
 

 

 

 

 

 

Block Copolymers: Controlling Nanostructure to Generate 

Functional Materials – Synthesis, Characterization, and 

Engineering 
 

 

Journal: Chemical Science 

Manuscript ID SC-PER-09-2015-003505.R1 

Article Type: Perspective 

Date Submitted by the Author: 30-Nov-2015 

Complete List of Authors: Epps, Thomas; University of Delaware, Chemical and Biomolecular 

Engineering 
O'Reilly, Rachel K.; University of Warwick,  

  

 

 

Chemical Science



Block Copolymers: Controlling Nanostructure 

to Generate Functional Materials – Synthesis, 

Characterization, and Engineering 

 

Thomas H. Epps, III*⊥, and Rachel K. O’Reilly*† 

⊥Department of Chemical and Biomolecular Engineering and Department of Materials Science 

and Engineering, University of Delaware, Newark, Delaware 19716, United States 

†Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK 

 

Abstract 

In this perspective, we survey recent advances in the synthesis and characterization of block 

copolymers, discuss several key materials opportunities enabled by block copolymers, and highlight 

some of the challenges that currently limit further realization of block copolymers in promising 

nanoscale applications. One significant challenge, especially as the complexity and functionality of 

designer macromolecules increases, is the requirement of multiple complementary techniques to fully 

characterize the resultant polymers and nanoscale materials. Thus, we highlight select characterization 

and theoretical methods and discuss how future advances can improve understanding of block 

copolymer systems. In particular, we consider the application of theoretical/simulation methods to the 

rationalization, and prediction, of observed experimental self-assembly phenomena. Finally, we explore 

several next steps for the field and emphasize some general areas of emerging research that could 

unlock additional opportunities for nanostructure-forming block copolymers in functional materials. 
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Introduction to Block Copolymers 

Nature uses molecular self-assembly to create precision nanostructures, craft unique 

compartmentalized environments, and build large constructs through hierarchical assembly.  Indeed, 

recent developments in nanotechnology have mimicked natural approaches by utilizing nucleic acid 
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sequence specificity to create higher order structures through the creation of DNA origami tiles, other 

three-dimensional structures, and nanomechanical molecular devices.
1
  Inspired by these recent 

advances and motifs, considerable efforts have been initiated to recreate such concepts using synthetic 

building blocks such as small-molecule surfactants and block copolymers (BCPs).   

Small-molecule surfactants and BCPs are both fashioned from two or more chemically dissimilar 

constructs that are covalently-bonded into a single molecule.  Through a delicate mix of molecular 

interactions and materials processing, these molecules form a variety of nanoscale structures.  The 

linking of constitutionally different units permits the combination of their distinct properties within a 

macromolecule and enables interesting nanoscale assembly phenomena, and ultimately, unique 

macroscale behavior.
2
  Importantly, many of the unique physical properties inherent to BCP materials 

are a result of the nanoscale hybridization of their components and cannot be accessed through simple 

blending of non-bonded blocks.  Furthermore, the increased number of repeat units in BCPs, compared 

to small molecules, leads to dramatically improved morphological stability.  This stability provides 

significant opportunities for BCP utilization in a broad range of environments but also necessitates new 

methodologies to control the precise assembly of organized nanostructures.  Indeed, through advances 

in polymer synthesis, functionalization, processing, and characterization, it is now possible to design, 

fabricate, and explore a vast array of BCPs with diverse and sophisticated self-assembly potential in bulk, 

thin film, and dilute solution environments.  In Figure 1 for example, the combination of multiple 

polymerization methods and targeted coupling chemistries enables the synthesis of complex 

macromolecules such as tapered BCPs (top left), the use of solvent processing recipes on motorized 

stages permits the generation of directed nanostructures for thin film templating (top right), the 

cryogenic transmission electron microscopy of cylindrical BCP micelles allows one to visualize 

nanostructure formation in solution environments (bottom right), and self-consistent field theory 

simulations of solvent removal in a cylinder-forming BCP thin film informs structure/processing 
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relationships (bottom left).  (We also note that many hydrogel and concentrated solution systems 

contain BCPs, but discussion of those materials is not included in this work.)  

• Bulk  

Bulk assembly has been studied extensively for over 50 years, and the phase behavior of traditional A-B 

diblock copolymers is well-researched both theoretically and experimentally.  In conventional bulk 

materials self-assembly processes are governed by an unfavorable mixing enthalpy coupled with 

entropic losses due to macromolecular junctions and chain stretching.  Current commercial applications 

of bulk BCPs (diblock and multiblock) include thermoplastic elastomers for gaskets, cable insulation, 

footwear, blending, adhesives, automotive bumpers, snowmobile treads, etc. (e.g. Kraton™, Styroflex™, 

Solprene™, Hytrel™, Engage™, Sofprene™); thermoplastics for medical devices, protective headgear, 

and piping systems; and elastomers for car tires (e.g. poly(styrene-b-isoprene-b-butadiene) rubber 

[SIBR] from Goodyear) among others.  For the case of thermoplastic elastomers, BCPs enable the facile 

and low-cost generation of a myriad of application-specific recyclable, flexible, thermoformed (or blow-

moldable), creep-resistant, and durable materials as compared to conventional thermosets, primarily as 

a result of prescribed nanoscale phase separation.   

Well-defined BCPs can phase separate into a variety of periodic and nanoscale morphologies according 

to the relative composition of the blocks, the overall degree of polymerization (N), the polymer–polymer 

interaction parameter (χ), and the ratio of statistical segment lengths.
3
  The conceptual ability to tune 

morphology through adjustments in chemical composition allows one to generate materials tailored 

toward thermoplastic elastomer, membrane, and other applications.  Though the mechanism, 

underlying nanostructure formation for the simplest classes of BCPs with non-specific interactions is well 

understood, new macromolecular designs that incorporate multiblocks,
4
 copolymer mixtures,

5
 specific 

interactions (hydrogen-bonding,
6
 π−π stacking,

7
 etc.), engineered dispersity,

8
 tapered segment profiles,

9
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sequence-controlled monomer distributions,
10

 small-molecule dopants (e.g. salts, plasticizers, and 

inorganic precursors),
11-13

 and functional end-groups
14

 significantly complicate the understanding of bulk 

macromolecular assembly, yet potentially yield exciting opportunities for novel material designs such as 

active membranes for batteries and fuel cells,
15

 catalyst supports/scaffolds,
16,17

 actuators, and self-

healing or shape-memory systems.
18,19

 

• Thin film 

In addition to the factors that affect assembly in bulk, self-assembly processes in thin films (< several 

hundred nanometers in thickness) are strongly influenced by surface energetics and film thickness 

(commensurability) considerations.
20

  The incorporation of these additional driving forces, as well as 

significant processing history effects due to kinetic limitations associated with thin film assembly, has a 

substantial impact on nanostructure formation and surface topology in thin films.  Significant recent 

progress has been made in manipulating BCP thin film morphologies for media storage, photonics, 

nanolithography, nanotemplating, and ultrafiltration applications.  A few examples for which thin film 

BCPs have received interest in high value industrial processing are: conventional chip manufacturing,
21

 

nanotemplating for dense bit-patterned media that could facilitate doubling of hard disk drive 

densities,
22

 and nanolithography for patterning next-generation semiconductor devices.
23

  Despite these 

industrial endeavors, each with its own challenges,
24

 distinct hurdles that limit wide-spread usage of BCP 

thin films in emerging technologies remain.
25

  These hurdles include precise control over the directed 

assembly of nanoscale domains through cost-effective and scalable approaches, understanding the 

influence of nanostructure formation dynamics and processing protocols (such as the influence of 

various annealing recipes, film casting methods, surface energetics, and polymer molecular weights and 

architectures) on morphology and orientation, elimination (or significant reduction) of defects, and 

translation of nanopatterning techniques to non-traditional substrates (e.g. flexible substrates, porous 

scaffolds, graphene, metals).
24,26,27

  A variety of surface fields, thermal and solvent annealing (uniform, 
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gradient, and zone-annealing) protocols,
26

 and other external fields (e.g. magnetic, electric, mechanical, 

etc.)
28-30

 have been employed to manipulate nanoscale morphology, orientation, and ordering in BCP 

thin films.  Further understanding of the many parameters associated with these tools will permit 

additional BCP applications in coatings,
31

 nanoporous membranes,
32

 anti-fouling materials,
33

 and 

analytical and process-scale separation membranes,
34

 electronics,
35,36

 and optoelectronics,
7,37

 including 

complex circuits,
38,39

 stretchable/flexible electronics,
40

 optic and acoustic wave guides,
41

 sensors,
42

 

holographic arrays:
43

 all areas in which three-dimensional or hierarchical structures can transform 

materials design.
32

   

Surface grafted (brush) block copolymers also are receiving significant interest as nanostructured 

surface coatings for drag reduction, surface energy modification, biosensing, and cellular manipulation 

applications.
44,45

  These brush systems incorporate an additional variable in terms of block order (even in 

diblock copolymer systems) as a consequence of attachment to a substrate and typically do not possess 

the same kinetic limitations inherent in BCP films.  Some key challenges include high-throughput 

synthesis and characterization of block copolymer brush systems with high reproducibility and accuracy, 

generating a detailed knowledge-base of factors that influence phase behavior and surface properties, 

and adapting block copolymer brush systems for specific applications.
44,45

 

• Dilute solution 

Dilute solution self-assembly is similarly complex because the introduction of a single solvent, or 

multiple solvents, dramatically affects the assembly process and the resultant nanostructures.
2,46

  This 

added complexity is largely due to additional surface tension, interaction parameter, and entropy effects 

that can significantly alter the formation and stability of macromolecular assemblies in solution.
44,47

  

Thermodynamic and kinetic constraints can lead to the formation of various aggregates such as micelles 

and vesicles, related to the spherical, cylindrical, and lamellar morphologies, which are found in bulk 
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systems;
2,48

 although exotic structures such as helices,
49

 toroids,
50

 and networks
48,50

 also have been 

reported.  The majority of research has focused on aqueous self-assembly, for which the driving force is 

primarily hydrophobic interactions; however, there have been significant efforts to examine BCP 

assembly in organic solvents,
51

 ionic liquids,
52

 supercritical solvents,
53

 mixed solvents, and during 

polymerization.
54

  The free-energy landscape, as accessed through assembly protocols, solution 

processing (e.g. agitation and shear), hydrogen-bonding, reversible and irreversible stimuli-responses, 

salts, and cross-linking are critical in determining the final state of solution assemblies.
44,46,55

  Several key 

advantages of BCP solution assemblies (as opposed to low molecular weight surfactant assemblies) 

include low critical aggregation concentrations (CAC)s and slow inter-aggregate chain exchange in highly 

selective solvents such as water.
2
  Additionally, high loading capacities coupled with the ability to 

incorporate a myriad of functionalities and BCP compositions and architectures enables efficient 

bottom-up strategies to synthesize surfactants for interfacial stabilization such as commercially-relevant 

Pluronics™ and Tetronics™ and nanocontainers for biological (therapeutic agent delivery, imaging, 

diagnostics, theranostics) catalysis, separations, and self-healing applications.
25,46,56

  Unfortunately, the 

slow dynamics that normally are advantageous in producing stable nanocarriers also lead to kinetically 

trapped structures,
46,57

 thus such systems require careful optimization of preparation conditions to 

produce well-defined, uniform, and reproducible solution assemblies. 

Overall, the substantial need for new materials with well-defined and predictable nanoscale and 

macroscale characteristics has stimulated further study of macromolecular assemblies in bulk, thin film, 

and solution environments, as all arenas are poised to engender ground-breaking technological and 

societal impacts.  The on-going fabrication of more exotic, hierarchical, and nature-inspired BCPs 

provides tantalizing glimpses toward emerging applications enabled through complex morphology 

generation; however, further efforts linking synthesis, nanostructure fabrication, processing, 

characterization, and theory (see Figure 2) are necessary to unlock the full potential of BCPs.  In the 
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following sections, we describe various methods for the synthesis of BCPs, highlight key tools that 

enable nanoscale characterization of self-assembling soft materials, discuss select contributions that link 

experiment with theory, simulation, and modelling, and emphasize several emerging directions for BCP 

activities.  The focus is on recent literature and is not meant to ignore the wealth of seminal 

investigations that provide the inspiration for the work discussed herein.  For the sake of brevity, much 

of the foundational work can be found in the references sections of the literature highlighted in each of 

the topics below.  Additionally, the examples provided below are not meant to be all-inclusive, but 

instead are selected to provide a snapshot of the power and challenges associated with experimental 

and theoretical development of BCP nanostructures for wide-ranging materials.    

Synthesis of block copolymers – designer macromolecules with unique properties 

While, the synthesis of BCPs is an established field with many major advances over the last 50-60 years, 

more recent efforts in controlled polymer synthesis now enable the preparation of a wide range of BCP 

architectures including, linear, graft, dendritic, star-like, bottle-brush, hyperbranched, and cyclic BCPs.
4
  

All of these macromolecular structures have unique and interesting self-assembly behavior; however, 

given the diversity of available architectures, this review will focus only on the versatility of linear BCPs, 

which still possess a myriad of opportunities to advance functional materials design.  Within the sub-

class of linear BCPs, various block types have been prepared such as organic and bio-hybrid BCPs.  The 

first type includes a range of organic (non-biological-based) BCPs that can assemble by minimizing the 

free energy landscape that primarily is influenced by mixing and chain stretching considerations.  We 

also note that significant work has been carried out in BCP systems that have specific interactions such 

as hydrogen-bonding, metal-binding, π−π stacking, etc., which leads to self-organizing structures with 

their own intricate features.  Many of these materials have been reviewed extensively in the 

literature,
7,58

 and while of interest, they will not be discussed in exhaustive detail herein.  Instead, we 
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will highlight range of synthetic tools that can be used to prepare specific organic BCPs with unique 

properties.   

The second type, nature-inspired or bio-hybrid BCPs, forms a burgeoning class of self-assembling 

materials, in which the potential for secondary structure formation and concerted specific interactions 

promises unparalleled opportunities in hierarchical and function-driven assembly.
59

  These nature-

inspired bio-hybrids often contain at least one constituent derived from a biomolecular building block 

such as a peptide, protein, nucleic acid, peptoid, or sugars.
60,61

  The combination of synthetic and bio-

blocks in a well-defined macromolecule potentially introduces distinct nanostructures, stimuli-

responsive character, and specific functions that are difficult to generate in ‘simpler’ organic–organic 

BCP systems.
59

  As a result, these bio-hybrid BCPs provide opportunities for the realization of diverse 

and highly targeted applications in self-assembled materials (Figure 3).   

In the following sections, we will highlight several noteworthy advances in the synthesis of linear BCPs 

that can lead to practical nanoscale assemblies for biomedicine, electronics, catalysis, nanotemplating, 

and responsive surface materials, among other applications.  Furthermore, we also hint at several 

challenges, such as the need for the sustainable, efficient, and environmentally-friendly generation of 

functional macromolecules, which will be discussed in greater detail in the emerging directions section 

of this perspective.    

Methods for synthesis 

There are numerous routes toward the synthesis of BCPs, which result in an extraordinarily broad range 

of macromolecules with tailorable and highly specific properties.  These approaches can be broadly 

divided into three different classes: (continuous) sequential polymerization, macroinitiation, and 

coupling.  Within these methods key considerations include the generation of well-defined polymers at 

high purity with controlled dispersity and high end-group fidelity, the incorporation of application-
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specific functional groups, and the ability to combine macromolecules synthesized from diverse 

polymerization methods, including the coupling of natural and synthetic building blocks.  Each of these 

factors can have marked consequences on macromolecular self-assembly.  For example, in many BCP 

generation approaches the final mixture can contain homopolymer or other “incomplete” contaminants 

due to loss of end-group fidelity, premature termination, incomplete end-group functionalization, or 

inefficient coupling.  These contaminants can be difficult to remove or quantify; however, they can have 

a significant influence on macromolecular assembly.
62

  Overcoming these limitations will facilitate 

copolymer design, as well as provide opportunities for the automated and high-throughput synthesis of 

complex architectures to possibly enable sustainable materials discovery.
63

   

Continuous sequential polymerization 

Perhaps the most straightforward method to prepare BCPs is through continuous sequential 

polymerization of two or more monomer sets using a single chain growth mechanism.  That is to say, 

controlled polymerization of one monomer, followed by chain extension with a different monomer 

without intermediate termination/purification steps, can be used to prepare an AB polymer (or through 

further monomer addition, multiblock systems).
64

  Sequential polymerization is especially applicable to 

methods such as living ionic, reversible-deactivation radical polymerization, and ring-opening 

polymerization.  In particular, living anionic polymerization is somewhat restricted to this approach due 

to difficulties in reinitiating a terminated chain end; however, anionic techniques are still desirable for 

the ability to generate highly uniform polymers of extremely low dispersity and with excellent end-

group fidelity,
3
 as demonstrated by Goodyear (SIBR) for tires and by other companies in various 

applications.  Additionally, continuous sequential methodologies can be tuned to produce tapered 

interfaces between polymer blocks.
9
  These tapered block copolymers represent an emerging class of 

BCPs with unique and diverse self-assembly behavior.
65

  Reversible-deactivation radical polymerization 

and ring-opening-based polymers also can be generated through continuous sequential polymerization, 
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but these polymers are amenable to both macroinitiation approaches described below, due to the 

possibility of reinitiating a dormant chain end.  Though sequential polymerization methods are useful for 

preparing a broad range of BCPs, they are somewhat limited in the polymerization of functional 

monomers, such as those containing nucleophilic or other reactive functionalities. 

One approach to overcome this limitation in functional monomers involves the use of dual initiator (or 

protected initiator) species such as a hydroxyl-functionalized reversible addition–fragmentation chain-

transfer (RAFT) chain transfer agent (CTA), which allows for the orthogonal polymerization of two or 

more distinct monomers.  This route has been used most effectively for the combination of ring-opening 

and reversible-deactivation radical polymerization methods and unlocks access to a range of 

functionalizable BCPs.
66

 

Macroinitiator approaches 

Although living anionic and anionic ring-opening polymerizations are useful for sequential approaches, 

the synthetically demanding nature of the reactions typically necessitates a macroinitiator approach to 

generate BCPs with the desired multiple block functionalities.  This macroinitiation route can provide 

well-defined BCPs, but it normally involves a two-step polymerization process with the possible need for 

intermediate purification steps.
67

 Fortunately, macroinitiation provides a ready means for generating a 

highly-defined library of macromolecules for systematic studies.  A key consideration is that the 

polymerization mechanism utilized to synthesize the first block must result in a polymer with excellent 

end group fidelity to ensure that effective and efficient chain extension is possible.   

Two major cases of macroinitiation can be defined; case one: the same polymerization mechanism used 

to generate the macroinitiator is used for chain extension, and case two: an orthogonal reaction scheme 

is used for chain extension.  The first case is particularly amenable to ring-opening and reversible-

deactivation radical polymerizations, in which the macroinitiator can be re-initiated following 

Page 11 of 41 Chemical Science



 12

intermediate purification.  However, challenges still remain in this case.  As has been readily 

demonstrated in the literature, successful BCP formation may still not be possible due to blocking 

effects, which are based on the reactivity of the macroinitiator towards the chain-extending monomer.  

Macroinitiator reactivity is especially important when monomers with a more active dormant species 

(e.g. methacrylate or acrylonitrile) are utilized to extend a macroinitiator of lower activity (e.g. 

polystyrene or polyacrylate). This factor can be especially problematic when the specific functionality at 

the α and ω ends is important and hence reversing the order of polymerization is not possible.  

Additionally, macroinitiation schemes utilizing a single polymerization mechanism are not always 

amenable to the preparation of highly amphiphilic and hybrid BCPs, including those containing 

poly(ethylene oxide), polypeptides, or nucleic acids. 

There have been several manipulations to controlled polymerizations to facilitate BCP synthesis from 

constituent monomers that cannot be polymerized using the same mechanism or initiating scheme 

(case two).  Classic examples are macroinitiators synthesized through anionic or anionic ring-opening 

polymerization.  Polystyrene-b-poly(ethylene oxide) [PS-b-PEO], polybutadiene-b-PEO [PB-b-PEO], PEO-

b-poly(N-isopropylacrylamide) [PEO-b-PNIPAM], and PEO-b-ε-polycaprolactone [PEO-b-PCL] are several 

workhorse synthetic BCPs generated using this route.
48

  Recent efforts have extended this approach to 

reversible-deactivation radical polymerizations, for which simple and effective chain end modification 

chemistries enable orthogonal polymerization mechanisms.  Additionally, ring-opening metathesis 

polymerization (ROMP) provides an elegant tool for the synthesis of a diverse range of block 

copolymers.
68

  ROMP is especially useful for the preparation of BCPs with interesting topologies 

including cycles,
69

 grafts,
70

 and bottle-brushes.
71

 

Two areas that have received recent interest include degradable BCPs containing polylactide and bio-

hybrid systems such as polypeptide BCPs which have possible applications in biomedicine.
72,73

  

Page 12 of 41Chemical Science



 13

Additionally, the explosion of Click chemistries as a model for polymer functionalization (e.g. polymer 

chain end modification) has facilitated the manipulation of macroinitiators to allow for a second 

polymerization mechanism.  This functionalization avenue has significantly broadened the scope of BCPs 

accessible through a macroinitiator approach especially for such sustainable and degradable polymers.   

Macroinitiator approaches also are very effective for the preparation of hybrid BCPs, especially those 

from natural biopolymers such as cellulose, chitin, or proteins.  Although these methods often lead to 

more complex architectures instead of simple and low dispersity linear BCPs, the manipulation of 

natural biopolymers to incorporate selective single site modifications has shown promise.
74

  This 

method has been demonstrated for the modification of proteins through selective introduction of a 

functionality (e.g. a polymerization initiator) to enable polymerization of a second polymer in a ‘grafting 

from’ approach and to afford a bio-hybrid BCP (Figure 4).
74

  To extend this approach and ensure 

effective and high-yielding BCP synthesis, further efforts are required to selectively incorporate 

functionalities that enable BCP generation in nature-inspired or nature-derived systems.  

Post-polymerization coupling 

Perhaps the most versatile method for BCP synthesis is the post-polymerization coupling approach, 

which enables the conjugation of blocks with very distinct chemistries.  This avenue for linking pre-

synthesized macromolecules has been facilitated by the exploitation of Click chemistries.  The concept 

was introduced in 2001 by Sharpless,
75

 and was later applied in BCP synthesis,
76

 Click is exemplified by 

the copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC).  This reaction, and other high-

yielding and highly-efficient coupling approaches,
14

 allow for the conjugation of a diverse array of end-

functionalized polymers to afford a range of BCPs.  One challenge in the translation of small molecule 

Click approaches to polymer–polymer conjugation is the requirement for complete end group retention 

(and/or subsequent functionalization), which has been difficult to achieve for the vast majority of 
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polymerization routes.  However, methods such as living anionic polymerization and copper-mediated 

radical polymerization have demonstrated excellent end-group fidelity and have functionalities that can 

be readily modified to a Click-like reactive group (e.g. the termination of the anionic polymerization with 

ethylene oxide to yield a terminal hydroxyl,
67

 to then yield a terminal azide
77

).  

Click concepts in macromolecular systems clearly must take into consideration the challenges in 

purification and detailed molecular characterization.  For cases in which end-group fidelity is not 

maintained, the coupled BCPs mixture also will contain one or both of the un-coupled building blocks 

that can be difficult if not time-consuming to remove, unless the Click-based reaction conditions and 

stoichiometry are defined to yield only the BCP and an easily separable building block.  Furthermore, it is 

worth noting that not all small molecule Click reactions are similarly effective in polymer systems.  The 

radical-mediated thiol-ene reaction is an example of a reaction that has found application in small 

molecule and polymer modifications,
78

 but it has not been as efficient in polymer—polymer couplings.  

This reaction was demonstrated clearly by DuPrez and Barner-Kowollik to have very limited 

effectiveness for the coupling of a range of chain-end functionalized polymers.
79

  Studies such as these 

highlight the need for in-depth and careful characterization of such BCP reaction schemes to verify the 

effectiveness of the BCP formation (i.e. homopolymer contamination, etc.).  Click-based approaches also 

have been employed in the post-polymerization modification of pre-formed BCPs.  As demonstrated by 

Hammond and coworkers, alkyne side groups allow the creation of a versatile library of compounds 

from a single parent BCP through cycloadditions;
80

 however, the efficiency of the coupling reactions 

remains a concern when dealing with multiple reaction sites on a long-chain macromolecule.    

A further challenge to be overcome, which affects all of the synthesis methods described above, is the 

requirement for compatible solvents for the constituent blocks of the BCP.  This constraint can be 

especially challenging for both macroinitiation and post-polymerization coupling, and if not properly 
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considered can lead to low yields, incomplete BCP formation, and high dispersities, reducing the 

sustainability of BCP generation.  Two classes of macromolecules in which these issues are particularly 

common are organic-biopolymers, such as nucleic acid-hydrophobic polymer conjugates, and 

conducting-organic BCPs, given that the conducting blocks often have limited solubilities in a wide range 

of solvents.  An additional challenge in biomacromolecule coupling is that Click-based groups must not 

undergo reactions with non-target sites, which is a concern in polymer/protein coupling (for example, 

through thiol-ene chemistry, when the protein construct may contain multiple cysteine residues).  Thus, 

although small molecule Click concepts are extremely useful in coupling macromolecular systems, care 

must be taken to generate well-defined and well-characterized BCPs.  

Characterization of Complex Nanoscale Assemblies 

The self-assembly of complex macromolecules generated through various synthetic methods is of critical 

importance in the fabrication of materials targeted toward next-generation applications.  Whereas 

conventional BCPs are described by a manageable set of parameters (typically χN, block volume 

fractions, and statistical segment length ratios), many new systems incorporate multiple blocks with 

various architectures, dopants, and specific interactions.
4
  These factors significantly complicate BCP 

self-assembly, as well as confound requisite nanoscale characterization.   

Bulk systems 

For bulk systems, wide angle and small angle X-ray scattering (WAXS and SAXS), small angle neutron 

scattering (SANS) transmission electron microscopy (TEM) and TEM tomography, mechanical analysis, 

birefringence, calorimetry, and transport measurements are some of the common tools employed in 

materials characterization.
3
  While these techniques are extremely useful for nanostructure 

determination, methods such as TEM, calorimetry, and mechanical analysis are not always amenable to 

rapid materials discovery.  Thus, more detailed and customizable characterization tools are necessary to 
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quickly elucidate the intricate structures in complex materials for which macromolecular constituents 

and processing steps are chosen, not to facilitate characterization, but to enable applications.  Recent 

advances in that direction include the emergence of resonant soft X-ray scattering (RSoXS),
81

 which can 

distinguish between nanoscale domains in BCPs that contain distinct chemical constituents without an 

over-reliance on strict electron density contrast.  Another technique, energy-filtered TEM (EFTEM), has 

been used to probe chemical heterogeneity between domains caused by differences in block 

chemistries, as well as the locations of small molecule dopants.
82

  When augmented with other newly 

pioneered methods in soft materials, such as X-ray Photoelectron Spectroscopy (XPS) with C60
+
 ion 

sputtering, the elucidation of the spatial distributions of chemical species within multicomponent and 

polymer-based systems is facilitated in bulk and thin film (see below) materials.
83

  Though RSoXS, 

EFTEM, and XPS-C60
+
 sputtering provide substantial opportunities for the improved nanoscale 

characterization of soft materials, further progress is necessary to accurately probe three-dimensional 

and hierarchically-ordered nanomaterials in a rapid fashion.  

Thin films 

Similar challenges and opportunities exist in the analysis of nanostructured thin film systems.  Major 

characterization techniques include optical microscopy (OM, to analyze island/hole formation and 

wetting behavior), atomic force microscopy (AFM), TEM, scanning electron microscopy (SEM), grazing-

incidence SAXS (GISAXS), reflectivity (neutron and X-ray), XPS, time-of-flight secondary-ion mass 

spectrometry (ToF SIMS), and contact angle (surface energy) measurements.  While techniques such as 

OM enable rapid materials characterization when combined with high-throughput or gradient 

approaches,
84

 the remaining nanostructure investigation methods typically are time-consuming and 

preparation-intensive.  There have been substantive recent developments in several advanced tools for 

expedited thin film nanoscale characterization;
85,86

 however, significant innovations are necessary to 
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probe two-dimensional and three-dimensional structures over large areas, monitor defects, and provide 

real-time information during nanostructure processing.  The incorporation of thermal and solvent 

annealing apparatuses into GISAXS and AFM experiments has begun to provide some insights into 

processing effects on nanostructure stability,
87

 yet the role of thermal, solvent, and surface field 

gradients within thin films remains an underexplored area.
24,26,88,89

  Neutron scattering techniques such 

as reflectometry, rotational SANS (RSANS), and multiple angle grazing incidence K-vector (MAGIK) off-

specular reflectometry can provide significant insights into the thin film ordering processes,
90

 in 

particular, by elucidating the spatial distribution of solvents in thin films during casting and processing.  

Insights such as these will be extremely useful in the design of appropriate conditions to maximize the 

desired nanostructure ordering.  Furthermore, continued development of techniques such as ultra-fast 

AFM and in situ TEM provide key opportunities for monitoring the kinetic processes that are so 

influential in thin film behavior.
26,85,91

  

Solution assembly 

The characterization of solution assemblies faces similar challenges, including the impact of kinetics and 

processing on the overall assembly process.  However, solution assemblies face the additional difficulty 

of a dearth of nanoscale characterization tools that can perform in situ analysis of macromolecular 

aggregates and allow for determination of key nanostructure characteristics, such as the core radius, 

hydrodynamic radius and/or radius of gyration of a spherical micelle (Figure 5).  While methods such as 

dynamic and static light scattering (DLS and SLS), calorimetry, spectroscopy (e.g. nuclear magnetic 

resonance [NMR] and Raman), and rheology are capable of following gross aggregate evolution, 

techniques such as SAXS, SANS, TEM, and cryogenic-TEM (cryo-TEM) are capable of probing the fine 

details of aggregate structures, such as core and corona density profiles.
92

  To fully understand the self-

assembly process time-resolved measurements are required; however, methods such as microscopy 
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(and scattering) are challenging to perform in this manner, largely due to the acquisition times and the 

larger background signals associated with probing a dilute solution environment.  Additionally, 

approaches such as neutron scattering routinely rely on the ability to synthesize systems with the 

appropriate contrast (i.e. deuterated materials),
51

 sometimes leading to fabrication for analysis and not 

application.  Furthermore, methods such as TEM involve sample preparations that remove the 

assemblies from their native environment with sometimes unintended consequences;
92

 thus, new 

approaches are necessary to capture the true behavior of amphipathic solution assemblies.  Synchrotron 

radiation and pulsed neutron sources, along with stopped-flow techniques,
93

 have the potential to 

provide detailed nanostructure information on the time scales of interest, but again, require well-

designed systems.  Recent studies have shown that real-time/solution state TEM (RT-TEM) is an 

intriguing alternative for monitoring assembly and stability, while maintaining access to detailed 

structural information;
94

 however, it is worth noting that samples with sufficient contrast and suitable 

electron beam stability are necessary to fully take advantage of RT-TEM.       

Theory/Simulation/Modelling 

Numerous theoretical advances also can provide significant insights into BCP assembly and detail key 

information in the experimental development of new nanostructured systems.  Self-consistent field 

theory (SCFT), density functional theory, molecular dynamics, and Monte Carlo (MC) simulations have 

been particularly useful in improving understanding of BCP nanostructure formation in bulk and thin 

films.  Recent examples in bulk BCPs include the SCFT work of Hall and coworkers
65

 that examined the 

influence of controlled heterogeneity between homogeneous blocks (i.e. tapering) on self-assembly of a 

diblock copolymer, and the lattice-based MC simulations of Matsen and coworkers
95

 that explored the 

effects of controlled dispersity on copolymer phase behavior (Figure 6).  In each of these cases, the 

theoretical efforts complemented recent experimental work and provided tantalizing information useful 

in the fabrication of new nanoscale materials.
8
  Additionally, reports by Wang and coworkers

96
 (SCFT of 
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salt-doped BCP melts) and Jayaraman and coworkers
97

 (self-consistent Polymer Reference Interaction 

Site Model [PRISM] theory/MC simulations of copolymer coatings on nanoparticles in homopolymer 

matrices) again show direct experimental links that can aid materials discovery and provide practical 

trajectories for experimental investigations.  In addition to the powerful trends highlighted in the above 

studies, further theoretical advances could eventually lead to specific predictive capabilities such as 

exact polymer constituents, molecular weights, architectures, dispersities, grafting densities, etc. that 

would produce the desired macromolecular behavior or specified nanostructure.  These capabilities 

would dramatically streamline synthesis and characterization and lead to informed macromolecular 

design.     

Similar insights have been made in BCP thin films, recent examples of which include the work of 

Alexander-Katz and coworkers (forward SCFT simulations in an inverse design algorithm to explore 

topographic templates for directed self-assembly)
98

 and DePablo and coworkers
99

 (MC simulations of 

BCP thin films on nanopatterned surfaces) that has produced detailed information to strengthen 

practical understanding of directed assembly on designer substrates.  Furthermore, efforts by 

Frederickson and coworkers examined the influence of solvent removal rate on the stability of 

cylindrical orientations in ultrathin films using dynamical field theory simulations,
88

 providing key 

knowledge that can be translated readily to experimental and application-oriented systems (Figure 7).
100

  

The above examples demonstrate significant processing in linking theoretical studies to experimental 

investigations, and continued efforts in understanding the effects of thin film processing and fabrication 

methods, substrate interactions, and influences of macromolecular architectures on kinetic vs. 

thermodynamic assembly could drive significant advances in nanopatterning and sensing platforms 

using BCP thin films.  
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Solution assembly of BCPs presents great challenges for conventional theoretical/modelling/simulation 

methodologies.  The intrinsic need to explicitly describe key interactions from angstroms to tens of 

nanometers, over relevant time-scales, necessitates multi-scale approaches; however, accurate 

descriptions of thermodynamic and kinetic processes are hampered by the inability to simultaneously 

access the necessary time-scales and length-scales.  Several simulation/theory efforts have made 

significant in-roads into the understanding of BCP behavior in solution assemblies.  Notable recent 

efforts include the exploration of equilibrium BCP chain exchange kinetics in dilute micellar solutions,
101

 

examination of the energetics of unimer insertion in concentrated micelle solutions,
102

 and combined 

experimental and theoretical probing of the influence of BCP molecular weight and composition on 

critical aggregation concentration.
103

  While these works indicate substantial progress, many challenges 

remain, especially related to the formation/processing of solution assemblies.
104

  One path forward is to 

consider approaches currently applied in protein-engineering, especially in nature-inspired materials, to 

reconcile the influence of thermodynamics and kinetics (and processing) on protein folding that may be 

particularly applicable for many solution assembled BCP systems.
105

   

Emerging directions and major challenges for block copolymer assemblies 

Several challenges exist along the path toward accelerating the design of new nanostructured materials 

with positive societal and environmental impacts through the leveraging of continued advances in 

macromolecular synthesis, processing, and characterization.  In particular, the desire to unlock exotic 

and hierarchically complex nanostructures for next-generation applications requires the 

multidimensional understanding of a myriad of chemistries, molecular architectures, fabrication 

protocols, and processing techniques.
106

  This understanding can be facilitated by additional links 

between experiment and theory that provide true predictive capabilities.  Furthermore, although not all-

encompassing, three emerging areas that have been foreshadowed by the above discussions are: (1) the 

sustainable and environmentally-friendly generation and processing of materials, (2) the optimization 
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and detailed characterization of nature-inspired materials, and (3) the influence of processing and 

fabrication methods on nanoscale structures, in particular, solution assemblies.   

Sustainable and environmentally-friendly generation and processing of materials 

Major efforts in the sustainable and environmentally-friendly generation and processing of materials 

have focused on the synthesis of nanostructured polymers from bio-based or renewable feedstocks.
107

  

Many of these “green” systems have attractive functionalities (e.g. aldehydes, hydroxyls, and phenols) 

that permit the design of new monomers amenable to controlled polymerization techniques (or bio-

based sources of “old” monomers) for applications such as thermoplastic elastomers, pressure-sensitive 

adhesives, nanocarriers for biological and catalysis applications, and blend compatibilizers; however, 

further efforts in cultivating sustainable and cost-effective feedstocks, achieving efficient syntheses (and 

purification), and obtaining suitable macroscale properties (glass transition temperature, degradation 

temperature, modulus, solubility, etc.) are necessary.  As highlighted in the polymer synthesis sections, 

sustainable macromolecules generation also applies to the continued development of multi-component 

polymerization and coupling approaches that further reduce waste, solvent usage, and purification 

requirements. 

Optimization and detailed characterization of nature-inspired materials 

As nature has become an inspiration for the exploration of self-assembled systems, bio-inspired 

materials embody many of the strengths and challenges in nanomaterials design.  In contrast to 

biological polymers (such as proteins or DNA), synthetic polymers can be prepared from a much broader 

range of monomers, to afford polymers with a variety of structures and architectures and hence a vast 

range of properties and diversity of applications including diagnostics, therapeutic agent delivery, cell 

culture and tissue engineering, and biomaterials scaffolds and supports. However, a primary limitation 
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of current synthetic polymers is the lack of general methods for producing precise chain structure (i.e. 

sequence control) and hence complex function (i.e. replication and evolution). Indeed, the development 

of new methods to enable the mimicking of biological function in macromolecules is an emerging area,
59

 

which holds great potential for the future. 

While the basics of conventional BCP synthesis were established some time ago, it is only more recently 

that innovations including the fabrication of polymer–peptide, polymer–protein, and other stimuli-

responsive materials that take advantage of the exquisite interactions facilitated by unique molecular 

organization and secondary structure formation are now possible.
59

  Furthermore, forays into the 

mechanisms and energetics of peptide/protein folding and function have enabled the discovery of new 

methods to engineer macromolecules, in which the placement of individual repeat units is controlled to 

impart specific functions or directional interactions.
105

  This approach is key as it allows for the 

preparation of biohybrid BCPs with specific polymer-biomolecular attachments. However, as the precise 

manipulation of functional groups can have substantial effects on material efficacy in complex systems, 

it is crucial that researchers continue to explore the necessary structure/property relationships by fully 

understanding the limitations inherent in many macromolecular and nanostructure characterization 

techniques.  

Additionally, as stimuli-responsive and targeted assemblies become en vogue for therapeutics, 

diagnostics, and imaging applications, information to correlate the placement of designer functionalities 

on macromolecules to their spatial arrangement in solution assemblies is increasingly vital to truly 

design and optimize nanoscale materials for in vivo applications.
44,105

  As one example, techniques such 

as anomalous SAXS (ASAXS) can probe this link in solution-assembled BCP systems,
108

 but ASAXS comes 

with the added expense of incorporating the appropriate moieties (such as selenium labelling) to ensure 
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adequate contrast, along with the necessity of a synchrotron source; thus, theoretical complements to 

predict exact constituent/architecture/nanostructure/property relationships are vital. 

Influence of processing and fabrication methods on nanoscale structures 

As new materials are envisioned with intricate and precise self-organization potential, the role of 

nanostructure fabrication and processing becomes an even greater consideration in materials 

development.  As demonstrated in peptide and protein-based systems, thermal history, mechanical 

processing, and exposure to external fields and environments have substantial and irreversible effects 

on macromolecular assembly leading to path dependent behavior.
109

  In the case of solution assembly, 

information gleaned from the detailed literature on biomacromolecules on these processing effects can 

provide significant insights into the fabrication and stability of polymer solution constructs.
57

  Studies 

examining the influence formulation and processing protocols are particularly relevant in light of work 

describing the impact of the above variables on solution assembled nanostructure size and shape, which 

ultimately will control nanocarrier delivery and function.  We note that fabrication and processing 

effects are not limited to solution assemblies and biomaterials but also are inherent in bulk and thin film 

assemblies as highlighted in the previous sections.  Similar key challenges also are present in 

nanocomposites,
110

 organic electronic materials,
7
 and resins,

111
 among other arenas comprising block 

copolymers.   

In summary, while efforts in high-throughput, automated, and gradient synthesis and characterization 

have accelerated materials development in conventional systems as well as the three areas highlighted 

above,
25,26

 the sheer diversity of possibilities necessitates the intimate interfacing of experimental 

designs with theory/simulation/modelling.  To facilitate this meshing of theory and experiment, it is vital 

that theoretical/modelling efforts continue to consider relevant processing protocols and molecular 

architectures in designing appropriate systems.  However, it is also important that experimental studies 
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take advantage of the complete suite of synthetic, molecular characterization, and nanostructure 

characterization tools to fully and accurately characterize macromolecular assemblies.  The complexity 

of the chemical and biological units and the plethora of possible building blocks of the next-generation 

of block copolymers stretch the limits of nanomaterials characterization, which reinforces the urgent 

need for enhanced theoretical-experimental methods in de novo materials design.  Thus, by harnessing 

the inherent strengths of soft materials chemistry, physics, processing, and theory to generate complex 

nanomaterials, new systems and tools will be developed to unlock the full potential of BCPs and 

continue to shrink the gap between concept and application.   
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Figure 1: Key aspects of block copolymer materials design. The synthesis, material processing, 

nanoscale characterization, and theory/simulation of block copolymers are all crucial in the 

development of new hierarchically assembled structures.  These factors are intimately linked to the 

informed design of materials for bulk, thin film, and solution applications.  Top right image - reprinted 

with permission from ref. 88 © American Chemical Society; bottom right image - reprinted with 

permission from ref. 47 © Royal Society of Chemistry; bottom left image - reprinted with permission 

from ref. 87 © American Chemical Society; top left image - reprinted with permission from ref. 76 © 

American Chemical Society. 
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Figure 2: Generating functional materials from block copolymers.  Highlighted features of block 

copolymers are categorized into synthetic approaches to produce novel materials, processing routes to 

manipulate nanoscale arrangement, characterization methods to obtain detailed nanoscale information, 

theoretical and simulation-based approaches to improve fundamental understanding, and directions for 

future research.    
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Figure 3: Chemistries for the synthesis of block copolymers. CuAAC, copper-catalyzed azide–alkyne 

cycloaddition; SPAAC, strain-promoted azide–alkyne cycloaddition; ATRP, atom-transfer radical 

polymerization; SPPS, solid phase peptide synthesis; ROMP, ring-opening metathesis polymerization; 

RAFT, reversible addition–fragmentation chain-transfer; ROP, ring-opening polymerization; SET-LRP, 

single-electron transfer living radical polymerization; NMP, nitroxide-mediated polymerization; NCA, N-

carboxyanhydride; MADIX, macromolecular design by the interchange of xanthates. 
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Figure 4:  Bio-hybrid block copolymers generated through coupling approaches. (Top image) Scheme 

for the synthesis of protein–polymer BCP. (Bottom image, left) activity of (1) BSA, (2) BSA–macro-CTA, 

(3) BSA–PNIPAM (free BSA present), (4) BSA–PNIPAM thermal precipitate, (5) BSA–PNIPAM thermal 

precipitate at 40 
o
C, (6) BSA physical mixture, (7) PNIPAM, (8) BSA after incubation at 75 

o
C for 3 h. 

(Right) Activity of BSA–PNIPAM thermal precipitate during thermal cycling between 25 
o
C and 40 

o
C. 

[Adapted and reprinted with permission from ref. 73 © American Chemical Society]. 
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Figure 5:  Characterization of block copolymer solution assemblies. Schematic showing (a) a subset of 

the structural information obtainable from various scattering techniques and (b) a subset of images 

extracted using different microscopy techniques for a spherical polymer micelle.  Panel (a) highlights 

common structural dimensions that can be readily probed in a idealized spherical micelle, along with 

associated reciprocal-space scattering techniques; these dimensions include Rc (core radius), Rg (radius 

of gyration), Rh (hydrodynamic radius), R (micelle radius).  Panel (b) illustrates complementary 

information that can be gleaned from real-space microscopy imaging. [Reprinted with permission from 

ref. 91 © Royal Society of Chemistry] 
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Figure 6: Linking theory and experiment in block copolymers. Bulk nanostructures - effects of polymer 

dispersity. (Top image) Experimental phase diagram of a block copolymer system containing controlled 

dispersity [Reprinted with permission from ref. 8 © American Chemical Society].  (Bottom image) Monte 

Carlo simulated phase diagram of block copolymer system with a similar dispersity concept [Reprinted 

with permission from ref. 94 © American Chemical Society].  A comparison between the top 

(experimental) and bottom (simulated) images shows general agreement and illustrates how theory and 

simulations could potentially direct experimental efforts. 
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Figure 7: Linking theory and experiment in block copolymers.  Thin film nanostructures - effects of 

processing on nanostructure orientation. (Top image) AFM images of parallel and perpendicular 

orientations of cylinders as a function of solvent evaporation rate in an ABA-triblock copolymer thin film 

[Reprinted with permission from ref. 99 © American Chemical Society].  (Bottom image) Parallel vs. 

perpendicular orientations generated from various solvent evaporation rates and solvent selectivities in 

BCP thin films using a dynamic extension of self-consistent field theory simulations [Reprinted with 

permission from ref. 87 © American Chemical Society].  In both the experimental and simulation efforts, 

faster solvent removal (evaporation) rates led to parallel orientations of cylinders, while slower solvent 

removal (evaporation) rates led to perpendicular cylinders.  Refinement of general experimental and 

simulation trends, such as the correlation between solvent evaporation and nanostructure formation, 

will facilitate the continued development of nanostructure/processing relationships in thin film systems.  
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