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Abstract 

Due to the global dispersion and toxicities, polycyclic aromatic 

hydrocarbons (PAHs) in the atmosphere have become a serious environmental 

concern. Atmospheric reactions of PAHs with Cl atoms may be of critical importance 

in specific areas such as the marine boundary layer and coastal regions. In this work, 

the mechanisms of the Cl radical-initiated atmospheric oxidation of anthracene (Ant) 

and pyrene (Pyr) were investigated by using quantum chemistry calculations. The rate 

constants for the crucial elementary reactions were estimated. The oxidation products 

of the gas-phase reactions of Ant and Pyr with Cl atoms are chloro-Ants, chloro-Pyrs, 

2-chloroanthracen-1-one, 1-chloropyren-2-one, 1-chloropyren-3-one, 

4-chloropyren-5-one, 1-chloro-2-hydroperoxyanthracene,  

2-chloro-1-hydroperoxyanthracene, 1-chloro-2-hydroperoxypyrene, 

4-chloro-5-hydroperoxypyrene,  epoxides, dialdehydes, 9-nitroanthracene, 

1-nitroanthracene and nitropyrenes. 9-nitroanthracene can be easier produced by the 

gas-phase reaction of Ant with Cl atoms than that of Ant with OH radicals. water 

plays a vital role in the formation of 9-nitroanthracene resulting from the reactions 

with NO2. This comprehensive mechanism study is the first one reported for the Cl 

radical-initiated atmospheric oxidation of PAHs. The calculated overall rate constants 

for the Cl addition reactions of Ant and Pyr are 5.87×10
−12

 and 2.81×10
−12

 cm
3
 

molecule
-1

 s
-1

 at 298 K and 1 atm, respectively.  

 

Page 2 of 28RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



3 
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1. Introduction 

 

Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous 

environmental contaminants that mainly arise from incomplete combustion of fossil 

fuels and biomass.
1-3

 PAHs have been constantly detected in the atmosphere 

throughout the world.
4-7

 The annual atmospheric emissions of 16 priority PAHs in 

Asian countries accounted for 53.5% of the total global emissions (504 Gg), with the 

highest emission from China (106 Gg) and India (67 Gg) in 2007.
8
 Because of their 

prevalent occurrence, persistence in the environmental matrices and extremely 

hazardous properties to human health,
9-11

 the fate of these compounds in the 

atmosphere is of high public concern. 

In the troposphere, PAHs can undergo gas-phase reactions with OH radical, 

NO3 radical, O3 and chlorine atom.
12, 13

 Although the reactions with OH radical, NO3 

radical, O3 are generally considered to be the main sinks for gaseous PAHs, the 

reactions with Cl atom may be significant in the marine boundary layer and in coastal 

regions, especially in the Arctic lower troposphere during spring.
12-14

 The peak 

concentration of Cl atoms is up to 10
5
 molecule cm

-3
 or more in the marine boundary 

layer at dawn.
13,15,16

 In addition, chlorine atoms are highly reactive towards organic 

substances, which are 10
3
 times more reactive than OH radicals.

17
 Hence even at 
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relatively low concentrations, chlorine atoms have the ability to enhance organics 

oxidation in the atmosphere. Previous studies showed that the rate constants for the 

reactions of many volatile organic compounds with Cl atoms are ~10
2
 higher than 

those for reactions with OH radicals.
13

 Therefore the Cl atom reactions could play an 

important role in the atmospheric oxidation of PAHs in specific areas such as the 

marine boundary layer and coastal regions. In particular, some oxidation products 

(chlorinated PAHs included) of atmospheric reactions of PAHs with Cl atoms have 

been identified enhanced toxicities, mutagenicities and aryl hydrocarbon receptor 

activities compared with the corresponding parent PAHs.
18-20

 Hence, it is necessary to 

investigate the reaction mechanisms of PAHs with Cl atoms to clarify their 

atmospheric transformations. To date, only two studies (Wang et al, 2005 and Long et 

al, 2007) reported the rate constants for the reactions of naphthalene and 

alkylnaphthalenes with Cl atoms, and the reaction mechanisms have not been fully 

elucidated.
13, 21,22

 Clearly, more work is needed to obtain a comprehensive knowledge. 

Anthracene (Ant) and pyrene (Pyr) are members of the 16 USEPA priority 

PAHs, which have been detected at high concentrations in certain areas.
12,23,24

 During 

the summer of 2003, the field measurements in the Shing Mun Tunnel of Hong Kong 

showed that the average ambient air concentrations of Ant ranged from 30.5 to 15.0 

ng m
-3

.
23

 In 2008, air samples collected from Oporto metropolitan area in northern 

Portugal revealed that the maximum concentration of Pyr was up to 9.44 ng m
-3

.
25

 

Considering their widespread occurrence in air, it is critical to clarify the gas-phase 

reactions of Ant and Pyr with Cl atoms. Due to the scarcity of efficient detection 
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schemes for intermediate radicals in the experimental studies, quantum chemical 

calculation can be of considerable help to illuminate the reaction mechanisms. In this 

work, we carried out a theoretical study on the Cl-initiated atmospheric oxidation of 

Ant and Pyr in the presence of NOx by using density functional theory (DFT).
26

 

Modeling of the fate of PAHs in the atmosphere places a high demand on kinetic 

parameters. Therefore the rate constants of key elementary reactions involved in the 

Cl-initiated oxidation of Ant and Pyr were also calculated. 

 

2. Computational Method 

 

The quantum chemical calculations were performed with the Gaussian 

09 software package
27

 on a supercomputer. The geometries of the reactants, 

intermediates, transition states and products were optimized at the BB1K/6-31+G(d,p) 

level. The vibrational frequencies were calculated to identify the structures obtained 

as true minima or first-order saddle points. The intrinsic reaction coordinate (IRC) 

analysis was carried out to confirm that each transition state connects to the right 

minima along the reaction path. A more flexible basis set, 6-311+G(3df,2p), was used 

to determine the single point energies of various species. The overall energetic 

profiles were constructed to locate the energetically favorable reaction pathways.  

The MESMER program, a Master Equation Solver for Multi-Energy 

Well Reactions, which uses matrix techniques to formulate and solve the energy 

grained master equation (EGME) for reaction systems composed of an arbitrary 
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number of wells, transition states, sinks, and reactants. The master equation is:
28

 

                       Mpp =
dt

d
                             (1) 

Where p is the population vector including the populations of the energy 

grains for each isomer and M is the matrix describing population evolution due to 

collisional energy transfer and reaction. 

The grain size used is 100 cm−1, and the maximum grain energy is 25 

kT in the calculation process. Classical method is applied to calculate the density of 

states. The exponential down model was implemented for describing collisional 

transfer probabilities. SimpleRRKM or the MesmerILT method is provided for the 

calculation of rate constants.  

For reactions with a well-defined transition state, the common way of 

obtaining rate constants from a particular energy grain, k(E), were determined by 

using Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The RRKM expression is 

given by:
 28

  

)(

)(
)( 0

Eh

EEW
Ek

ρ
−

=
                               (2) 

Where W(E-E0) is the rovibrational sum of states at the transition state, 

E0 is the reaction threshold energy, ρ(E) is the density of rovibrational states of 

reactants, and h is Planck’s constant.  

If no transition state is specified, an inverse Laplace transform (ILT) 

provides a mathematical formalism for deriving k(E)s from an Arrhenius fit to a set of 

k(E)s. The basis of the ILT is the standard Boltzmann average which may be 
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expressed as:
 28

 

∫
∞

∞ −=
0

)exp()()(
)(

1
)( dEEEEk

Q
k βρ

β
β

                     (3) 

Where Q(β) is the corresponding canonical partition function and ρ(E) is 

the reactant rovibrational density of states. Then representing k
∞

(β) by an modified 

Arrenhius expression can obtain k(E) as an ILT. 

  

3. Results and Discussion 

3.1 Reactions with Cl atoms 

 

The atmospheric reactions of volatile organic compounds with Cl atoms 

proceed via Cl addition to the C=C bonds and H abstraction by Cl atoms. Vereecken 

et al showed that H abstraction by Cl atoms is less important, even for abstraction of 

the highly reactive allylic hydrogen atoms.
29

 According to our simulation, the H 

abstraction from Ant and Pyr are endothermic reactions, for example, the H 

abstractions from position C1, C2, C9 of Ant are endothermic by 7.59 kcal/mol, 7.85 

kcal/mol, 8.33 kcal/mol, respectively. However, the Cl addition reactions are highly 

exothermic. Thus, only the Cl addition reactions were discussed in this paper. For 

convenience of description, the C atoms in Ant and Pyr are numbered, as presented in 

Figure 1. The Ant molecule at ground state is of D2h symmetry, C atoms in Ant fall 

into four groups: C1, C4, C5 and C8 atoms belong to one equivalent group; C2, C3, 

C6 and C7; C9 and C10; C11, C12, C13 and C14 belong to the other three equivalent 

groups. Three different Cl-Ant adduct isomers can be formed via Cl addition to C1, 
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C2 and C9 atoms. Particularly, the corresponding Cl-Ant adduct cannot be formed 

from the Cl addition to C11 position. Analysis of the molecular structure of Pyr shows 

that there are four different kinds of C atoms theoretically leading to four Cl addition 

processes. As the Cl addition to C2 and C3a positions cannot occur, only two Cl-Pyr 

adducts are generated. The reaction schemes of the Cl additions embedded with 

reaction heats (△H, 0K) are depicted in Figure 1. The configuration of the Cl-Ant 

adducts and Cl-Pyr adducts (IM1-IM5) are shown in Figure S1 of supporting 

information. 

All of the Cl addition pathways are highly exothermic with no potential 

barriers, which indicate that they can occur readily under general atmospheric 

conditions. According to the previous research, there is also no potential barrier on the 

addition pathway for the reaction of Cl with benzene.
30

 At the BB1K/6-311+G(3df,2p) 

level, the reaction heats of the Cl addition reactions are distributed between -19.83 

and -16.31 kcal/mol. The resulting Cl-Ant and Cl-Pyr adducts will further react with 

O2/NOx as their removal. 

3.2 Secondary Reactions  

3.2.1 Reactions with O2 

 

       Based on the analysis above, the reactions of Ant and Pyr with Cl atoms can 

readily occur under general atmospheric conditions. The resulting adducts, Cl-Ants 

and Cl-Pyrs, are important intermediates. In the atmosphere, they can further react 

with O2/NOx as their degradation. As shown in Figure 2, the Cl-Ant and Cl-Pyr 
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adducts can react with O2 to yield the corresponding monochloro-Ants, 

monochloro-Pyrs and HO2. Löfroth et al. found that 9-chloroAnt shows strong direct 

mutagenic effects.
31

 Monochloro-Ants and monochloro-Pyrs can further proceed with 

Cl atoms addition and H abstraction by O2 to produce dichloro-Ants and 

dichloro-Pyrs. The Cl addition reactions are barrierless and exothermic by 7.78~20.29 

kcal/mol. It should be noted that the formation of dichloro-Ants is more difficult than 

the generation of monochloro-Ants, because of the relative higher potential barriers of 

H abstractions by O2. To be specific, the potential barriers of these H abstraction 

processes are 24.44~18.00 kcal/mol at the BB1K/6-311+G(3df,2p) level. Similarly, 

polychlorinated Ants and polychlorinated Pyrs can be produced by continuous Cl 

additions and H abstractions. According to the literature, the AhR (aryl hydrocarbon 

receptor)-mediated toxic activities of chloroanthracenes tend to increase with 

increasing chlorine substitution.
32

 

The reaction of the Cl-Ant and Cl-Pyr adducts with O2/NO are displayed in 

Figure 3. O2 can attack on the C atoms with an unpaired electron in Cl-Ant and Cl-Pyr 

from two different directions: the cis or trans-position of the -Cl group with respect to 

the aromatic ring (Figure S2 of supporting information). Therefore, six O2-Cl-Ant 

adducts and four O2-Cl-Pyr adducts are expected to be formed. By comparison of the 

potential barriers and reaction heats of these reaction pathways, the O2 addition from 

trans-position of the -Cl group is favored over those of the other ones. So just the 

subsequent reactions of the favorable adducts are depicted in Figure 3. As shown, the 

O2-Cl-Ant adducts IM10 and IM13 have similar reaction channels, which include 
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barrierless association of NO, rupture of the O-ONO bond, elimination of HCl and H 

abstraction by O2. Calculations show that 2-chloroanthracen-1-one and the radical 

P12 is more easily to be obtained because of the lower potential barrier and strong 

exothermicity. The intermediate IM16 is difficult to be formed by O2 addition. The 

potential barrier of this reaction is calculated to be 65.38 kcal/mol and the process is 

endothermic by 41.58 kcal/mol. The intermediate IM17 formed by O2 addition can 

undergo NO addition without potential barrier, followed by cleavage of the O-ONO 

bond, H abstraction by O2 and rupture of the C-O bond, leading to the formation of 

1-chloropyren-2-one and 1-chloropyren-3-one. The subsequent reactions of IM22 are 

similar to those of IM17, resulting in the formation of 4-chloropyren-5-one. The 

calculated profiles of the potential energy surface show that the reaction of the 

cleavage of O-ONO bond is the rate-determining process due to its high potential 

barrier. 

As shown in Figure 4, the intermediate IM10 produced by O2 addition can 

also proceed with H migration from the C atom to the O atom, leading to the 

formation of IM25. The subsequent reaction of IM25 involves two elementary 

reactions: elimination of HO2 radical and H abstraction by O2. These processes 

ultimately result in the generation of 1-chloroanthracene and 

1-chloro-2-hydroperoxyanthracene. Through the analysis and comparison, the 

reaction of the H migration is the rate-determining step due to the high potential 

barrier. The potential barrier of the H migration is calculated to be 26.50 kcal/mol and 

the process is exothermic by 3.94 kcal/mol. Similarly, 2-chloroanthracene, 
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2-chloro-1-hydroperoxyanthracene, 1-chloropyrene, 1-chloro-2-hydroperoxypyrene, 

4-chloropyrene, 4-chloro-5-hydroperoxypyrene can be formed by the subsequent 

reactions of IM13, IM17 and IM22 via an analogous mechanism. The potential 

barriers of these H migration processes are 28.44~25.26 kcal/mol at the 

BB1K/6-311+G(3df,2p) level, and the processes are exothermic by 1.60~8.39 

kcal/mol. 

As presented in Figure 5, the intermediate IM10 undergo intramolecular 

cyclization to produce bicyclic peroxy radicals (IM29). IM29 can further proceed 

with O2 addition, NO barrierless addition and elimination of NO2, resulting in the 

formation of the important intermediate IM32. The subsequent reaction of IM32 

involves three reaction channels: H abstraction by O2 and two different ways of 

synchronous cleavage of the O-O bond and C-C bond. Obviously, compared with the 

H abstraction, the ring-opening reactions have lower barriers and release more heat. 

Hence, the ring-opening reactions are the energetically more favorable reaction 

pathways. These processes ultimately result in the formation of a bridge-ring 

compound (P21) and two dialdehydes (P22 and P23). The reaction channel of IM13 

contains three elementary reactions: ring-closure, cleavage of O-O bond and H 

abstraction by O2. These reactions are thermodynamically favorable under general 

atmospheric conditions and lead to the generation of an epoxide (P24). Similarly, 

IM17 and IM22 can also proceed with ring-closure, ring-opening and H abstraction 

by O2 to yield epoxides (P25 and P27) and phenalenone radical (P26). 

3.2.2 Reactions with NO2 
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The Cl-Ant and Cl-Pyr adducts (IM1-IM5) also can react with NO2 to form 

Cl-NO2-Ant and Cl-NO2-Pyr adducts via barrierless associations. These processes are 

strongly exothermic by 18.89~38.01 kcal/mol. The reaction schemes of NO2 addition 

are depicted in Figure 6. The Cl-NO2-Ant and Cl-NO2-Pyr adducts (IM40, IM42, 

IM44, IM45) may subsequently undergo unimolecular decomposition to yield 

nitro-Ants and nitro-Pyrs via the direct loss of HCl. As shown in Figure 6 (black 

arrows), the reaction potential barriers of the direct elimination of HCl are relatively 

high (31.43~41.96 kcal/mol), thus the reactions are difficult to occur under the typical 

atmospheric environment.  

As we all know, water is one of the massive atmospheric constituents and 

can participate in the reactions through forming hydrogen bonded complexes in the 

atmosphere.
32

 With the participation of water, the eliminations of HCl from the 

Cl-NO2-Ant and Cl-NO2-Pyr adducts can become bimolecular reactions 

(Cl-NO2-Ant+H2O and Cl-NO2-Pyr+H2O). A six-membered ring transition state 

(Figure S3 of supporting information) can be formed, in which the water molecule 

accepts the hydrogen from the aromatic ring and simultaneously donates another 

hydrogen atom to the Cl atom. The potential barriers of eliminations of HCl and H2O 

via the bimolecular reactions are 7.65~8.59 kcal/mol lower than those of the direct 

loss of HCl.  

Particularly, when Cl atoms add to the C1 atom of Ant, the corresponding 

Cl-NO2-Ant adducts are hybrids of several resonance structures (shown in Figure S4 
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of supporting information). The unpaired electron can be distributed to the ortho and 

para positions of the -Cl group, therefore NO2 can add to these positions to form the 

intermediates IM40 and IM41. It was reported that the atmospheric concentration of 

water dimer is up to 6×10
14

 molecule cm
-3

 at 292 K.
34

 As described in Figure 6 (red 

arrows), with the aid of the water dimer, 1-nitroanthracene and 9-nitroanthracene can 

be formed from the elimination of HCl and H2O. The potential barrier of the 

formation of 1-nitroanthracene is calculated to be 17.37 kcal/mol and the process is 

exothermic by 15.11 kcal/mol. 9-Nitroanthracene is one of the most abundant 

nitro-PAHs in the atmosphere. Our previous study confirmed that 9-nitroanthracene 

can be generated by the OH or NO3 radical-initiated gas-phase reactions of Ant but 

not just originate from the primary emissions and heterogeneous reactions.
35

 As a 

supplement to our previous work, 9-nitroanthracene also can be produced by the 

gas-phase reactions of Ant with Cl atoms. Compared with our previous researches, the 

formation of nitroanthracenes and nitropyrenes from the Cl-initiated gas-phase 

reactions are easier than from the reactions of Ant and Pyr with OH radicals because 

of the relatively lower barriers.
35

 For instance, the potential barrier of the formation of 

9-nitroanthracene from the OH-initiated reactions of Ant is 30.75 kcal/mol,
35

 and the 

barrier of the corresponding reaction of Ant with OH radicals is 24.97 kcal/mol. 

3.3 Rate Constant Calculations 

 

For clarifying the atmospheric fates of Ant and Pyr, it is essential to 

determine accurate rate constants of the elementary reactions involved in the 
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Cl-initiated atmospheric oxidations of Ant and Pyr. On the basis of the 

BB1K/6-311+G(3df,2p)//BB1K/6-31+G(d,p) energies, the rate constants of the key 

elementary reactions involved in the Cl-initiated oxidation of Ant and Pyr were 

evaluated at 298 K and 1 atm by using MESMER, which has been successfully 

applied in the calculation of several similar reactions.
28,36

 The calculated rate 

constants of the crucial elementary reactions are organized in Table 1. The individual 

rate constants for the Cl additions to the C1-H, C2-H and C3-H bonds of Ant are noted 

as k1, k2, k3, respectively. Similarly, the rate constants of the Cl additions to the C1-H 

and C3-H bonds of Pyr are denoted as k4, k5, respectively. Considering the molecular 

symmetries of Ant and Pyr, the overall rate constants for the Cl addition reactions of 

Ant and Pyr are depicted as ka and kp, ka=(k1+k2)×4+k3×2 and ka=(k4+k5)×4, 

respectively. The calculated overall rate constants of Ant and Pyr (ka and kp) are 

5.87×10
−12

 and 2.81×10
−12

 cm
3
 molecule

-1
 s

-1
 at 298 K and 1 atm, respectively. Due to 

the absence of the available experimental information, it is difficult to make a direct 

comparison of the calculated rate constants with the experimental values for the 

reactions of Ant and Pyr with Cl atoms. According to the literature, the rate constant 

for the gas-phase reaction of naphthalene with Cl atoms is ≦0.0091±0.0003×10
−10

 

cm
3
 molecule

−1
 s

−1
 at 296 K and 735 Torr.

13
 The calculated rate constants for the 

reactions of Ant and Pyr with Cl atoms are relatively consistent with the published 

experimental value of naphthalene. The rate constants of the elementary reactions 

listed in Table 1 can be of help for the construction of detailed kinetic models 

describing the atmospheric fates of Ant and Pyr. 
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Based on the overall rate constants for the reactions of Ant and Pyr 

with Cl atoms (ka and kp) and a detected Cl concentration (Ccl) of 4.0×10
5
 molecule 

cm
-3

 in the marine boundary layer,
37

 from the expressions: 

Cl

1

ck ×
=τ   (k=ka or kp)        

The atmospheric lifetimes (τ) of Ant and Pyr determined by Cl atoms are 

calculated to be 4.93 and 7.27 days, respectively. 

4. Conclusions and Environmental Implications 

 

This work presented a comprehensive theoretical study on the reaction 

mechanisms of the Cl atom-initiated atmospheric oxidations of Ant and Pyr. The 

individual rate constants were determined. Several conclusions can be drawn from 

this study: 

(1) All of the Cl addition pathways are highly exothermic with no 

potential barriers, and they can readily occur under general atmospheric conditions.  

(2) The products of the Cl atom-initiated atmospheric oxidations of Ant 

and Pyr include monochloro-Ants, monochloro-Pyrs, dichloro-Ants, dichloro-Pyrs, 

2-chloroanthracen-1-one, 1-chloropyren-2-one, 1-chloropyren-3-one, 

4-chloropyren-5-one, 1-chloro-2-hydroperoxyanthracene,  

2-chloro-1-hydroperoxyanthracene, 1-chloro-2-hydroperoxypyrene, 

4-chloro-5-hydroperoxypyrene,  epoxides, dialdehydes, 9-nitroanthracene, 
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1-nitroanthracene and nitropyrenes. Particularly, water plays a crucial role in the 

gas-phase formation of 9-nitroanthracene, which can be easier formed by the 

gas-phase reaction of Ant with Cl atoms than that of Ant with OH radicals. 

(3) The calculated overall rate constants of Ant and Pyr (ka and kp) are 

5.87×10
−12

 and 2.81×10
−12

 cm
3
 molecule

-1
 s

-1
 at 298 K and 1 atm, respectively. In the 

marine boundary layer, the atmospheric lifetimes of Ant and Pyr determined by Cl 

atoms are calculated to be 4.93 and 7.27 days, respectively. 

In the troposphere, Ant and Pyr can be transformed by the chemical 

processes of reactions with the OH radical during the daytime, reactions with NO3 

radical during evening and nighttime, and reactions with Cl atoms in coastal areas. 

According to the literature, reactions of Ant and Pyr with O3 can be of negligible 

importance in the atmosphere due to slow reactions with the aromatic ring.
12

 The 

lifetime for Ant and Pyr determined by reactions with OH is about 2-6 hours,
12

 which 

is much shorter than that of reaction with Cl atoms in the atmosphere. Although the 

reaction with OH radical plays the most important role in the atmospheric oxidations 

of Ant and Pyr, it is also necessary to understand the reaction with Cl due to the high 

concentration of Cl atoms in the marine boundary layer and in coastal regions. 

Besides, the formation pathway of chlorinated PAHs (more dangerous compounds) in 

the atmosphere can be obtained from the reaction with Cl atoms. The simulated 

results need more experimental data to prove it. In order to clarify the potential risk 

thoroughly, it deserves further studies with the combination of experimental and the 

theoretical analyses. 
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Table 1. Calculated rate constants (cm
3
 molecule

-1
 s

-1
) for the crucial elementary 

reactions involved in the Cl-initiated oxidation of Ant and Pyr at 298 K and 1 atm.  

Reactions                           Rate constants                                                                               

Ant +Cl→Cl-Ant adducts        (ka) 5.87×10
-12 

Ant +Cl→IM1               (k1) 1.01×10
-13 

Ant+Cl→IM2               (k2) 8.69×10
-13 

Ant+Cl→IM3               (k3) 9.93×10
-13 

Pyr+Cl→Cl-Pyr adducts       (kp) 2.81×10
-12 

Pyr+Cl→IM4                (k4) 5.06×10
-13 

Pyr+Cl→IM5               (k5) 1.97×10
-13
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Figure Captions 

Figure 1. The Cl addition reaction scheme of Ant and Pyr embedded with the 

potential barrier ∆E (kcal/mol) and reaction heat ∆H (kcal/mol). ∆H is calculated at 0 

K. 

Figure 2. The formation scheme of chloro-Ants and chloro-Pyrs embedded with the 

potential barrier ∆E (kcal/mol) and reaction heat ∆H (kcal/mol). ∆H is calculated at 0 

K.  

Figure 3. The O2/NO addition reaction scheme of Cl-Ant and Cl-Pyr adducts 

embedded with the potential barrier ∆E (kcal/mol) and reaction heat ∆H (kcal/mol).  

Figure 4. The reaction scheme of intramolecular H shift of O2-Cl-Ant and O2-Cl-Pyr 

adducts embedded with the potential barrier ∆E (kcal/mol) and reaction heat ∆H 

(kcal/mol).  

Figure 5. The reaction scheme of the cyclization of O2-Cl-Ant and O2-Cl-Pyr 

embedded with the potential barrier ∆E (kcal/mol) and reaction heat ∆H (kcal/mol) in 

the presence of O2 and NO. ∆H is calculated at 0 K. 

Figure 6. The formation scheme of nitro-Ants and nitro-Pyrs embedded with the 

potential barrier ∆E (kcal/mol) and reaction heat ∆H (kcal/mol). ∆H is calculated at 0 

K. 
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