free energy is associated with that of the thermodynamic equilibrium state and is given by: 

g∞ . If decrease in free energy ( g ) with respect to time is assumed to be a first order process, 

we get: 

( )
d

dt

φ φ
τ φ

= −
% %

,         (4) 
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where φ  is the normalized excess free energy defined as: ( ) ( )0g gg gφ ∞∞ −= − . 

Furthermore, 
0t t τ=%  is dimensionless time and 

0τ τ τ=%  is dimensionless relaxation time, 

where 0τ  is the relaxation time of a soft glassy material in its completely rejuvenated state 

( )1φ = . In equation (4), we assume that the rate of change in free energy is proportional to 

excess free energy divided by the time scale of structural rearrangement ( )τ φ 
 %  in a 

material. This time scale is equivalent to the relaxation time of a material, which is suggestive 

of the mobility of the constituents in a material at any given φ . As mentioned before, any 

material which is out of thermodynamic equilibrium, aspires to achieve the thermodynamic 

equilibrium. However material can be driven out of thermodynamic equilibrium in a trivial 

sense by perturbing an equilibrium material to high energy states. The consequent response 

that establishes equilibrium is merely a transient and not a physical aging if the relaxation 

time is constant. As suggested by Fielding and coworkers,
38
 for any process to qualify as 

physical aging, its relaxation time must increase during the time over which the relaxation 

takes place. Consequently, ( )τ φ%  must be a decreasing function of φ .In the SGMs while 

physical aging indeed causes decrease in free energy as a function of time, we cannot 

associate any thermodynamically measurable variable with decrease in free energy. 

Furthermore, SGMs having variety of different microstructures demonstrate remarkably 

similar form of the dependence of relaxation time on aging time. It is therefore no surprise 

that no empirical or otherwise relation is available in the literature to relate a structure to free 

energy and in turn to the relaxation time in SGMs.  

In particulate suspensions, increase in volume fraction (ϕ ) of the suspended particles, 

which curbs the mobility of the same, is also known to cause increase in relaxation time (τ ). 

The corresponding relation between τ  and ϕ  is due to Krieger and Dougherty,
50
 which has 

been extensively used in the literature, and has been experimentally validated for variety of 

suspension systems.
37
 Furthermore, the mode coupling theory (MCT), which predicts onset of 

glass transition in the colloidal glasses well, also employs identical functional form as that of 

Krieger and Dougherty.
37
 In both the forms τ  of suspension diverges according to a power 

law ( )( )~ 1
B

τ ϕ ϕ
−

∗ −   as ϕ  approaches a certain threshold ϕ ∗  associated with random 

close packing. On the other hand, in aging glassy materials, under constant concentration of 

constituents, mobility decreases continuously due to decrease in free energy. In this work, we 
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therefore propose a relation between relaxation time and free energy, which has equivalent 

functional form to that proposed by Krieger - Dougherty or MCT. In case of some SGMs, 

including suspension of particles with hard sphere interactions, the relaxation time may 

diverge for values of free energy above the minimum (nonzero values of φ ). If such value of 

free energy is denoted by φ∗  (at which the constituents do not possess mobility to facilitate 

relaxation), a generic form of the proposed expression is given by: 

( )
( )

1
f

f

β

φ

φ
τ

−

∗

 
 
 
 

= −% ,         (5) 

where β  is a parameter. In this expression, we use ( )f φ  since exact relation between 

microstructure and φ  is not known. However, ( )f φ  must obey following two constraints: 

(1) ( )f φ  must be a monotonically increasing function of φ , and (2) in order to satisfy 1τ =%  

at 1φ = , ( )f φ =0 at 1φ = . Equation (4) can be solved using equation (5) to yield: 

( ) ( )
( )

1 1d df

dt df

β β β φ
τ

φφ
−

∗

−  = %
%

.        (6) 

For various values of β , and for any arbitrary functional form of ( )f φ  that satisfies above 

two conditions, τ%  is expected to show stronger than linear, weaker than linear or linear 

dependence on t%  according to equation (6). Equation (4) suggests that when τ%  increases 

stronger than linear, τ%  must diverge before system reaches the equilibrium state ( 0φ ∗ > ). On 

the other hand, for a linear or weaker relationship system must approach equilibrium state in 

the limit: t → ∞% . Equation (6), therefore, suggests that value of β  is directly related to the 

strength of evolution of τ%  as a function of time, which in turn controls φ∗ . Furthermore, the 

above discussion imposes another constraint on ( )f φ  that: (3) at 0φ = , ( )f φ , φ∗  and β  

should assume such values that τ →∞%  in that limit (It is well known that for many SGMs 

including a suspension of concentrated monodispersed particles, the lowest free energy state 

is a crystal state for which relaxation time is ∞ . Therefore, for all those materials wherein 

aging results in acquiring the lowest free energy state, τ%  diverges as equilibrium state is 

approached: τ → ∞%  in the limit of 0φ = ). We propose following functional form that 

satisfies all the above three constraints given by:  
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( ) lnf φ φ= .          (7) 

The proposed expression of relaxation time given by equations (5) and (7) can now be used to 

solve differential equation (6) to obtain dependence of τ%  on t%  under quiescent conditions.  

The initial condition to solve equation (6) can be represented as: smφ φ=  (or 

( )smτ τ φ=% % ) at 0t =% , that is the moment shear melting is stopped (In principle if shear 

melting tends to rejuvenate the material completely, smφ =1 (or 1τ =% ); however as shown 

below such possibility exists only if shear melting is carried out at shear rates γ → ∞& ). 

Assuming ( )1 lnA β φ∗= − , the solution of equation (6) for a mentioned initial condition is 

given by: 

( )sm
At

µ
τ τ φ= +  %% % ,         (8) 

where ( )1µ β β= − . When material is shear melted by using strong flow field for which 

1smφ ≈ , equation (8) can be further simplified in the limit of long times ( )1At >>% , to 

represent: 

( ) 1At At
µ

τ ≈ >>% %% L .       (9) 

In a dimensional form equation (9) is represented by: ( )0 0A t
µµτ τ τ≈ . Interestingly 

relaxation time of many glassy materials, which include soft, molecular and spin glasses, 

demonstrate power law dependence on time given by equation (9).
24, 28, 38, 41, 51, 52

 It is 

therefore interesting to see the proposed relation between τ%  and φ  given by equation (5) with 

an assumption of equation (7) leads to experimentally observed power law dependence. It 

should be noted that values of µ <1 represents sub-aging, µ >1 represents hyper-aging, while 

µ =1 represents a full aging scenario.
1, 2

 Equation (5) can be rewritten in terms of µ  and A  

as: 

( )1ln
1 1

ln

µ
µφ

τ µ
φ

−

∗

 
= − > 

 
% L ,        (10) 

[ ]( )11 ( 1) ln 1A
µ

µτ µ φ µ−= + − <% L , and      (11) 

1Aτ φ µ−= =% K .       (12) 
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Equation (12) is obtained by solving equation (10) or (11) in the limit of 1µ → . It can be 

seen that for hyper-aging ( )1µ > , τ → ∞%  as φ φ∗→ , where φ ∗  is given by:  

( )exp 1 (1 )Aφ µ∗ = −  … for … 1µ > ,       (13) 

indicating divergence of relaxation time before the equilibrium state is reached ( )0φ∗ > . In a 

case of hyperaging, owing to lack of mobility ( )τ → ∞ , a material remains frozen in a high 

free energy state.  

Among various power law dependences represented by equations (10) to (12), the 

linear dependence of relaxation time on waiting time ( )1µ =  has important practical 

significance. Firstly the linear dependence is observed experimentally for a very broad class 

of SGMs in absence of the deformation field. Such dependence is also observed for 

molecular as well as spin glasses.
41, 52

 In addition, from a scaling point of view it is often 

argued that in absence of any externally dominating time scale, which is a typical case in 

glassy materials, the only naturally available imposed time scale is waiting time, which is the 

time elapsed since either thermal quench (molecular glasses) or mechanical quench/shear 

melting (SGMs).
19
 Consequently the relaxation time scales as waiting time. In the literature, 

however, various SGMs have been reported to show sub-aging ( )1µ <  or hyper-aging 

( )1µ >  behaviors.
26, 29

 Such behaviors can originate from imposition of another field on a 

material, which tends to increase or decrease the characteristic timescale of a material beyond 

that can be achieved by merely a physical aging process. In case the process of time 

dependent decrease in free energy is not entirely physical, but partly chemical, so that it is 

irreversible, material tends to show hyper-aging dynamics.
29, 53

 

It is usually observed that, in an aging process, modulus of the glassy materials either 

remains constant or increases as a function of time. However, even in the latter cases, 

enhancement in modulus is usually not as spectacular as that of relaxation time. Scaling 

argument suggests that if E  is the average depth of the energy wells in which constituents of 

a soft glass are arrested, modulus can be represented as energy density: 3G cE b= , where b  

is the characteristic length-scale (such as average inter-particle distance or network length) 

associated with a material and c  is constant of proportionality.
46
 Consequently if E  remains 

constant throughout the aging process, modulus of a material will remain constant even if 

relaxation time shows increase as per equation (9). Such possibility arises if the aging 
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behavior of a system is purely entropic. Such scenario is observed for particulate colloidal 

glasses with hard sphere interactions, wherein energy is identical for all the states, and aging 

is controlled by maximization of entropy ( s ). Such case can also be equivalently represented 

by minimization of free energy as: g h Ts= − , as for entropic systems h  is constant 

throughout the aging process under isothermal and isobaric conditions. Therefore for purely 

entropy controlled aging systems modulus can be represented as: 

1G =% ,           (14) 

where 0G G G=%  is dimensionless modulus and 0G  is the constant modulus.  

For those materials, wherein constituents share energetic interactions with each other, 

mean energy well depth E  increases as a function of time. In a limit of either equilibrium 

state ( )0φ →  or high free energy ‘frozen’ state ( )φ φ∗→ , E  saturates to a constant value 

E∗
. Over the regime where E  increases as a function of time, we assume the mean 

relaxation time to have the Arrhenius dependence on E , given by: ( )expm BE k Tτ τ= , 

where 
mτ  is the microscopic relaxation time.

38
 However as φ φ∗→  or 0φ → , relaxation time 

no longer obeys Arrhenius relationship, as even though τ → ∞% , E  saturates to a finite value 

E∗
. Such behavior is often observed for molecular glasses, wherein relaxation time 

dependence deviates from Arrhenius - to - MCT - to - Vogel Fulcher as glass transition is 

approached.
37
 Consequently, in a limit where Arrhenius relation is obeyed (for 0φ φ ∗> ≥ ), 

the dependence of modulus on relaxation is easily obtained as:  

ln
1

ln m

G
τ
τ

= −
%

%

%
… for … φ φ∗> ,        (15) 

where 0m mτ τ τ=%  (it should be noted that 1mτ <%  as discussed below, while 1τ ≥% ), 

0G G G=%  is dimensionless modulus where 0G  is the modulus associated with the state: 

1φ = , and is given by: ( )30 lnB mG ck T b τ= − % . However, as frozen state is approached 

( )φ φ∗→ , modulus saturates to a finite value while τ → ∞% . 

 Application of the deformation field increases φ . We assume that the rate of increase 

of φ  to be directly proportional to rate of strain ( )Vγ&  associated with the viscous (dissipative) 

flow weighted by 1 φ− . Here Vγ&  is the second invariant of the rate of strain tensor V
&γγγγ  
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associated with the viscous flow, given by: ( )†: 2V V Vγ = & && γ γγ γγ γγ γ .
54
 Consequently, equation (4) 

can be modified for evolution under application of deformation field as: 

( )
( )1 V

d

dt

φ φ
φ γ

τ φ
= − + − %&

% %
,         (16) 

where 0V Vτγ γ=%& &  is strain rate in a dimensionless form. Equation (16) is the evolution 

equation for φ  under application of deformation field. The strain rate associated with viscous 

flow can be directly related with stress tensor as: Vη= &σσσσ γγγγ . Viscosity Gη τ=  is a product of 

relaxation time and modulus, which can respectively represented by equations (10) to (12) 

and equation (14) or (15). For a simple shear flow field equation (16) can therefore be 

modified to: 

( )
( )1

d

dt G

φ φ σ
φ

τ φ τ
 = − + −  
 

%

%% % %
,        (17) 

where 0Gσ σ=%  is dimensionless shear stress.  

 Usually the soft glassy materials are viscoelastic in nature. We can, therefore, use a 

single mode Maxwell model, which is the simplest constitutive equation for a viscoelastic 

material. For a time dependent modulus and viscosity a single mode Maxwell model is given 

by:  

V E

d

dt Gη
 = = +   

& & &
σ σσ σσ σσ σ

γ γ + γγ γ + γγ γ + γγ γ + γ .        (18) 

Here σσσσ  is stress tensor and G  and η  are time dependent modulus and viscosity of a material 

respectively. In equation (18) the first and the second terms are respectively the viscous and 

the elastic contributions to the strain rate. It is important to note here that in equation (16) it is 

assumed that φ  gets affected only by the viscous component of the strain rate. This is 

because energy associated with elastic strain remains stored in a material and therefore the 

corresponding rate does not cause rejuvenation. We also show in the next section that even 

though stress is applied on a material in one direction (positive) or applied stress is zero there 

could be strain rate in the spring ( E
&γγγγ ) in the opposite direction (negative) due to increase in 

modulus or due to recovery. In this case, although E
&γγγγ  has a negative sign (assuming σσσσ  to be 

positive or zero) its second invariant will always have a positive sign. However, physically 

Page 12 of 44Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



13 | P a g e  
 

such reverse strain rate cannot cause rejuvenation in a material further justifying usage of 

only the viscous component of the strain rate in equation (16).  

 Equation (16) in a rate controlled form or equation (17) in a stress controlled form is 

the proposed expression for evolution of φ . On the other hand, equation (18) is the 

constitutive equation associated with the model. Furthermore, we assume that the relation: 

( )τ τ φ=% %  represented by equations (10) to (12) is intrinsic in nature and is independent of the 

nature and the strength of a deformation field. Therefore, a deformation field affects the 

evolution of relaxation time only through its dependence on φ . As discussed before, under 

quiescent conditions (no deformation field), τ%  of a material shows power law dependence on 

t%  as observed experimentally. Under application of deformation field, however, φ  is 

expected to decrease or increase leading to increase or decrease in τ% .  

Interestingly evolution of φ  expressed by equation (16) can be transformed to a generic 

functional form given by equation (1) proposed by Coussot.
34
 Multiplying equation (16) by 

τ φ%  leads to equation (1) with ( )dλ τ φ φ= ∫ %  and (1 )Q τ φ φ= −% . However unlike various 

previous approaches, that employ arbitrary functional forms for ( )Q Q λ=  and ( )η η λ= , the 

present model only needs expression of τ%  given by equation (5), which has been derived 

from physical arguments and comply with the experimental observation under quiescent 

conditions. For systems whose modulus increases with t% , the present model has three 

parameters in a dimensionless form that are physically meaningful. The first is rate of aging 

µ , the second is constant A  (which is equal to 
1

(1 ) lnµ φ
−∗ −  ), and the third is mτ . 

However, if modulus is constant the model needs only the first two parameters: µ  and A , 

which are the characteristics features of SGM that depend upon microstructure of the same. 

Most importantly µ  and A  can be estimated experimentally by knowing dependence of 

relaxation time on aging time and have following constraints: 0µ ≥  and 0A > . Such 

dependence can be very easily obtained by carrying out creep or stress relaxation experiments 

at different aging times as discussed in the literature.
15, 24, 27, 51, 55

 In the present model 

microscopic relaxation time ( mτ ) determines rate at which modulus evolves with time. 

Equation (15) suggests that smaller the value of mτ  is, weaker is the evolution of G% . In the 

limit of 1φ = , if mean depth of the energy wells occupied by the constituents of SGM is 0E , 

Page 13 of 44 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



14 | P a g e  
 

an Arrhenius relation leads to relaxation time of that state as: ( )0 0expm BE k Tτ τ= , which 

leads to: ( )0expm BE k Tτ = −% . Although 0E  is the shallowest mean energy depth possible for 

1φ = , it is always positive. Consequently, mτ%  must vary in the limit: 0 1mτ< <% . (It is 

important to note that even though as per equation (15) it appears that in the limit of 
mτ =0 

modulus remains constant, such limit exists only if there is no aging. This is because 

microscopic relaxation time mτ  is a unit time with which a material ages. Even for a material 

wherein aging is purely entropic, wherein modulus is constant, 
mτ  is nonzero. This is because 

in such case relaxation time does not depend on energy well depth.)  

 

III. Results  

To begin with we shall discuss results associated with the steady state predictions. In 

the limit of steady state, since 
E
&γγγγ =0, equation (16) leads to expressions for steady state strain 

rate given by:  

( )1

ss
ss

ss ss

φ
γ

τ φ
=

−
%&

%
.        (19) 

On the other hand, equation (17) leads to the expression for steady state shear stress: 

( )1

ss
ss ss

ss

G
φ

σ
φ

=
−

%% .        (20) 

In both the expressions, subscript ss  represents the steady state values of the respective 

variables (including ( )ss ssτ τ φ=% %  given by equation (10) to (12) and ( )ss ss ssG G φ=% % ). As 

expected, the steady state relationship between σ%  and γ%&  is simply: 

ss ss ss ssGσ τ γ= %% &% % ,          (21) 

where the constant of proportionality is dimensionless viscosity ss ssGη τ= %% % . In figure 1(a) we 

plot ssσ%  as a function of ssγ%&  for materials that show enhancement in modulus as a function of 

time for different values of µ  at A=10 and mτ% =0.1. It can be seen that the dependence of 

ssσ%  on ssγ%&  is monotonic for µ =1 over an explored region, however becomes non-monotonic 

with a presence of a minima for the higher values of µ . The region where ssσ%  decreases with 
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increase in 
ssγ%&  is known to be unstable.

56
 In figure 1b we also plot 

ssσ%  with respect to 
ssφ  by 

solving equation (20) for A=10 and mτ% =0.1 for different values of µ , which also shows non-

monotonic relationships except for µ =1. In the inset of figure 1b we plot relation between 

ssσ%  and ssφ  for µ =2 but different values of A  and mτ% . It can be seen that with increase in µ  

and A , the curves shift to greater values of ssσ%  and also shift cφ  (the value of ssφ associated 

with the minimum in ssσ% ) and φ∗  (according to equation (13)) to higher values. The inset 

also shows behavior of the steady state curve at two values of 
mτ% = 0.1 and 0.001. Increase in 

mτ%  shifts the location of minima as well as the curve to the higher values of ssσ% . As apparent 

from equations (19) to (21), the qualitative dependence of ssσ%  on ssγ%&  is similar to that of 

between 
ssσ%  and 

ssφ  with the minimum in 
ssσ%  in the former relation coinciding with that of 

the latter.  

 

Figure 1. Relationship between ssσ%  and (a) ssγ%& , (b) φ  given by equations (19) and (20) for 

different values of µ  for A=10 and mτ% =0.1. From bottom to top µ = 1, 2, 3, 4 and 5. In the 

inset of figure (b) ssσ%  is plotted against φ  for µ =2 and different values of A  and mτ% ; while 

for a dotted line: mτ% =0.001 and A=0.9. For full lines from top to bottom: mτ% =0.1 and A=30, 

10, 2.5, 1.5, and 0.9. In all the plots part of the curves having negative slope is an unstable 

region. The non-dimensional strain rate, stress and free energy associated with the minimum 

of the curve are represented by cγ%& , cσ%  and cφ  respectively.  
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In order to obtain the values of the parameters µ , A  and mτ%  for which flow curves 

become non-monotonic we solve 0ss ssd dσ γ =%&%  by differentiating equation (21) by ssγ%&  

leading to: 

1 ln
0

1 ln
c

c

d G

d
φ φ

φ φ
=

+ =
−

%

.       (22) 

For a material with time dependent modulus, numerical solution of equation (22) gives cφ  

from which cγ%&  and cσ%  (represented in figure 1) can be obtained by using equations (19) and 

(20) respectively for ss cφ φ= . In figures 2(a) and (b) we plot cγ%& , cσ%  and cφ  as a function of 

µ  for various values of A  and mτ%  for time dependent modulus given by equation (15). It can 

be seen that, irrespective of the values of A  and mτ% , all the three variables: 
cγ%& , 

cφ  and 
cσ%  

decrease with decrease in µ ; and tend to zero as µ  approaches 1. Increase in A  as well as 

mτ% , on the other hand, shifts all the curves to the higher values of respective ordinates. In 

figure 2(b) we also plot φ∗ , which is the minimum attainable value of φ  (represented in 

figure 1) given by equation (13), with respect to µ  for different values of A . There is no 

steady state associated with the values of φ  in the range 
cφ φ φ∗ ≤ <  as it is an unstable 

branch. It can be seen that the width of the unstable region represented by 
cφ φ∗−  decreases 

with increase in A  as well as µ  (in the limit of 1µ → , both cφ  and φ∗  approach zero). 

Furthermore equation (13) clearly shows that φ∗  is independent of mτ% . Figure 2(b) also 

shows that with decrease in mτ% , cφ  decreases, and it can be shown from equations (15) and 

(22) that in the limit of 1mτ <<% , cφ → φ∗ . Importantly figure 2 clearly indicates that the 

steady state stress – strain rate relationship is monotonic for 1µ ≤ . 

 Now we consider a case when 1G =%  during aging, for which equation (22) clearly 

indicates that dependence of ssσ%  on ssγ%&  does not show a minimum ( cφ  does not exist in the 

range: 0 1φ≤ ≤ ). Consequently for 1µ ≤  dependence of ssσ%  on ssγ%&  must show a monotonic 

increase. For 1µ > , according to equations (10) and (13), τ → ∞%  as φ → φ∗ . As a result as 

0ssγ →%&  in the limit of τ → ∞% , stress must show a plateau at:  
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Figure 2. Dimensionless critical (a) strain rate ( )cγ%&  and stress ( )cσ%  (shown in inset) are 

plotted as a function of µ . The full lines represent different values of A  (From top to 

bottom: 30, 10, 2.5, 1.5, and 0.9.) and mτ% =0.1. In figure (b) cφ  (full lines) and φ∗  (dashed 

lines) [equation (13)] are plotted as a function of µ . From top to bottom A=30, 10, 2.5, 1.5, 

and 0.9. The dotted line in both the figures is for A=0.9 and mτ% =0.001. 

 

yσ =%

( )exp 1 ( ) 1

1

1 1A µ
φ

φ

∗

∗ −
=

−−
    ….    for 1G =%  and 1µ > ,  (23) 

where yσ%  is a yield stress. In figure 3 we plot ssσ%  as a function of ssγ%&  for different values of 

µ  and A  at 1G =% . An observed plateau in ssσ%  in the limit of 0ssγ →%&  indicates a presence of 
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permanent yield stress that is independent of time (non-thixotropic yield stress). As shown in 

figure 3, yσ%  can be seen to be increasing with µ  as well as A  as per equation (23).  

 

Figure 3. Relationship between 
ssσ%  and 

ssγ%&  given by equations (19) and (20) for different 

values of µ  (From top to bottom µ = 4, 3, 2 and 1) for A=10 for a case when modulus 

remains constant 1G =% . It can be seen that except for µ >1, ssσ%  shows a plateau in the limit 

of 0ssγ →%&  demonstrating presence of constant yield stress. In the inset of ssσ%  is plotted 

against ssγ%&  for µ =2 and different values of A  (From top to bottom, A= 30, 10, 3 and 1). It 

can be seen that yields stress increases with µ  and A  according to equation (23). 

 

 The presence of yield stress is also characterized by a non-monotonic flow curve, 

such as shown in figure 1, as there are no steady state values of strain rate ( ssγ%& ) associated 

with stresses smaller than that corresponding to the minimum represented by cσ% . This 

concept is described by figure 4, wherein we plot ssσ%  as a function of ssγ%&  for A=10, mτ% =0.1 

and two values of µ : µ =1 (Figure 4(a)) and µ =2 (Figure 4(b)). We also plot the 

corresponding values of ssφ  on the abscissa. Let us consider a case, wherein subsequent to 

complete shear melting (φ =1), a material is allowed to evolve without applying stress 

( )0σ =% . Such evolution is carried out, wherein φ  decreases as a function of time (according 

to equation (16) with Vγ%& =0), until it reaches a certain value of φ = iφ  (initial value of φ ) at 

which stress is applied. In figure 4(a), we consider a case wherein σ% =6 is applied to a 
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material. Consequently, if iφ  is in the region II, where 0d dtφ <% , φ  will continue to 

decrease until it reaches the steady state value associated with intersection of ssσ% =6 and the 

flow curve. If 
iφ  is in the region I, where 0d dtφ >% , φ  will increase until it reaches steady 

state value associated with ssσ% =6. However, since the flow curve is monotonic, a material 

will flow irrespective of the value of applied stress (The scenario for a material with constant 

modulus will be similar to that discussed for figure 4(a) as curves shown in figure 3 are also 

monotonic except the fact that those depict a plateau associated with permanent yield stress).  

 

 

Figure 4. Steady state flow curve are shown for (a) A=10, mτ% =0.1 and µ =1 and (b) A=10, 

mτ% =0.1 and µ =2. The corresponding values of ssφ  are also shown on the inside part of an 

abscissa. For a monotonic flow curve a material will yield irrespective of the value of stress. 
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For a non-monotonic flow curve, application of stress cσ  on a material, will cause yielding 

(flow) only if iφ > cφ . In addition, if iφ  is in the range i cφ φ φ∗ < < , the application of stress 

will cause flow only if d dtφ %  given by equation (17) is positive. Both the figures are 

discussed in detail in the text. 

 

For figure 4(b), let us assume applied stress is σ% =40. In this case the steady state 

value of φ  is the one associated with intersection of 
ssσ% =40 and the increasing part of the 

flow curve. If iφ  is in region III, where 0d dtφ <% , φ  will continue to decrease until it 

reaches the steady state value. If iφ  is in region II, where 0d dtφ >% , φ  will increase until it 

reaches the steady state value. Therefore for a given applied stress greater than cσ% , if iφ  lies 

in regions II and III, a material will eventually attain a steady state. However if iφ  is in region 

I where 0d dtφ <% , φ  will continue to decrease even under application of the stress field 

until it attains the minimum possible value of φ∗ . Consequently a material will not attain the 

steady state.  

The presence of non-monotonic flow curve as shown in figure 4(b), therefore leads to 

a natural dependence of yield stress on φ  given by: 

y cσ σ=% %  … for … i cφ φ≥        (24) 

( )
( )
[ ]

ln

1 ln 1

i mi
y

i m

τ φ τφ
σ

φ τ

  =
−

% %
%

%
 … for … i cφ φ φ∗ < <     (25) 

Since iφ  decreases with time, the yield stress yσ%  will first remain constant for i cφ φ≥  as 

shown by equation (24), and then increase with time for i cφ φ φ∗ < <  as per equation (25). In 

figure 5 we plot variation of yσ%  with t%  for different values of A , mτ%  and µ . It can be seen 

that yσ%  is constant at small times and subsequently shows a logarithmic dependence on t% . In 

addition, the dependence of yσ%  on t%  becomes stronger with increase in all the three 

variables: A , mτ%  and µ . As explained in figure 4(b) and as described by equations (17) and 

(25), we can propose a thixotropic yielding criterion that upon application of stress σ  on a 

material in a momentary state iφ , if φ  continues to decrease towards φ∗  material will not 
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yield. On the other hand, if application of stress causes evolution (increase or decrease) of φ  

so that it stabilizes at a value equal to or above 
cφ , a material will yield. 

 

Figure 5. Evolution of dimensionless yield stress is plotted as a function of time for various 

values of µ  for A=10 and mτ% =0.1. The dashed line is for µ =2 and mτ% =0.001. Inset shows 

evolution of yσ%  for different values of A  at µ =1.5 and 
mτ% =0.1.  

 

 As described by equation (17), whether material yields or not, physical aging is 

affected by the strength of a stress field. Time evolution of relaxation time under a stress field 

can be obtained by manipulating equations (10) to (12) and (16), and is given by: 

( )
1/

ln
1

1

ln
t

d At

d t Gµ

τ
µ µ

φ
τ φ

σ
− 

 
 

= = −
 


 

%%
%

% %
,      (26) 

which clearly shows that for σ% =0, relaxation time dependence described by equation (8) is 

recovered ( )tµ µ= . As discussed before, let us consider a case wherein material is allowed 

to age without applying stress, such that φ  spontaneously decreases as per equation (4), and 

at iφ φ=  stress is applied to a material. If i cφ φ≥ , the term in braces is simply reciprocal of 

( )ss ssσ φ φ=%  (obtained by replacing ssφ  in equation (20) by φ ). Therefore, equation (26) can 

be expressed in a simpler format: 

( )1/

ln
1

ln
t

ss

d At

d t µ

τ σ
µ µ

τ σ φ

 
= = − 

 

%% %

% %
… for … i cφ φ≥ .    (27) 
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Consequently if i cφ φ≥  and cσ σ>% % , with increase in time ssσ%  tends to σ%  so that tµ  must 

approach zero enabling a material to achieve the steady state. For the various values of 

parameters for which 
cφ  does not exist according to equation (22), evolution of relaxation 

time is given by either equation (26) or (27). We represent former case in figure 6(a) wherein 

we plot τ%  and 
tµ  as a function of time for 1µ = , 

iφ =0.96 (corresponding 
ssσ% =28.3) for 

different values of σ% . It can be seen that for σ% =0, τ%  shows continuous increase and 

corresponding 
tµ  approaches 1 in the limit of long times. Furthermore, for nonzero stresses, 

if ssσ σ<% %  the evolution of τ%  weakens from the point of application of σ%  leading to step 

decrease in tµ . The corresponding evolution of τ% , however, eventually plateaus out to a 

constant value causing tµ  to approach 0 after showing a maximum. If ssσ σ>% % , τ%  decreases 

eventually leading to a plateau value and demonstrating negative values of tµ  before 0tµ → . 

In figure 6(b) we also explore evolution of τ%  and tµ  for a system with constant modulus (G%

=1), µ =2, and 
iφ =0.906 (corresponding yσ% =9.5, which is constant) for different values of σ%  

by solving equations (8) and (27). For σ% =0, evolution of τ% , as per equation (8) with 
smφ =1, 

attains tµ =2 in the limit of long times. However for yσ σ<% % , τ%  increases with time but with 

weaker dependence and the corresponding tµ  approaches µ  in the limit of long times. 

Furthermore, since the flow curve for G% =1 is monotonic, for y ssσ σ σ< <% % %  the behavior of τ%  

and tµ  with respect to t%  is expected to be qualitatively similar to that shown in figure 6(a) 

for ssσ σ<% % . For ss yσ σ σ> >% % % , tµ  continues to decrease and shows a minimum before 

approaching a steady state value of 0. 

For 1µ >  and G%  given by equation (15), the flow curve is non-monotonic. For such 

case if iφ  is such that: i cφ φ φ∗ < < , equation (25) suggests that the term in braces is 

essentially ( )yσ φ% . Consequently equation (26) can be rewritten as: 

( )1/

ln
1

ln
t

y

d At

d t µ

τ σ
µ µ

τ σ φ

 
= = − 

  

%% %

% %
… for … i cφ φ φ∗ < < .   (28) 

We represent this scenario in figure 6(c) wherein time dependent evolution of τ%  and tµ  is 

plotted for µ =2, iφ =0.906 (corresponding yσ% =46.1) for different values of σ% . If ( )y iσ σ φ≥% %
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, ( )yσ φ σ→% %  causing 0tµ →  enabling material to attain the steady state. For ( )y iσ σ φ<% % , τ%  

continues to increase but with weaker dependence. The corresponding 
tµ  shows a step 

decrease at the point of application stress, however increases subsequently. Very interestingly 

at moderately high times tµ  increases beyond µ =2, and shows a maximum. Such behavior 

can be attributed to decrease in φ  as a function of time which leads to ( ) 0yσ σ φ →% %  in the 

limit of long times. However owing to impeded increase in τ  due to applied σ% , 1/At µτ%  

increases beyond unity causing tµ  to increase beyond µ . Nonetheless as φ φ∗→ , 1/At µτ%  

again decreases gradually. 
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Figure 6. The temporal evolutions of τ%  and 
tµ  are plotted for different values of σ%  for (a) 

A=10, mτ% =0.1, and µ =1 (The stress is applied when iφ =0.96 for which ssσ =28.3). (b) The 

evolution of τ%  and tµ  are plotted for a system with G% =1, A=10, µ =2, and permanent yield 

stress yσ% =9.5 (The stress is applied when 
iφ =0.906). The values of stresses are shown in 

legend. In part (c) same variables are plotted for A=10, mτ% =0.1 and µ =2 (The stress is 

applied when iφ =0.906 for which yσ% =46.1). The corresponding positions of iφ  for (a) and 

(c) are described respectively in figure 3(a) and 3(b) by dotted lines. 

 

 Presence of yield stress in thixotropic materials ( 1µ > ), as shown in figure 4(c), on 

one hand leads to continuation of aging for yσ σ<% % . On the other hand, for yσ σ≥% %  material 

eventually undergoes rejuvenation producing a liquid phase. For such conditions, we plot 

evolution of strain (γ ) under application of σ%  for iφ  in the domain i cφ φ φ∗ < <  in the inset of 

figure 1S of supplementary information. It can be seen that for yσ σ<% % , γ  increases but 

eventually reaches a plateau. However, for yσ σ≥% % , γ  shows a sharp increase with time. 

Application of σ%  in the vicinity of yσ%  but slightly larger and smaller than yσ% , can be seen to 

be following very similar evolution of γ  for a significant period of time. However, in the 

limit of very long times, γ  bifurcates. This phenomenon is popularly known as viscosity 

bifurcation in the literature. For strain curves associated with yσ σ≥% % , we can define the time 

at the point of inflation 2 2 0d dtγ =%  as the time to yield ( dyt% ). In figure 1S of supplementary 
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information we plot dyt%  as a function of yσ% . It can be seen that time dyt%  rapidly increases as 

0yσ σ− →% % . On the other hand, for yσ σ>>% % , dyt%  decreases weakly with increase in σ% .  

 In figure 2S of the supplementary information, we plot evolution of γ  at constant σ%  

but at different 
iφ . This plot is therefore equivalent to carrying out creep experiments at 

different waiting times after stopping the shear melting. It can be seen that for iφ  smaller than 

ssφ  associated with ( )s ss sφσ σ=% % , system is in region I of figure 4b, consequently strain 

eventually reaches a plateau (plateau is not apparent in figure 2S as it occurs after a very long 

time). However, if iφ  is larger than ssφ , application of ( )s ss sφσ σ=% %  causes yielding, wherein 

strain can be seen to be rapidly increasing with time.  

 Another important characteristic feature of glassy materials in general and SGMs in 

specific is presence of residual stresses. Typically SGMs are shear melted by applying 

constant shear rate of sufficiently large magnitude prior to carrying out any rheological study. 

During shear melting a steady state is reached ( )ss smγ γ=% %& &  and the corresponding ssσ%  and ssφ  

are given by equations (19) and (20). Subsequent to the cessation shear melting if strain is 

kept constant, decay in stress can be easily estimated by simultaneously solving equations 

(16) and (18) with τ%  given by equations (10) to (12) and initial condition of ssσ σ=% %  and 

ss sm
i ss γ γ

φ φ φ
=

= =
% %& &

 at 0t =% , where smγ%&  is dimensionless shear rate associated with shear 

melting. It should be noted that, even though strain is kept constant resulting in γ& =0, Eγ&  and 

Vγ&  may not be constant leading to: E Vγ γ= −& & . As stress relaxes, spring in the Maxwell model 

contracts, giving rise to: ( )V t Gγ σ= %& % , where ( )tσ%  is an instantaneous stress remained in a 

material as it relaxes. In figure 7 we plot σ%  as a function of t%  for a material with constant 

modulus ( 1G =% ) with A=10 and µ =1.1, 1 and 0.9 for various values of iφ  in the range 0.95 

and 0.65. It can be seen that higher the value of iφ  is, greater is the plateau value of σ%  in the 

limit of 0t →% . Furthermore this value is independent of µ  as per equation (20). Figure 7 

shows that for µ =0.9 stress decays to 0, while for µ =1 stress shows a power law decay. For 

µ =1.1, on the other hand, stress shows a plateau in the limit of high times describing a 

presence of residual stress. The most prominent feature of figure 7 is that irrespective of the 

initial value of stress, in the limit of long times all the stress relaxation curves coincide for a 
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given value of µ . Consequently, according to the present model, the residual stress is 

independent of the initial stress or a state of a material.  

 

Figure 7. Relaxation of stress subsequent to cessation of shear melting for a material with 

constant modulus (G% =1) for different values of shear melting shear rates iφ  (or smγ& ) and µ  

for A=10. For a given value of µ , σ%  in the limit of 0t →%  only depends on iφ . In that limit, 

from top to bottom: 
iφ =0.95, 0.9, 0.85, 0.8, 0.75, 0.7, and 0.65. The corresponding 

smγ&  

depends on µ  and can be obtained from equation (19). In the limit of t → ∞% , stress shows a 

plateau for µ >1, stress undergoes power law relaxation for µ =1, while stress decays to 0 for 

µ <1. In the inset σ%  is plotted as a function of t%  for µ =1.1 for two values of iφ =0.95 and 

0.65. The inset shows that greater initial stress leads to faster relaxation of stress due to 

rejuvenation caused by dissipative deformation of dashpot as a result of contracting spring. 

 

 In addition to the relaxation time, if modulus of a material also shows an increase, 

relaxation of stress shows some further interesting features. It is well known that increase in 

modulus of a spring having constant strain increases the stress induced in the same. 

Consequently increase in modulus as a function of time impedes relaxation of stress. In figure 

8 we plot relaxation of stress forµ =1.1, 1 and 0.9 for different values of iφ . Various features 

of the observed behavior are qualitatively identical to that for a material with constant 

modulus (shown in figure 7) for 1µ ≤ . This suggests that irrespective of whether modulus 

increases or not, stress must decay complete for 1µ ≤ . However for µ =1.1, at large times 
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the relaxation curves in Figure 8 are observed to demonstrate a minimum, which can be 

attributed to time dependent increase in modulus. Nonetheless, as mentioned before, as 

relaxation time diverges to ∞ , modulus eventually must reach a constant value. Consequently 

residual stress also must reach a constant value. In the inset of figure 8, we represent a 

schematic wherein possible scenarios are described. Depending upon when modulus reaches 

a constant in relation with increase in relaxation time, stress may or may not show a 

minimum before reaching a residual stress plateau in the limit of long times. In the limit of 

very small times, if modulus shows enhancement, stress may also show increase in that limit 

before beginning to relax. Although to best of our knowledge increase in stress during stress 

relaxation of aging SGMs has not been reported in the literature, the present work clearly 

predicts such possibility particularly for those materials that show very prominent increase in 

modulus as a function of time.  

 

Figure 8. Stress is plotted as a function of time for a material with time dependent modulus 

given by equation (15) for various model parameters as mentioned. For a given value of µ , 

σ%  in the limit of 0t →%  only depends on iφ  whose values are same as that mentioned in 

figure 9. It can be seen that since modulus increases with time, residual stress in the material 

with µ >1 may show increase at very large times. However, as shown in the inset since 

modulus always remains finite, in the limit of long time stress must show a plateau in that 

limit even if it shows an increase over a certain period. The inset also shows a possibility that 

at very early times for ( )t tτ<<% %%  possible increase in modulus may show an early increase in 

stress.  
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 Subsequent to cessation of shear melting, instead of keeping strain constant, if stress 

is removed (σ% =0) the material will undergo strain recovery. It is known that upon removal of 

stress a single mode Maxwell model undergoes an instantaneous recovery.
57
 However in real 

viscoelastic (including soft glassy) materials recovery occurs over a finite (and sometimes a 

prolonged) period of time. The period over which recovery takes place is controlled by 

retardation timescale associated with a material. Therefore, in order to solve a strain recovery 

problem, we consider a dashpot (with viscosity 
dη ) in parallel with the spring. Consequently 

the corresponding Voigt element (spring and dashpot in parallel) will have a retardation time 

given by: d dGτ η= , where G  is the modulus associated with the spring. It should be noted 

that in addition to Voigt element there also exists a dashpot with viscosity η  in series (same 

as that of Maxwell model), by virtue of which the system also has a relaxation time 

( )Gτ η= . However this series dashpot does not play any role during recovery as the 

deformation of the same is always permanent, consequently Vγ%& =0. We assume that dτ  

represents an average retardation time of a material, whose average relaxation time is τ . 

However if relaxation time undergoes a time dependent evolution according to equation (8), 

causality demands that retardation time also must show the identical time dependence.
53
 As a 

result, the mean retardation time is given by:
53
 

dτ ατ=% % ,          (29) 

where α  is a constant and 0d dτ τ τ=% . The elastic strain recovery upon removal of stress 

subsequent to cessation of shear melting with initial condition: at t% =0, sm ss ssGγ γ σ= = %%  and 

ss sm
i ss γ γ

φ φ φ
=

= =
% %& &

 is given by: 

( )
( )

1
1

1ln ln
ln 1 1 1

ln

i

sm i

At

µ

µφ φγ φ
µ

γ α φ φ

−

∗ −∗

∗

  
     

= + − >     
      

   

% L ,   (30) 
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Figure 9. Evolution of ( )sm smγ γ γ−  is plotted for various values of µ  and iφ . In the inset 

identical data is plotted for elastic strain present in a material as a function of time. It can be 

seen that for 1µ ≤  entire elastic strain is recovered in the limit of long times, however for 

1µ >  residual elastic strain remains in a material.  

 

 

Figure 10. Elastic strain present in a material is plotted as a function of time for different 

values of α . It can be seen that increase in α  increases the rate at which strain is recovered. 

In the inset normalized ultimate elastic strain (residual strain) is plotted as a function of µ , 

which shows that γ ∞  increases with both, α  as well as µ .  
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1

1 1
A

ss A

i

At α

γ γ µ
φ

−

−

 
= + = 

 

%

L , and        (31) 

( ) ( )

1

1 1

(1 ) ln 1
ln 1 1 1

(1 ) 1 (1 ) ln

i

sm i

A At

A A

µ

µ

γ µ φ
µ

γ α µ µ φ

−

−

    − −  = + − <     − − −    

%

L .  (32) 

The ultimate recovered strain ( )γ ∞  can be obtained from equations (30) to (32) in the limit of 

t → ∞%  and is given by: 

( )ln 1 (1 ) ln
ln 1

(1 )

0  1

i i

sm

A

A

φ φγ µ φ
µ

γ α α µ

γ µ

∗

∞

∞

  − −
= = >  − 

= ≤

K

K

.     (33) 

In figure 9 we plot ( )sm smγ γ γ−  as a function of t%  for three values of µ  and two values of 

iφ  as represented by equations (30) to (32). In the inset we plot identical data in terms of time 

dependent recovery of γ . It can be seen that for 1µ ≤  the total elastic strain smγ  indeed gets 

recovered in the limit of long times. However for 1µ >  only part of the elastic strain gets 

recovered leading to presence of residual elastic strain in a material. This is because; owing to 

aging, average retardation time of a material diverges converting the dashpot, which is in 

parallel with the spring, into a rigid rod preventing any further recovery of the spring. In 

figure 10 we plot an effect of average retardation time by varying factor α  on the recovery 

behavior. It can be seen that decrease in α , which corresponds to decrease in retardation time 

at any fixed aging time, magnitude as well as the rate of recovery increases. In the inset we 

plot 
smγ γ∞  as a function of µ , which clearly shows that larger the value of µ  or α  is, 

smaller is the ultimate recovered strain ( )γ ∞ . Interestingly in the limit of 0α →  all the 

elastic strain is expected to undergo an instantaneous recovery irrespective of the value of µ . 

 

IV. Discussion 

The most prominent result of the proposed model is that, for a material with time dependent 

modulus for 1µ > , the steady state relation between stress and strain rate is non-monotonic. 

On the other hand, for a constant modulus with 1µ >  a material show a plateau of constant 
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stress in the limit of small strain rate. For while for 1µ ≤  the steady state flow curve is 

always monotonic. We believe that this result is not limited to only power law dependence of 

relaxation time on waiting time. Any dependence between relaxation time and waiting time, 

which is stronger than linear, must show a behavior similar to that observed for 1µ > . 

Conversely any dependence which is weaker than linear should result in monotonic 

dependence between steady state stress and strain rate. The non-monotonic relation between 

stress and strain rate for the present model gives rise to thixotropic yield stress. As described 

in figure 5, yield stress remains constant until 
iφ  remains larger than 

cφ , below which it 

shows a logarithmic dependence on time. Recently Negi and Osuji
58
 measured yield stress 

and yield strain of 4 days old 3.5 weight % aqueous suspension of Laponite. They observed 

that yield stress indeed showed a constant value for a certain period of time beyond which it 

showed a logarithmic increase with time. Interestingly relaxation time of the studied Laponite 

suspension showed exponential dependence on waiting time over a same period for which 

constant yield stress was observed. At higher times Laponite suspension showed a power law 

dependence on waiting time with 1.8µ ≈ . The yield stress in the corresponding regime 

showed logarithmic increase with respect to waiting time. According to the present model it 

appears that for Laponite suspension studied by Negi and Osuji,
58
 relaxation time followed 

two different dependences on φ : for cφ φ> , ( )τ τ φ=  leads to ( )0~ exp tτ τ , while for 

cφ φ< , ( )τ τ φ=  leads to ( )~ mt
µτ τ . Consequently, similar to that shown in figure 5, the 

model is indeed expected to predict constant value of yield stress for cφ φ>  followed by a 

logarithmic increase. It is important to note that logarithmic increase in modulus during aging 

as predicted by the present model using a scaling relation, which in turn is responsible for 

logarithmic increase in yield stress, has been observed for many SGMs.
32, 51, 59

 

Negi and Osuji
58
 also observed that the yield strain decreases over the regime where 

yield stress is observed to be constant (for small times). On the other hand, yield strain is 

observed to be constant in a limit of long times when yield stress is observed to increase 

logarithmically. In the present model, considering the yield strain to be: y y Gγ σ= %% , its 

dependence on t%  can be directly written as: 

( )
( ) ( )

1

ln 1

ln 1 ln

c m

y

m sm At
µ

σ τ
γ

τ µ τ φ
=

 + +   

% %

%% %

 … for … 
i cφ φ≥  or 

c

t t
φ φ=

≤% %   (34) 
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( )

( )

( )

1
1

1

1

exp 1
1 1

sm

i
y

i

At

A

µµ
τ φ

φ
γ

φ µ

−
−    − +         = = −

− −  
    

%%

… for … i cφ φ φ∗ < <  or 
c

t t
φ φ=

>% %  

           (35) 

Equation (34) very clearly suggests that for 
i cφ φ≥  (small times) yγ  should decrease with 

increase in t% . On the other hand, for i cφ φ φ∗ < < , in the limit of long times the term in the 

braces of equation (35) tends to 1 leading to constant value of yγ . Overall the present model 

explains the yielding behavior of Laponite suspension reported by Negi and Osuji
58
 very 

well. 

 It is well known that any material that possesses a yield stress shows shear banding in 

a flow field having a gradient of shear stress. Axial flow of a yield stress fluid in a pipe is a 

classic textbook example of shear banding.
54
 However even in absence of shear stress 

gradient, a material with a non-monotonic steady state relationship between ssσ  and ssγ& , 

which is observed for 1µ > , demonstrates (thixotropic) shear banding if imposed shear rate 

is less than cγ&  (refer to figure 4(b)). This is because negative slope of ssσ – ssγ&  dependence is 

constitutionally untenable, consequently ssγ&  does not exist below cγ& . Let us consider a case 

of simple shear flow in between parallel plates separated by distance H . If the top plate 

velocity V  is such that cV H γ< & , shear banding will take place so that band (or bands) 

having (total) thickness ch V γ= &  will flow with cγ& . On the other hand, a band (or bands) 

with total thickness H h−  will remain stationary. Increase in V will decrease a width of the 

stationary band(s) and in the limit of cV H γ= & , entire sample will flow with shear rate cγ& . 

The present model very clearly suggests that the thixotropic shear banding is possible only 

when 1µ >  and G%  increases sufficiently strongly so that solution of equation (22) makes cφ  

to lie in the range: 1cφ φ∗ < < . Remarkably it is indeed observed that simple concentrated 

emulsion which shows negligible enhancement in modulus does not show thixotropic shear 

banding, but clay loaded emulsion which shows significant enhancement in modulus does 

show thixotropic shear banding
13
 as suggested by the present model. Interestingly Bécu et 

al.
60
 suggested that in a simple concentrated emulsion if attractive interactions are induced, it 

shows thixotropic shear banding. Although Bécu et al.
60
 do not measure the modulus, we 

believe that attractive interactions will indeed induce evolution of modulus in accordance 
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with the present model. Experimentally such behavior has also been observed for variety of 

SGMs such as suspensions of charged particles including smectite clay,
61-63

 cement paste,
63
 

for which not just µ  is expected to be greater than unity but modulus also shows prominent 

increase as a function of time. The present work therefore also suggests that polymeric 

materials undergoing crosslinking reaction, wherein relaxation time shows stronger that 

linear dependence on time and modulus shows prominent increase,
53
 should also demonstrate 

shear banding. 

 The very fact that the steady state relation between stress and strain rate is monotonic 

for 1µ ≤  implies absence of thixotropic yield stress. Consequently, a material with 1µ ≤  

must yield for any value of applied stress. However, as apparent from figure 6(a), even with 

1µ ≤ , smaller the stress is larger time it takes to stop enhancement of relaxation time. In 

practice yield stress is estimated by applying linear or oscillatory stress ramp. Since stress 

increases from a small value to a large value over a finite time, at a certain stress material 

shows sudden enhancement in strain. As a result material shows apparent yield stress, which 

is greater than zero. This behavior, therefore, may manifest itself as undergoing weak flow 

below a certain stress and strong flow above certain stress, thereby resulting in so called 

“engineering yield stress.” Furthermore engineering yield stress is expected to decrease with 

decrease in the rate at which stress is increased. Presence of such engineering yield stress has 

indeed been reported by Derec et al.
51
 for a moderate concentration (36 to 44 volume %) 

suspension of 100 nm silica particles with µ =0.55. 

 Application of stress also affects the rate of evolution of relaxation time ( tµ ). In the 

literature, tµ  has been experimentally estimated as a function of stress for soft microgel 

paste
24
 and aqueous suspension of Laponite.

27
 It has been observed that in the limit of small 

stresses tµ µ→ , while in the limit of large stresses 0tµ → . As shown in figure 6, the model 

predicts this behavior very well. Figure 6 also shows negative values of tµ . Experimentally it 

is indeed observed that application of stress not just decreases the rate of change of relaxation 

time but also the relaxation time itself, thereby justifying presence of negative values of tµ  as 

predicted by the model. 

 Viscosity bifurcation has been observed for many SGMs such as Laponite suspension, 

bentonite suspension, mustard, hair gel, mayonnaise, foam, quick sand (mixture of fine sand, 

clay and salt water), physical gel with polymeric backbone, etc.
9, 10, 32, 64, 65

 While for some of 
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these materials the value of power law exponent µ  is not reported, for others it is around or 

above 1. Strictly speaking the present model predicts viscosity bifurcation for 1µ > . 

However, time taken by the material to undergo substantial or noticeable flow is very large. 

Consequently even for µ  less than but close to 1 effect of viscosity bifurcation can be 

observed experimentally. 

 Another rheological behavior closely related to viscosity bifurcation is delayed 

yielding, which can occur for two cases. For 1µ ≤  smaller the stress is, delayed will be the 

strain induced in a material (apparent yielding). On the other hand, for 1µ >  yielding will get 

delayed as yield stress is approached from higher values as shown in figure 1S. Sprakel and 

coworkers 
16
 studied thermo-reversible stearylated silica gels, and weak depleted gel of 

polystyrene particles and observed delayed yielding no matter how small the stress is. 

Although Sprakel and coworkers
16
 do not measure value of µ , since yielding is observed for 

all the studied stresses, it could be possible that it is below 1. Sprakel also observe that with 

decreases in stress, time to yield increases faster at small stresses while slower at large 

stresses. Interestingly figure 1S qualitatively captures this behavior. Baldewa and Joshi
15
 also 

observed delayed yielding for around 80 days old aqueous Laponite suspension for which µ  

under quiescent conditions is observed to be slightly below 1 in agreement with the present 

model. 

 In the present model we employ only a single mode, and competition between aging 

and rejuvenation of the same respectively leads to decrease and increase in free energy. As a 

result, all those rheological effects for which consideration of only a single mode is sufficient 

can be explained by the model proposed in this work. On the other hand, there are many other 

important effects that depend strongly on how shape of relaxation time spectrum is affected 

by competition between aging and rejuvenating modes. Consequently, effects such as 

viscosity bifurcation, presence of engineering yield stress, shear banding, which can in 

principle be explained by a single mode model, get strongly influenced by dynamically 

changing relaxation time spectrum. Many SGMs have also been observed to show 

overaging,
20, 21

 wherein application of moderate magnitude of deformation field increases the 

relaxation time rather than decreasing it. This effect has also been attributed to alteration of 

relaxation time distribution.
19
 

It is known that perfectly crystalline materials (or perfect solids) do not relax over any 

timescale. Consequently, upon application of step strain, stress induced in the same remains 

Page 34 of 44Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



35 | P a g e  

 

unrelaxed for an indefinite period of time. It is therefore no surprise that the glassy materials 

including soft glasses, which are in apparent solid state, cannot relax the induced stress 

completely over the practically measurable time scales. Very recently, Ballauff and 

coworkers
22
 studied stress relaxation subsequent to shear melting by using MCT and 

molecular dynamics simulations as well as by carrying out experiments on two types of 

SGMs: particulate colloidal glasses with hard sphere interactions and PS-PNiPAM core shell 

suspension. They observed that below a certain threshold volume fraction (or above a 

temperature for MD simulations), stress decays completely while at high volume fractions the 

materials indeed demonstrates presence of residual stresses. They observed that the volume 

fractions for which the residual stress is observed, stress relaxes by about a factor of ten or 

less before plateauing out. Importantly, MCT, which does not account for aging, while shows 

residual stress above a certain concentration, the stress does not relax at all before showing a 

plateau, thereby showing a partial disagreement with the experimental data. 

Such residual stress can originate from two factors. It is possible that immediately 

after shear melting is stopped the particles get arrested in such a fashion that faster modes 

associated with smaller length-scales are finite but slower modes associated with larger 

length-scales are practically infinite. However there is no time dependent evolution of the 

relaxation modes. Under such case a material relaxes only up to such an extent allowed by 

finite modes. The other possibility is that immediately after cessation of shear melting all the 

timescales are finite, which age as a function of time. Eventual divergence of such relaxation 

timescales over finite time does not allow complete relaxation of stress.  

The present model can, in principle, represent both the possibilities, however the 

match is qualitative since the model is limited by a single mode. The present model can 

express the first possibility by considering 1µ >> , wherein relaxation time diverges soon 

after shear melting is stopped. However, in this case owing to consideration of only a single 

mode, relaxation of stress will not be very significant as is the case with MCT. However, 

since relaxation modulus is given by: ( ) it

iG t G e
τ−= Σ , consideration additional finite 

relaxation modes may represent the decay of stress before it plateaus out. The second case is 

represented in figure 9, wherein single mode with 1µ >  can be seen to predict the right 

magnitude of decay. Furthermore Ballauff and coworkers
22
 observe that greater the stress (or 

shear rate) induced during shear melting, faster is the relaxation of stress. In the inset of 

figure 9, we plot two relaxation curves subsequent to shear melting at different rejuvenation 
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stresses (or shear rates). The model indeed predicts that the relaxation is faster when shear 

melting stress is higher. This because higher shear stress at the time of cessation of shear 

melting induces to greater Vγ%&  in the dashpot (in opposite direction), which causes partial 

rejuvenation leading to slower increase in relaxation time. This facilitates greater relaxation 

of stress at early times as shown in in the inset of figure 9. However in the limit of long times 

all the relaxation curves, irrespective of shear melting stress/strain rate for a given µ , 

superpose. Consequently, the present model shows that residual stress (or stress in the limit of 

very large times) is independent of the applied shear melting shear rate. The experiments of 

Ballauff and coworkers
22
 show that residual stress shows weak increase with increase in 

shear melting shear rate. While those systems wherein stress decays completely, stress in the 

limit of very large but at identical time shows decrease with decrease in shear melting shear 

rate. We believe that this difference in the model prediction and the experimental results is 

due to consideration of only a single mode. 

 Based on the stress relaxation behavior Fielding and coworkers proposed a 

distinguishing criterion of weak and strong long term memory for SGMs. They suggested an 

experiment wherein a material is subjected to step strain at time 0t , which is switched off at 

time 
1t , and the relaxation of stress is monitored for 

1t t> . According to their proposal if 

σ →0 in the limit of t → ∞ , it has weak long term memory. On the other hand, in that limit 

if finite residual stress remains in the material it has strong long term memory. We solve the 

present model (with constant modulus) for the suggested experiment by subjecting it to a 

suggested flow field shown in the lower inset of figure 11(a). The model prediction for the 

two cases 1µ <  and 1µ >  is shown in figure 11(a) and (b) respectively. The model clearly 

predicts that materials with 1µ ≤  have a weak long term memory while materials with 1µ >  

have strong long term memory.  

 The strain recovery behavior of many SGMs such as microgel paste,
24
 aging 

surfactant paste,
23
 mustard,

32
 clay suspension,

32
 colloidal gel,

32
 etc., has also been studied in 

the literature. The qualitative nature of the strain recovery in these systems is similar to that 

described in figure 9. The model also predicts presence of residual strain for materials with 

1µ > . However the experiments cannot report residual strain as it is difficult to distinguish 

between residual strain and irrecoverable strain due to flow (dissipation). In polymeric 

glasses, residual strains are known to cause distortion (warpage) of the end product.
66, 67

 

Usually soft glassy commercial products are in macroscopically unstressed state, however 
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presence of residual strain may lead to local pockets of residual stress, which may adversely 

affect the long time behavior of the materials. 

 

Figure 11. Stress response to switch on and off strain profile shown in the lower inset of 

figure (a) for a material having 1G =% . For µ =0.9, 0σ →%  in the limit t → ∞%  as shown in 

part (a), while for µ =1.1, 0σ >%  in the limit t → ∞% . In both the figures the top inset 

describes σ%  plotted on a logarithmic scale. This figure therefore suggests that for 1µ ≤  a 

material shows weak long term memory, while for 1µ >  a material shows strong long term 

memory.  
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 The results of the proposed model, though it uses only a single mode, render insight 

into how variation in relaxation time (represented by µ  and A ) and modulus (represented by 

mτ% ) affect various rheological behaviors. Among these parameters, value of µ , which 

represents ln lnd d tτ , is primarily responsible for determining the material behavior. Firstly 

0µ =  represents material in equilibrium state that does not undergo any evolution as a 

function of time. If µ ≤ 1, the model shows that the steady state stress – strain rate 

relationship (flow curve) is monotonically increasing. Consequently a material flows at all 

the stresses, and therefore does not demonstrate presence of true yield stress. However owing 

to time dependency material does demonstrate thixotropy. Furthermore, as µ  approaches 

unity from below, material may show ‘engineering yield stress’ or ‘apparent delayed 

yielding’ depending upon experimental conditions. For 1µ > , qualitative behavior of flow 

curve is different depending upon how modulus scales with time. For the materials whose 

aging dynamics is purely entropic modulus remains constant during aging. Under such 

conditions (constant modulus and 1µ > ) flow curve is monotonic but plateaus out as strain 

rate decreases. In this case material shows thixotropy as well as true yield, which is 

independent of time. If the inter-particle energetic interactions affect the aging behavior, 

modulus increases as a function of time. Although scaling relation derived in this work 

suggests modulus to follow equation (15), a nature of the flow curve can be predicted for any 

functional form: ( )G G t=% % % . The key is location of cφ  given by equation (22) with respect to 

location of φ∗  given by equation (13). If cφ φ∗ > , flow curve would be qualitatively similar to 

that for a system with constant modulus. However if cφ φ∗ <  flow curve will be non-

monotonic as shown in figure 4(b) leading to time dependent (thixotropic) yield stress along 

with thixotropy. A limit of 1µ >>  represents extremely fast evolution of relaxation time as a 

function of time. Consequently relaxation time diverges very rapidly freezing the system 

kinetically in a high free energy state. An interesting example of such limit of 1µ >>  is a 

system of dense granular materials. In this system subsequent to rejuvenation particles get 

arrested in random close packing configuration which is a high free energy state. The limit of 

1µ >>  is also observed during physical or chemical gelation, wherein owing to bond 

formation mobility of the constituents rapidly decreases causing divergence of relaxation 

time. Furthermore, even though the present model cannot predict the behaviors such as 

delayed yielding with a minimum in strain rate as observed by Sprakel et al.
16
 and delayed 

Page 38 of 44Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



39 | P a g e  

 

solidification, it is expected that increase in µ  would enhance possibility of delayed 

solidification while decrease in µ  would enhance possibility of eventual yielding. 

 There are important differences between the present model compared to the other 

models such as fluidity/thixotropic, MCT and SGR. Firstly the primary framework of the 

present model is evolution of free energy. Consequently a material response gets divided into 

two regimes. In the first one, a material eventually acquires the equilibrium state ( 1µ ≤ ) and 

in the other it does not ( 1µ > ). Importantly this demarcation is physically intuitive and the 

parameter µ  can be experimentally obtainable. In various fluidity/thixotropic models 

dependence of viscosity on a structure parameter λ  is arbitrarily assumed so as to 

demonstrate various rheological effects including non-monotonic steady state flow curve. 

The present model, on the other hand, proposes a relation between relaxation time and free 

energy, which shows an experimentally observed time dependence of relaxation time that in 

turn shows various rheological effects as discussed. Very importantly, to best of our 

knowledge, the present model is the only model that accounts for time dependence of 

modulus. Moreover we actually attribute the non-monotonicity of the steady state flow curve 

leading to various thixotropic effects to the time dependency of the modulus as vindicated by 

experiments on many different kinds of SGMs. Consequently, a material behavior, in 

principle can be a priory guessed simply based on the behavior of relaxation time and 

modulus, which in our opinion is the most prominent feature of the present model.  

 The models such as MCT and SGR, on the other hand, are mathematically involved, 

however give greater insight into the glassy dynamics. Out of these models, MCT does not 

involve aging dynamics, and consequently either shows a glass state or a liquid state based on 

the concentration. As a result stress in the glass state does not relax at all as shown by 

Ballauff and coworkers,
22
 contrary to experimental behavior, which shows relaxation before 

plateauing out. While SGR model is primarily based on aging dynamics, rejuvenation is 

induced by strain. Consequently application of finite strain rate causes complete rejuvenation 

in the SGR model. The present framework on the other hand considers rejuvenation in terms 

of strain rate and complete rejuvenation, therefore is possible only in the limit of infinite 

strain rate. Furthermore, SGR model considers only a full aging scenario ( 1µ = ), unlike the 

present model, that considers µ  as a parameter. Consequently SGR model does not predict 

residual stress at all, which also is the case with the present model for 1µ = . In addition SGR 

model also does not predict various effects arising from time dependent modulus. The most 
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significant feature of the SGR model is the rigor involved in the analysis which leads to 

consideration of relaxation time spectrum and realistic prediction of alteration of the same 

under application of various kinds of deformation fields. The present model is based on 

simple first order kinetics leading to evolution of a single mode relaxation time, whose effect 

along with time dependent modulus is considered through Maxwell model. We feel that these 

features of the model are an advantage, as it clearly indicates those rheological behaviors for 

which consideration of the first order kinetics and a single mode are sufficient. 

 

V. Conclusion 

SGMs are thermodynamically out of equilibrium materials. Consequently they undergo 

aging wherein microstructure progressively relaxes to attain low free energy structures as a 

function of time. During rejuvenation, on the other hand, application of deformation field 

either slows down or reverses the structural recovery. The rheological behavior of SGMs 

therefore strongly depends on competition between aging and rejuvenation, which is 

responsible for many fascinating effects. In this work we present a model that considers rate 

of change in free energy to be a first order process and is equated to sum of decreasing 

(aging) and increasing (rejuvenation) contributions. Aging contribution is assumed to be 

proportional to excess free energy divided by timescale associated with structural 

rearrangement or the relaxation time (τ ). Consequently at smaller τ , due to greater mobility 

of the constituents structural recovery is faster and vice a versa. The rejuvenation term is 

considered to be proportional to viscous component (dissipative) of rate of applied 

deformation field. We propose a dependence of τ  on free energy, which has same functional 

form that proposed by Krieger - Dougherty equation or mode coupling theory in particulate 

suspensions. Remarkably the proposed relation leads to a power law dependence of τ  on 

time with exponent µ  in absence of any external deformation field as observed 

experimentally for a variety of glassy materials. We consider two cases for modulus. In the 

first case we consider modulus to be constant as observed for entropic aging systems. In the 

second case, we derive an expression for time dependence of modulus based on simple 

scaling arguments. Availability of relaxation time and modulus scale naturally leads to 

consideration of the single mode Maxwell model as a constitutive relation. The model has 

respectively two and three parameters depending upon whether modulus remains constant or 

not. All the three parameters can be estimated experimentally. 
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Interestingly, for 1µ > , it is observed that steady state relationship between stress and 

strain rate is monotonic with low shear rate stress plateau when modulus is constant, while 

non-monotonic for time dependent modulus. The former scenario leads to thixotropy with 

true but constant yield stress. On the other hand, non-monotonic relation implies presence of 

a thixotropic (time dependent) yield stress as well as shear banding. Irrespective of the nature 

of modulus, for 1µ > , the model predicts presence of a residual stress as well as strain. For 

0 1µ< ≤ , on the other hand, material is observed to be merely thixotropic without 

thixotropic yield stress. Interestingly model also predicts decrease in µ  with increase in 

applied stress at any given time as observed experimentally, and how µ  evolves under 

application of stress. Finally and importantly the present model allows distinguishing 

between various kinds of thixotropic behaviors based on different combination of model 

parameters. 
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A simple model is proposed that explicitly considers effect evolving 

relaxation time and modulus on various rheological behaviors of 

soft glassy materials including thixotropy, yield stress, shear 
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