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Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These sus-

pensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications.

Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model uti-

lizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice

argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on

multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to

adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

Introduction

The electrical conductivity of heterogeneous materials has

been extensively studied by many different researchers over

the years3,5,13,20,22. The literature primarily focuses on het-

erogeneous materials which are mixtures of two materials

that each have different, isotropic electrical conductivities.

The most well-known result is that of Maxwell, which is

based on an effective-medium approximation for dilute sus-

pensions15. Hashin and Shtrikman approached the problem

in a different way. Rather than attempt to solve for an exact

expression for the effective conductivity of a randomly struc-

tured material, they applied a variational method to derive up-

per and lower bounds on the effective conductivity10. They

chose to use a variational approach to derive bounds on the

conductivity because solving the exact problem for an arbi-

trarily structured heterogeneous material was analytically in-

tractable. Torquato20–22 has studied the effective conductivity

problem in great depth. He has improved the bounds laid out

by Hashin and Shtrikman, has solved for effective conductiv-

ity of a number of different lattice types, and has expressed

the exact tensorial effective conductivity in terms of an infinite

series of N-point probability functions, which can be used to

describe the microstructure of a heterogeneous material. The

particular case of a suspension consisting of a conductive par-

ticle network within an insulating medium has been consid-

ered theoretically, to our knowledge, in one existing study13.

The approach they take assumes a spatially homogeneous po-

tential gradient field imposed upon the structure, leading to a

model for the conductivity that can be proven to be an upper

bound.

Much of the aforementioned work is concerned with the

0 a Department of Mechanical Engineering, MIT, Cambridge, MA, USA.

isotropic conductivity of heterogeneous materials. In this

work, we aim to model the full tensorial conductivity, with a

focus on suspended networks of conductive particles. These

particle networks are of practical importance, especially in

flowable battery technology currently under development by

the Joint Center for Energy Storage Research (JCESR)6. In

these batteries, a conductive, flowing suspension of carbon

black forms an integral component of the system, see Fig-

ure 1(a). It has been shown in related systems12 that shear-

ing flows induce anisotropy in a contact network of sus-

pended particles, as pictured in Figure 1(b). In instances

where suspension conductivity arises from particle-particle

contacts, this structure anisotropy should give rise to conduc-

tivity anisotropy. It is this behavior that we seek to describe. It

has been shown experimentally that the electrical conductivity

of a suspension is highly sensitive to shear rate1, dropping by

several orders of magnitude as shear rate increases. From this

observation and the evidence of particle microstructure chang-

ing in shearing flow, we deduce that a suitably chosen descrip-

tion of the particle network should be sufficient to predict the

electrical conductivity of a suspension.

In the granular media literature, a great deal of attention has

been given to describing the structure of the contact network

between particles. Perhaps the simplest structural measure

for such a network that includes anisotropy is the fabric ten-

sor 16,17,19. While more complex structural measures exist,

such as pair- and higher-order particle correlation functions22,

whose use could enable greater accuracy in constructing a

conductivity model, we shall show that a suitable model can

be achieved solely in terms of the fabric. Key to our model de-

velopment is the solution of a simple case, based on a network

conforming to a lattice structure. The results instruct the form

for a new conductivity model, whose accuracy is then tested
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(a)(a)

(b)(b)

Fig. 1 (a) Image of a carbon black particle network, an elec-

trically conductive suspension11. (b) Image of an effective two-

dimenionsional suspension (attractive polystyrene beads on a fluid

surface), which has been subjected to shearing. Note the formation

of an anisotropic contact network between particles.12

against many thousands of random particle networks. To ex-

plore a range of particle networks, we describe two distinct

algorithms for creating random packings — one for denser

packings, and one for more dilute packings that closely re-

semble those formed by carbon-black — and demonstrate the

model’s predictive capability against thousands of packings

generated from both algorithms.

Homogenization

The tensorial form of Ohm’s law relates the electric field vec-

tor E to the current density vector J through a second-order

conductivity tensor K, i.e.

J = KE (1)

The conductivity tensor is a symmetric, positive-definite ten-

sor21. An effective conductivity for a representative volume

Ω of a heterogeneous material must be defined prior to any

analytical or numerical work. The effective conductivity of an

ergodic medium is defined by

〈J〉= K〈E〉 (2)

where 〈E〉 and 〈J〉 are, respectively, the spatially-averaged

electric and current density fields over Ω21. To avoid a

possibly over-reaching assumption of ergodicity — our tests

will be conducted on finite domains — we specify that

〈E〉 is imposed by prescribing a linear boundary potential

ϕ(x ∈ ∂Ω) =−〈E〉 ·x, and that 〈J〉 is redefined as the flux that

is power-conjugate to 〈E〉. That is,

〈E〉 · 〈J〉 ≡
1

V

∫

Ω

−∇ϕ · jdV (3)

where j is the local current density field. In the ergodic limit of

the ensuing analysis, 〈J〉 reduces to a standard spatial average.

Assuming that the current density obeys Kirchoff’s current

law and Ohm’s law — respectively, ∇ · j = 0 and j = −σ∇ϕ
for some non-negative conductivity field σ(x) — a symmetric,

positive-definite conductivity tensor K must exist that obeys

(2). By using the divergence theorem, Eq 3 can be transformed

into

〈E〉 ·K〈E〉=
1

V

∫

∂Ω

−ϕj ·ndA (4)

where n is the outward-pointing normal vector.

We model the particles as perfect conductors, the fluid as a

perfect insulator, and we suppose electrical resistance arises

only at the contacts between particles. Likewise, the field ϕ is

approximated as a constant within each particle but possibly

varying from particle to particle. The above integral can now

be broken into a sum of integrals over the boundary. In the lo-

cations where the boundary passes through free space (i.e., not

a particle), then we know that j is exactly 0. This leaves only

the parts of the boundary that pass through particles, which al-

lows us to write the integral over the set of boundary particles

B, i.e.

〈E〉 ·K〈E〉=
1

V
∑
i∈B

−ϕi

∫

∂Ωi

j ·ndA. (5)

where Ωi is the intersection of the ith boundary particle with

∂Ω, and the potential within particle i, denoted ϕi above, can

be brought outside the integral since it is constant within a

particle. Although the precise nature of j is unknown within

the particle, the value of the integral
∫

∂Ωi
j ·ndA is the current

that is flowing out of Ω. Denoting this current as Iout
i we can

write the final expression for the right-hand-side of (4),

〈E〉 ·K〈E〉=
1

V
∑
i∈B

−ϕiI
out
i . (6)
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The three independent components of Ke can be determined

by performing multiple simulations on the same particle net-

work with three non-colinear choices of 〈E〉.

By our assumptions for the particle properties, the problem

can be reduced further to that of a resistor network. The net-

work is defined by the set of particles acting as the nodes,

which are connected by a set of contacts acting as the edges,

which carry a resistance Rc. In our model development and

simulations, we assume that Rc is a constant at all contacts.

In reality, this is not strictly the case since the contact resis-

tance is affected by the contact area between particles and the

local structure of the network. This was studied in detail by

Batchelor4. If the particles in question were Hertzian elastic

spheres compressed into a dense granular packing, spatially-

fluctuating contact forces arise causing fluctuating contact ar-

eas, and this issue may be a factor to consider. However, for

the suspensions of interest in this study, the particles actually

have an open, fractal structure, and form contacts only due to

van der Waals attraction. Absent any information to inform

the size of the contact area beside the ∼ constant attractive

force, we choose to use a constant contact resistance. A

schematic of an example network with 9 nodes and 12 edges

can be found in figure 2. Supposing an N-particle sample and

letting im,n represent the (signed) current flowing from parti-

cle m to n, Ohm’s and Kirchoff’s law can be rewritten in their

simpler discrete form,

im,n =
ϕm −ϕn

Rc

Hmn (7)

and

∑
n

im,n = 0 for all m. (8)

where Hmn is the adjacency matrix of the graph formed by the

particle network. Hmn = 1 if there is an edge connecting par-

ticles m and n, and zero otherwise. These equations define

a sparse linear system that can be solved for the potential at

each particle after applying appropriate boundary conditions,

which is described in a later section. The resulting linear sys-

tem is sparse, symmetric, and positive definite, so we used a

sparse Cholesky direct solver to compute the potential at each

point. A trivial post-processing step can be performed to com-

pute the current through each contact.

Solving these linear equations for a given particle network en-

ables us to calculate Iout in (6) and hence the conductivity ten-

sor for the network.

We choose to use the fabric tensor as the measure of the net-

work structure. The particle-level fabric is a local quantity that

can be defined for particle p by the relation16,17,19

Ap = ∑
i

ni ⊗ni (9)

1

2
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i1,2 i2,3
i3,4

i5,6 i6,7

i8,9

i1,5

i2,5 i3,6
i4,7

i6,8
i7,9

Fig. 2 Schematic of a small resistor network with nodes and edges

labeled according to our conventions.

n1

n2

n3

Fig. 3 Schematic of particles in contact showing contact vectors ni.

where ⊗ denotes the dyadic product, and ni is the unit vector

connecting particle centroids of the i’th contact on the parti-

cle. This is illustrated in Figure 3. To homogenize over the

entire particle network, or at least meso-sized region of it, the

average fabric tensor is defined as the system average of the

particle fabric tensors.

A =
1

Nparticles

Nparticles

∑
p=1

Ap (10)

The definition of the fabric tensor has some attractive features.

It is symmetric and positive-semidefinite, guaranteeing that

the eigenvalues are non-negative and that the eigenvectors are

orthogonal. These properties are shared by the conductivity

tensor K, suggesting the fabric tensor could be an appropriate

independent variable in the conductivity’s functional form.

An important concept that will be used later is that of a tensor

deviator. The tensor deviator is the trace-free part of a tensor,

and it is useful to describe anisotropic phenomena since it has

the isotropic part removed. It is defined as

A0 = A−
1

d
trA1 (11)

where d is the spatial dimension and 1 is the identity tensor.

3
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(a)

(b)
dx

dy

Dp

Fig. 4 Idealized particle lattice and unit cell from which fabric-

conductivity relation was derived. (a) Example 2D idealized parti-

cle lattice. (b) 2D lattice unit cell and its resistor network analog.

Neighboring unit cells are shown in gray dashed lines.

Lattice-Reduced Model

We propose an analytical model to elucidate the connection

between electrical conductivity and the fabric tensor based on

a simplified lattice structure. We will test this model’s appli-

cability to random packings in the later sections.

The particles are imagined to live on an idealized infinite, pe-

riodic lattice. The lattice is parameterized by a set of numbers

that describe the particle size and spacing. These parameters

are (1) particle diameter Dp, (2) distance in x-direction be-

tween chains dx, (3) distance in y-direction between chains

dy, (4) distance in z-direction between chains dz. In 2D, only

the first three parameters are used. An illustration of a 2D lat-

tice characterized by these parameters is shown in figure 4(a),

with its fundamental unit cell shown in figure 4(b).

Both the average fabric tensor and effective conductivity can

be computed analytically. The average fabric tensor is defined

as the spatial average of the fabric tensor for all of the particles

in the unit cell and ultimately results in the formua

A =
2

Nx +Ny −1

[

Nx 0

0 Ny

]

(12)

In this expression, the key quantities to recognize are the num-

ber of particles in the x-oriented chain, Nx = dx/Dp, and the

number of particles in the y-oriented chain, Ny = dy/Dp.

Next, the effective conductivity was derived for the unit cell.

To do this, imagine applying an arbitrary voltage difference

across the x-oriented and y-oriented chains separately. These

voltages are ∆ϕx and ∆ϕy, respectively. By applying Ohm’s

law through the corresponding chains, we can recover the

components of the vector form of Ohm’s Law shown in (1).

For example, for the x-oriented chain

jx =

(

1

NyRc

)

(∇ϕ)x (13)

with (∇ϕ)x = ∆ϕx/dx. Due to the geometry of the problem,

we know that the off-diagonal components of the conductivity

tensor K are exactly zero. Therefore, we can say

K11 =
1

NyRc

. (14)

Similarly analysis yields

K22 =
1

NxRc

. (15)

Finally, the parameters Nx and Ny can be algebraically elimi-

nated to give the components of K in terms of the components

of A, yielding the tensorial relationship

K =
1

Rc

trA−2

detA
A. (16)

We refer to the formula in (16) as the “lattice model”. A simi-

lar analysis can be carried out for a three-dimensional unit cell,

which will yield the following expression for the conductivity

tensor,

K =
1

4DpRc

(trA−2)2

detA
A. (17)

The formulae above apply when trA−2 is non-negative. Oth-

erwise the solution is K = 0. The matrix A/detA can be un-

derstood as an approximate measure of how much a lattice

cell of given perimeter (area) deviates from a square (cube)

configuration, distributing proportionally less conductivity in

directions where particle chains are more separated and more

conductivity in directions where chains are tightly spaced.

Despite its inspiration from the lattice structure, there are sev-

eral reasons to consider the applicability of the lattice model

to more general particle networks. For one, the formula pur-

ports codirectionality of the fabric and conductivity, i.e. the

deviators of the two tensors are aligned, implying that the di-

rection of anisotropy of one tensor gives the anisotropy di-

rection of the other, which to a first approximation ought to

match the behavior of general particle networks. Second, the

results imply that conductivity should vanish when trA < 2,

4
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which is sensible more generally (though not strictly) because

particles in a percolating chain, as needed to conduct current

across the sample, must have coordination number at least

two. Above this threshold, conductivity increases with trA in

line with one’s basic intuition for more highly coordinated net-

works. In reality, islands of monomers, dimers, etc, enable

the possibility of conductivity with an average coordination

number less than two because conductivity will be nonzero

with any percolating chain of particles. However, the geomet-

ric assumption underlying this lattice model prevents this from

being taken into consideration. This shortcoming of the model

is evident in our numerical results in figure 8 where nonzero

conductivity was observed for a small range of coordination

numbers below two.

We are aware of one other fabric-based analytical model for

conductive particle networks, which was developed by Jagota

and Hui13. In their work, a uniformity hypothesis is made with

regard to the potential gradient, which results in a conductivity

model that is fully linear in the fabric tensor,

K =
NV D2

p

2Rc

A. (18)

The above, which can be proven to be an upper-bound on the

real conductivity, is for a two-dimensional system and NV is

the particle number fraction (per area in 2D). In the isotropic

case, (18) reduces to precisely the Hashin-Shtrikman upper

bound one finds for the limit of thin, conductive bridges (of

net resistance Rc) connecting the centers of contacting parti-

cles10,21 The above model differs from ours most notably in

that the conductivity is not thresholded by the coordination

number, the formula depends explicitly on the particle area

fraction as well fabric, and it does not depend on the fabric

determinant.

Numerical Simulation

In order to perform numerical experiments and determine the

generality of the lattice model, a large number of random par-

ticle networks (packings) must be created. There are a num-

ber of methods to do this already in the granular and partic-

ulate matter literature. See the references for a broad sum-

mary of the currently available granular packing algorithms2.

Attractive suspensions have been modeled with the Diffusion-

Limited Aggregation (DLA) model of Witten and Sander14.

A common feature of many of the granular statics methods is

that they solve force equilibrium equations for a system of par-

ticles This was not a feature that was required for this study,

so these types of methods were not used, in the interest of

saving computational time. Instead, we developed two meth-

ods for creating two-dimensional random contact networks of

Fig. 5 Example (using a small number of particles) of a dense particle

packing resulting from Algorithm 1.

particles, and we tested our model against numerous packings

generated by each method. Both methods allow us to influence

the resulting anisotropic structure of the packings.

Algorithm 1: Our first packing algorithm was designed to cre-

ate a dense random contact networks of particles. This is in

contrast to a later algorithm, to be described below, which cre-

ated packings that resulted in much lower-density packings.

The dense packings were created by perturbing a 2D hexago-

nal close-packing of particles. This was achieved by placing

points into a triangular lattice, adding random noise to the po-

sition of each point, and finally growing each particle as large

as possible such that no particles overlapped. Anisotropy can

be influenced by shearing the points with an affine transfor-

mation x′ = Fx before growing the radii. This process is de-

scribed in pseudocode below (Algorithm 1). An example of

the resulting packing overlaid by its analogous resistor net-

work is shown in figure 5.

Algorithm 1

Seed L×L box with close-packed points

Perturb points with random noise

Move each point to new location x′ by x′ = Fx

while Not all radii frozen do

Find smallest distance that any particle can grow

Grow all particles by this amount

Freeze radii of particles that come into contact

end while

Algorithm 2: This procedure was motivated by a need to better

understand the conductivity of carbon black suspensions in an

insulating medium. The self-attraction carbon black particles

leads to fractal particle networks that are electrically percolat-

ing at low volume fraction (below 1 vol%)6.

5
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Algorithm 2

Seed N clusters (particles) in Ld square

while NClusters > 1 do

Move clusters according to v =−B(x−O)
Locate collisions between clusters

Combine clusters in contact and recompute centroids

end while

To produce structures that more closely resemble carbon black

suspensions, we developed our second packing algorithm,

which is inspired by the “hit-and-stick” behavior of the car-

bon particles. In addition, the new algorithm is able to include

the effects of particle Brownian motion but this is not essential

to the algorithm.

First, clusters (single particles at this stage) are seeded ran-

domly into a Ld box, where d is the number of spatial dimen-

sions. Next, a linear velocity field is imposed directly on each

cluster’s centroid according to

v =−B(x−O) (19)

where O is a point in the middle of the original box. This im-

posed velocity field serves to pull all of the clusters together.

The matrix B is a d × d matrix that allows us to impose an

anisotropic velocity field. This allows us to influence (but

not completely impose) the fabric tensor that results from this

packing method. After the velocity field is imposed, the par-

ticle positions are updated by assuming a time step dt (com-

puted at runtime). Then, the clusters are checked to determine

whether any contacts have been made with other clusters. If

so, the clusters are cohered into a single cluster for all future

steps. This process of imposing velocity, updating positions,

and handling contacts is repeated until only a single cluster re-

mains. The process is outlined in pseudocode in Algorithm 2.

An example of a packing resulting from this process is shown

in figure 6 and a larger example is displayed in figure 7.

The box-counting fractal dimension7 of the resulting packings

was computed in order to determine if they resembled real-

life packings found in experiments. The fractal dimension of

packings produced by this method is approximately d = 1.75.

This was compared against the particle network image in fig-

ure 1. This network has a fractal dimension of approximately

d = 1.7± 0.1. Uncertainty in the measurement is due to the

image processing techniques used to identify particles. Based

on these measurements, we are satisfied that this algorithm

produces realistic packings, although more detailed correla-

tion function measurements would be needed for a firmer con-

clusion.

Applying boundary conditions: In order to apply the solution

method described above to an arbitrary packing of particles,

Fig. 6 Example (using a small number of particles) of a packing

resulting from Algorithm 2 using a small number of particles.

appropriate boundary conditions must be applied. In these

simulations, a prescribed voltage was applied to particles all

around the boundary. This process consists of two steps: first,

the boundary must be identified, and second, the linear system

must be updated to reflect the known voltages.

For the first packing algorithm, identifying the boundary is a

trivial process, since the particle locations are known a priori.

For algorithm 2, however, the particle positions are not known.

A boundary can be located visually quite easily at the end

of the simulation process, but performing this step manually

would be prohibitively slow. In order to expedite and automate

the simulation process, the following method was devised to

locate the boundary.

First, histograms of the particle x and y positions were sepa-

rately created. To find the “left” and “right” boundaries, de-

noted x− and x+ respectively, the histogram of x positions was

thresholded. The value x− is defined as the smallest x value

where the histogram reaches 50% of its maximum value. The

value x+ is defined as the largest x value that meets the same

criterion. The top and bottom boundaries, y+ and y−, are

found in the same manner using the histogram of particle y

coordinates. The threshold value 50% was determined emper-

ically to locate the same boundary that one would identify vi-

sually. An example packing and its associated x-position his-

togram is shown below in figure 7 to demonstrate the efficacy

of the method. Once the location of the boundary has been

identified, all particles whose centers fall less than one radius

away from the lines are marked as being “boundary particles”.

The expression in (6) can be computed easily from the solu-

6
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Fig. 7 Example 10,000-particle packing (from Algorithm 2) with

its associated x-position histogram and the boundary selected by the

method.

tion of the particle network, so by judiciously choosing 〈E〉,
the components of Ke can be extracted. In two dimensions,

the effective conductivity tensor has three independent com-

ponents, so three simulations are sufficient to extract all of the

components. The K11 component can be extracted by setting

〈E〉 = ex. This corresponds to evaluating the integral for an

applied boundary voltage of ϕ = −x. The remaining tensor

components may be similarly extracted by applying specific

potential fields at the boundary and evaluating the summation

given in (6).

Tests

The previously described packing algorithms and solution

procedures for the current/potential have been implemented

in Matlab. Algorithm 1 was used to create 50,000 separate

400-particle packings. In all of these packings, the F11 and

F22 components of the affine transformation F equalled 1.0.

The F12 component that controlled the shearing of the packing

ranged between 0 and 0.5 in increments of 0.01. Any parti-

cles that were sheared out of the original bounding rectangle

were reflected to the other side of the box to return the pack-

ing to a rectangular geometry. We find packing fractions in

the range φ ∈ [0.65,0.80]. Algorithm 2 was used to create

10,000 separate 5,000-particle packings. In the B matrix, the

B11 component remained 1.0, and the B22 component was var-

ied in [1.0,1.9] in increments of 0.1 to influence the level of

anisotropy of the resulting packings. The approximate range

of packing fractions we find is φ ∈ [0.45,0.70]. After applying

the previously described procedure to each packing to obtain

the effective conductivity tensor and average fabric tensor for

each packing, the data were analyzed to determine how well

the results agree with the model’s predictions for the isotropic

magnitude, the deviatoric magnitude, and the direction of con-

ductivity. If the model is successful, then for any choice of A,

the model should match the ensemble average conductivity of

all packings having that fabric A. Below, for ease of demon-

stration, we bin the data based on scalar invariants of A, and

show either the ensemble average of the conductivity data at

different choices of those scalars, or simply show scatter-plot

comparisons against the full set of tests when it is more illus-

trative to do so. These tests are described next, and thereafter

we shall proceed to show how well the lattice model performs

compared to the existing model, equation (18).

The isotropic behavior of the conductivity can be investigated

by taking the trace of both sides of (16). The average coordi-

nation number is the most natural independent variable when

examining the isotropic behavior, so in addition to taking the

trace of both sides of (16), both sides were multiplied by detA

in order to make the right-hand side a single-valued function

of trA. This results in (20).

Rc trK detA = (trA−2) trA (20)

The results of the simulations are scatter-plotted together with

the analytical curve given by (20) in figure 8. It was found that

the analytical solution is usually an upper bound on the mea-

sured conductivity. This can be explained by the fact that the

analytical model was derived from an idealized system where

the chains span a unit cell in a straight line. Since the total

resistance of a chain is proportional to the number of contacts

in the chain, it follows that the shortest chain between any two

points is the lowest resistance path, and therefore most con-

ductive. Since the model was derived from a straight-chain

idealization, it implies an upper bound on the conductivity.

This logic is less valid in low-coordinated systems, which have

many disconnected groupings of one or two particles; low-

coordinated systems rarely if ever occur from Algorithm 2 or
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Fig. 8 Predicted relationship between the (modified) trace of the

conductivity and the fabric trace, compared to numerical results of

50,000 packings generated by Algorithm 1 and 10,000 generated un-

der Algorithm 2. Inset is a zoom-in of the vicinity of trA = 2.

in actual carbon black suspension networks. In this case, the

trace of the system’s fabric can be less than 2 but percolating

chains may still exist to produce small but non-zero conductiv-

ity. This effect is evident in the figure in the data of Algorithm

1.

Next, we determine the extent the analytical lattice model pre-

dicts the anisotropy of the conductivity. To remove the influ-

ence of the isotropic behavior, we take the deviator of both

sides of (16). In this case, the most natural independent vari-

able is the magnitude of the fabric deviator, so the resulting

equation was manipulated to be a single-valued function of

this quantity. After manipulation, (16) can be written as (21).

Rc K0 :
A0

|A0|

(

detA

trA−2

)

= |A0| (21)

where a subscript 0 denotes the deviator of the tensor, and

the term
A0
|A0|

is commonly referred to as the direction or sign

of the tensor A0. The left hand side was plotted against |A0|
by binning all the test data by |A0| and ensemble averaging

in each bin. It can be seen in figure 9 that, although there is a

large amount of noise in the measurements, the model captures

the average behavior very closely.

The final prediction that must be examined is the notion of

codirectionality. The analytical model in (16) predicts that

the fabric and conductivity tensors have the same eigenvec-

tors. To examine this, the angle difference between the fabric

and conductivity deviators was calculated, which is equivalent

to the (signed) angle between the eigenvectors corresponding

to the largest eigenvalues of the two tensors, denoted eK and
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Fig. 9 Predicted relationship between effective magnitude of the

anisotropy of the conductivity and the invariants of the fabric. Er-

ror bars show ± one standard deviation.
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Fig. 10 PDF of angle differences are distributed around zero, in-

dicating codirectionality of the fabric and conductivity tensors, as

predicted by the analytical model, i.e. (16).

eA. The deviators were chosen because, in 2D, the eigenvec-

tor corresponding to the positive eigenvalue can be unambigu-

ously chosen. The probability density function of the angle

difference as a function of ∆θ is plotted in figure 10. It can

be seen that this distribution is symmetrically centered around

zero, indicating that the fabric and conductivity are strongly

codirectional.

Finally, we also compared the lattice model, (16), to the ex-

isting model by Jagota & Hui13 shown in (18). For the same

60,000 packings generated using both packing algorithms, we

computed the relative error of the prediction of the trace and

the determinant of the conductivity using each model and

plotted the results in figures 11 and 12. In every case, we

found that the new lattice model predictions were closer to

the true values from the numerical experiments than the pre-

vious model by Jagota & Hui. On the other hand, the Jagota

& Hui model maintains a strong upper bound on both invari-

8

Page 8 of 10Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



REFERENCES REFERENCES

0 0.5 1 1.5 2
−2

0

2

4

6

trK

(t
r
K

m
o
d
e
l
−

t
r
K
)/
t
r
K

 

 

Lattice Model

Jagota & Hui

0 0.05 0.1 0.15 0.2 0.25
−5

0

5

10

trK

(t
r
K

m
o
d
e
l
−

t
r
K
)/
t
r
K

 

 

Lattice Model

Jagota & Hui

Fig. 11 Plot of the relative error of the trace of conductivity. (Left)
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Fig. 12 Plot of the relative error of the determinant of conductivity.

(Left) Relative error from packings created with Algorithm 1. (Right)

Relative error from packings created with Algorithm 2.

ants of the conductivity tensor, whereas the lattice model is not

strictly an upper bound, as previously discussed. In addition,

since the isotropic part of the Jagota & Hui model is identical

to the Hashin-Shtrikman upper bound on conductivity, Figure

11 also indicates that the Lattice Model is falling within this

bound. To be more precise, the lattice model prediction for the

isotropic part of conductivity is always less than the Hashin-

Shtrikman upper bound computed for a given packing.

Discussion and Conclusions

In this paper we have derived and tested a new model relating

the structure of a packing of particles to its tensorial electrical

conductivity. The assumptions implicit in the model are that

the suspending medium is a perfect insulator and that electri-

cal resistance arises only at particle contacts. The structural

measurement used was the fabric tensor, and the model arises

from a straightforward analysis of a representative problem

involving a lattice structure. The resulting model takes a non-

linear functional form, and was tested multiple ways against

numerical simulations of many thousands of random parti-

cle packings. The agreement in its predictions of the various

scalar properties and tensorial orientation is significant, espe-

cially in light of the simplistic nature of the fabric tensor being

the sole independent variable for the model. In our tests, the

lattice model’s accuracy was shown to be higher than an ex-

isting conductivity model, a model which requires more struc-

tural input data than the lattice model. While it is definitely

possible to write a more accurate model by including depen-

dences on more structural variables — some of our data spread

is due to the finite nature of the datasets, but some is surely due

to modeling error — the current simplicity of the lattice model

is an advantage for its usage in engineering applications in-

volving flowing suspension networks. Modeling frameworks

for the evolution of anisotropy tensors in flowing media have

been developed over the last decades8,9,18; keeping our model

in terms of fabric, then, suggests a path to the simulation of

simultaneous flow and current transfer fields in nontrivial sys-

tems by coupling a fabric evolution rule and a rheology with

our conductivity model. Such a capability would be key in the

targeted application of modeling flow battery systems, which

rely on a flowing conductive suspension that closely resembles

the idealized system that we considered. A second direction

for future work would be to apply the same idea of simulta-

neous flow and anisotropy modeling to other transport phe-

nomena. For example, incompressible flow through a deform-

ing granular media would have a similar mathematical formu-

lation, albeit with reversed spatial assumptions since the im-

permeable grains play the role of the insulating medium here.

The fabric tensor could be used as a surrogate to describe the

structure of the pore space, which would relate to anisotropic

permeability.
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