

Synthesis of a novel and stable reduced graphene oxide/MOF hybrid nanocomposites and photocatalytic performance for the degradation of dyes

Journal:	RSC Advances
Manuscript ID	RA-ART-12-2015-025689.R1
Article Type:	Paper
Date Submitted by the Author:	28-Jan-2016
Complete List of Authors:	Huang, Lizhang; Tianjin University, Department of Chemistry; Zhangzhou Product Quality Supervision and Inspection Institute , Liu, Bingsi; Tianjin University, Chemistry
Subject area & keyword:	Photocatalysis < Catalysis

SCHOLARONE[™] Manuscripts

1	Synthesis of a novel and stable reduced graphene
2	oxide/MOF hybrid nanocomposites and photocatalytic
3	performance for the degradation of dyes
4	
5	Lizhang Huang, ^{a,b} Bingsi Liu ^{a*}
6	
7	^a Department of Chemistry, Tianjin university, and Collaborative Innovation Center of
8	Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of
9	China
10	^b Zhangzhou Product Quality Supervision and Inspection Institute (Zhangzhou),
11	Fujian 363000, People's Republic of China
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29	Abstract: a simple and facile solvothermal method is developed for the preparation of
30	reduced graphene oxide/NH2-MIL-125(Ti) (rGO-NMTi) hybrid nanocomposite
31	photocatalysts with large specific surface area and thermal stability. This
32	rGO-NMTi-x hybrid nanocomposite exhibited more efficient photocatalytic
33	performance than NH ₂ -MIL-125(Ti) for methyl blue (MB) degradation under
34	visible-light irradiation due to the synergetic action between rGO and
35	NH ₂ -MIL-125(Ti). Therefore, rGO/MOFs photocatalysts have great potentiality in
36	environmental remediation. The structure and physical properties of rGO,
37	NH ₂ -MIL-125(Ti) and rGO-NMTi-x hybrid nanocomposites were characterized by
38	means of scanning electron microscopy (SEM), X-ray diffraction (XRD), N_2
39	adsorption/desorption, high resolution transmission electron microscope (HRTEM),
40	laser Raman, UV-visible absorption spectra (UV-DRS) and FT-IR techniques.
41	Keywords: Metal-organic frameworks; reduced graphene oxide; hybrid
42	nanocomposite photocatalysis; dyes
43	
44	
45	
46	
47	
48	
49 50	
51	
52	
53	

54 **1. Introduction**

As an environmentally friendly and cost-effective technology, visible light driven 55 photocatalysis for removal of organic pollutant has been extensively studied.¹⁻³ The 56 photocatalytic activity of the photocatalysts with nanostructure depends strongly on 57 their composition and structure.⁴⁻⁶ The main serious obstacles in developing hybrid 58 photocatalysts are including poor affinity between pollutants and photocatalyst,⁷ rapid 59 recombination of photogenerated electron-hole pairs,⁸ low-light-harvesting efficiency 60 of photocatalyst,⁹ and short light residence time on/in the photocatalysts.^{10,11} 61 Metal-organic frameworks (MOFs), a novel class of hybrid materials constructed by 62 metal-containing nodes connected by organic bridges, have attracted a great deal of 63 attention due to their useful applications in gas storage, separation, catalysis, sensors, 64 and other technologies.¹²⁻¹⁵ However, the performance of MOFs served as catalysts in 65 66 photocatalysis is not comparable to that of inorganic semiconductors due to the low 67 efficiency for solar energy conversion and photo-generated charge separation.

68 Hybrid material, a novel mixture of material has attracted a great deal of attention due to the exciting properties compared with pure counterparts.^{16,17} Compared with pure 69 MOFs, the hybrids integrating MOFs with inorganic species (CdS, TiO₂, Fe₃O₄, Cu₂O, 70 71 Au, Pd, and Pt) acted as photocatalysts presented significant advantages than the pure MOFs, owing to their synergism effect.¹⁸⁻²⁴ He et al. reported that the photocatalytic 72 hydrogen production efficiency of CdS-MIL-101 hybrid materials under visible-light 73 74 irradiation was superior to pure CdS nano-particles owing to photocatalytic reaction centers with high visible light harvesting capability, more active adsorption sites, and 75

76	high specific surface area. ¹⁸ Thus, far much attention has been focused on
77	carbon-based materials, which contains a lot of prospective materials such as,
78	graphene quantum dots (QDs), ²⁵ graphene, ^{26,27} fullerene, ²⁸ and carbon nanotubes. ²⁹
79	All of them are extensively used as catalyst owing to their large specific surface area,
80	excellent mechanical and hydrophobic properties as well as chemically stability. In
81	addition, graphene exhibits several photocatalyst properties,30-35 including the
82	extension of the duration of electron-hole pair, the enhancement of light adsorption
83	range and intensity. According to the report of Qiu <i>et al</i> , ³⁶ TiO ₂ /graphene composites
84	with high electrical conductivity and three-dimensional hierarchically porous structure
85	prepared by one-step method exhibits potential photoactivity. Gan et al 37 studied the
86	P25/graphene composite in degrading aquatic organic pollutants and discussed the
87	contribution of photothermal effect in the photocatalytic performance. ³⁸ Zhang et al
88	and Wu et al^{39-41} reported the MIL-88(Fe)@GO and the GR/MIL-53(Fe)-H ₂ O ₂
89	photocatalytic materials, respectively for the degradation of dye or Rhodamine B.
90	However, NH ₂ -MIL-125(Ti), as a highly porous MOFs photochemical property, not
91	only contained high density of the immobilized Ti sites, but also presented
92	isostructural MOFs with improved photocatalytic properties by tuning the
93	incorporation of organic ligands. Therefore, the reduced graphene oxide/ NH_2 -MIL-
94	125(Ti) (rGO-NMTi) hybrid materials were designed and synthesized by a simple and
95	facile solvothermal method. Its photocatalytic activity towards methyl blue (MB) dye
96	degradation under visible-light irradiation was evaluated. The photocatalytic
97	mechanism as well as the reusability and stability of photocatalyst, an

98	environmental-friendly optimizing hybrid nanocomposite were investigated. The
99	structure and physical properties of hybrid nanocomposite photocatalysts were
100	characterized by means of SEM, HRTEM, Laser Raman, XRD, FT-IR, N_{2}
101	adsorption-desorption, and UV-vis DRS techniques.

102 2. Experimental

103 **2.1. Materials**

Sodium nitrate, hydrochloric acid, hydrogen peroxide (30%), barium chloride, sulfuric acid and potassium permanganate were purchased from Shantou Xilong chemical Co., Ltd, China. Graphite powder was received from Sinopharm Chemical Regent. 2-amino-benzene-1,4-dicarboxylate (NH₂-BDC) and tetra-n-butyl titanate Ti(OC₄H₉)₄ (TPOT) were purchased from Alfa Aesar Co., Ltd, China and Shanghai Chemical Reagent Co., Ltd, China, respectively. These reagents were analytical grade and used without further purifications.

111 2.2 Synthesis of GO and rGO/NH₂-MIL-125(Ti) hybrid materials

Graphite oxide (GO) was prepared according to the methods in literature.⁴² The 112 NH₂-MIL-125(Ti) was synthesized according to the previously reported method with 113 slight modification.⁴³ A certain amount of GO powder was dispersed into methanol 114 115 with the aid of ultrasonication. Then, TPOP (2.3 mL), NH₂-BDC (2.1 g), DMF (35 116 mL), and GO-methanol (4.0 mL) mixture was subjected to solvothermal conditions in a Teflon-lined stainless-steel autoclave. The resulting solution was treated by 117 ultrasonic for 15 min to obtain a uniformly dissolution of the reactants, and then kept 118 at 120 °C for 48 h. After reaction, the resultant precipitate was separated by 119

centrifugation, washed repeatedly with DMF and methanol, respectively. Finally, the as-obtained hybrid materials were dried at 100 °C under vacuum for 24 h. As-obtained precipitant were denoted as rGO-NMTi-1, rGO-NMTi-2, rGO-NMTi-3, and rGO-NMTi-4, where 1, 2, 3 and 4 represent the 5, 10, 15 and 20 wt% of GO in the samples, respectively. For comparison purposes, the conventional NH₂-MIL-125(Ti) was prepared in the absence of GO under the same conditions.

126 **2.3 Characterization**

127 Morphology of the samples was characterized by a scanning electron microscopy 128 (SEM) on a Gemini microscope (Hitachi, S-4800, Japan) at an accelerating voltage of 10 kV. X-ray diffraction (XRD) patterns were collected on a Panaltical X'Pert-pro 129 MPD X-ray power diffractometer (Cu K α irradiation source, $\lambda = 1.54056$ Å). 130 131 UV-visible absorption spectra (UV-DRS) of the hybrid nanocomposites were 132 obtained for the dry-pressed disk samples using a Cary 500 Scan Spectrophotometer 133 (Varian, USA). The IR experiments were carried out on a Nicolet 670 FT-IR spectrometer in the range of 4000-400 cm⁻¹. Transmission electron microscope (TEM) 134 135 was conducted on FEI Tecnai G2 S-TWIN and the accelerating voltage was 200 kV. 136 Raman spectroscopy was measured on Renishaw inVia plus using 633 nm laser 137 excitation (Microplate reader: Biocell HT2). Brunauer-Emmett-Teller (BET) surface 138 area of the samples was measured using a sorptometer (ASAP-2420, Micromeritics, 139 USA) at 77 K.

140 **2.4 Photocatalytic evaluation**

141 Photocatalytic degradation of methyl blue (MB) was carried out in a 100 mL beaker

142	containing 40 mL of methyl blue solution (5.4×10^{-5} mol/L) and photocatalyst (30 mg).
143	The solution was stirred magnetically in a dark room for 20 min to get
144	adsorption-desorption equilibrium. The solution was then irradiated under
145	visible-light illumination (> 420 nm). A 300 W Xenon lamp (Beijing China Education
146	Au-light, Co. Ltd.) with a 420 nm cutoff filter was used as the visible-light source. At
147	certain time intervals, 4 mL of aliquots were sampled and centrifuged to remove the
148	photocatalyst. The MB concentration was determined using a UV-vis
149	spectrophotometer at the wavelength of 663 nm. The degradation rate was calculated
150	using below equation.
151	Degradation rate = $(C_0-C) \times 100\% / C_0$
152	C_0 and C are the MB concentrations before and after visible light photodegradation,
153	respectively.
154	3. Results and discussion
155	3.1. Morphology and structure of rGO-NMTi-x hybrid materials
156	The morphologies of rGO-NMTi-x were clearly observed by scanning electron
157	microscopy (SEM), and SEM images of GO and NH2-MIL-125(Ti) are also shown in
158	Fig. 1 for comparison. It can be seen that the GO presented a sheet structure with
159	wrinkle (Fig. 1a) whereas the morphology of NH ₂ -MIL-125(Ti) (Fig. 1b) looks like
160	the snowflake or cotton with some traces of amorphous phase. After a certain amount
161	of GO powder was introduced during the synthesis, the SEM image of rGO-NMTi-x

162 (Fig. 1c-f) revealed that the particles of NH₂-MIL-125(Ti) agglomerated slight with

163 different surface morphology. Moreover, the agglomerates of rGO-NMTi-1

164	nanocomposite look different from pure NH ₂ -MIL-125(Ti). The sandwich-like
165	structure between NH ₂ -MIL-125(Ti) and rGO is not clearly in rGO-NMTi-1 due to
166	low resolution. It is very possible that the introduction of more GO interfere with the
167	NH ₂ -MIL-125(Ti) crystal, which are even more visible for rGO-NMTi-3 (with 15
168	wt% GO) and the particles of NH ₂ -MIL-125(Ti) become larger with incremental GO
169	loadings (Fig. 1f).

- 170
- 171

Fig. 1.

The powder XRD patterns of rGO, NH₂-MIL-125 (Ti) and rGO-NMTi-x are 172 shown in Fig. 2, it can be seen that there is a broad peak at $2\theta = 26^{\circ}$, a typical 173 character of amorphous carbon or graphene for rGO sample. In the meantime, the 174 175 NH₂-MIL-125(Ti) presented a typical structure of inorganic crystal (Fig. 2b), which are consistent with the result reported previously,⁴³ demonstrating that preparation of 176 rGO and NH₂-MIL-125(Ti) are successful. Interestingly, for the hybrid composites, 177 rGO-NMTi-x, a broad peak at $2\theta = 26^{\circ}$ reduced slightly compared to that of rGO but 178 179 these peaks intensified with an increasing GO content (Fig. 2c-f), indicated that the 180 amorphous structure of rGO existed in rGO-NMTi-x samples. According to the report of Hafizovic et al,⁴⁴ the presence of carboxylic groups on the surface of rGO would 181 result in a distortion of the cubic symmetry. Hence, the characteristic peaks of 182 NH₂-MIL-125(Ti) reduced or/and disappeared in the rGO-NMTi-x hybrid 183 nanocomposites (Fig. 2c-f) due to the differences in the building units of 184 rGO-NMTi-2 and the other hybrid nano-composites. It is well known that the 185 186 structure of both GO and NH₂-BDC is π -rich, there should be strong π - π interactions

187	between them. Therefore, the presence of GO sheets may unusually bend the
188	NH_2 -BDC linker and results in severe twisting of the TiO ₅ (OH) paddle wheel from an
189	ideal octahedral square grid. Due to this distortion, the NH2-MIL-125(Ti) crystals
190	would exist in a body centered unit cell instead of a primitive cell with symmetry. ^{45,46}
191	Therefore, the introduction of GO can affect the crystallization of NH_2 -MIL-125(Ti)
192	and control the morphology of such heterostructures.
193	
194	Fig. 2.
195	
196	3.2 FT-IR spectra, UV-vis DRS and specific surface area of the hybrid materials
197	Figure 3 showed the FT-IR spectra of rGO, NH ₂ -MIL-125(Ti) and rGO-NMTi
198	hybrid nanocomposites in the range of 500–4000 cm ⁻¹ . It can be seen that a broad
199	peak at 3400 cm ⁻¹ can be attributed to the O–H vibration of H_2O in the FT-IR
200	spectrum of GO. The absorption bands of C=O and C-O were observed at 1718 and
201	1250 cm ⁻¹ in the spectrum of NH ₂ -MIL-125(Ti) and rGO-NMTi-x hybrid
202	nanocomposites. Moreover, NH2-MIL-125(Ti) and rGO-NMTi-x hybrid nano-
203	composites present characteristic bands of the carboxylate in 1380-1600 cm ⁻¹ as well
204	as the vibrations of O-Ti-O groups at 400-800 cm ⁻¹ . These results verified further that
205	the solvothermal synthesis of rGO-NMTi-x hybrid nanocomposites still maintained
206	intact MOF structure of NH ₂ -MIL-125(Ti).
207	
208	Fig. 3.

209

210	The UV-vis DRS analysis of rGO-NMTi-x hybrid nanocomposites was conducted on
211	a Cary 500 scan spectrophotometer. As shown in Fig. 4, a notable absorption
212	extension in the visible-light region can be observed for rGO-NMTi-x hybrid
213	nanocomposites and the optical absorption intensity enhances with the increase of
214	rGO contents. According to the report of Fu et al, ⁴³ there was absorption peak at 250
215	nm with absorption edge to 350 nm for MIL-125(Ti) whereas NH_2 -MIL-125(Ti)
216	showed an extra absorption band at 400 nm with the absorption edge extending to ca.
217	550 nm, which originated from the induction effect of an amino functionality for its
218	optical absorption, in agreement with our observation (Fig.4 a-b). However, it is of
219	interest to note that a notable absorption extension band is observed (Fig.4c-d) in the
220	visible-light region when the content of rGO was more than or equal to 15% in
221	rGO-NMTi-x hybrid nanocomposites. According to Zhang et al ⁴¹ for GR/MIL-53(Fe)
222	composites, the optical absorption intensity in the range 500-800 nm increased
223	remarkably after combination with appropriate amount of GR, which attributed to the
224	background absorption of GR. We considered that the GO underwent quick
225	deoxygenation (removal of epoxide and hydroxyl functional groups), which reflected
226	enhanced π -electron conjugation and structural ordering with the restoration of sp^2
227	carbon and possible rearrangement of atoms. FT-IR of rGO-NMTi-x (Fig. 3d and 3e)
228	also confirmed that the vibration spectra of C=O changed obviously which correlated
229	closely with energy band gap structure ⁴⁷ . In the meantime, the change in color is
230	companied form dark green of rGO-NMTi-2 to grey black of rGO-NMTi-3 (inset in
231	Fig. 4.), in agreement with previous observations in other rGO based composites. ⁴¹ It

232	indicated that the synergetic action between rGO and NH ₂ -MIL-125(Ti) can reduce
233	successfully the recombination rate of the electron-hole pair in the rGO-NMTi hybrid
234	nanocomposites. The red shift of absorption wavelength suggested that these
235	nanocomposites can absorb effectively visible-light for the application in the
236	visible-light photocatalysis. ⁴⁸

- 237
- 238

Fig. 4.

To further identify structural properties of the rGO-NMTi composites, Fig. 5a and 239 240 5b illustrated HRTEM images of rGO-NMTi-3; it can be seen that the irregular ball 241 nanoparticles of NH₂-MIL-125(Ti) are embedded in the wrinkling rGO lamellar 242 structure and its morphology is similar to the observation from SEM of samples (Fig.1) 243 which is different entirely from the rod-shaped structure of MIL-88(Fe)@GO reported in literature^{39,40}. In addition, there were two typical peaks, G at 1595 cm⁻¹ and D at 244 1325 cm⁻¹ in Raman spectrum of rGO-NMTi-3 composite (Fig. 5c), meaning the 245 existence of rGO in rGO-NMTi-3. According to the report of Li *et al*,⁴⁹ The G peak is 246 associated with the first-order scattering of E_{2g} mode for sp^2 hybridized carbon 247 domain and the D peaks are assigned to the structural defects corresponding to 248 sp³ hybridization. Furthermore, the ratio of I_D and I_G was 1.05, indicating the efficient 249 250 reduction of GO during solvothermal process. The abroad peaks appeared at about 1063, 856, 652, and 463 cm⁻¹ are corresponding to the characteristic vibrations of 251 metal terephthalate (Fig. 5c), similar to the observation in MIL-53(Fe)[H_2O].⁴⁰ 252

As shown in Fig. 5d, the N_2 adsorption/desorption isotherms observed over

266	3.3 Photocatalytic performance of rGO-NMTi-x
265	
264	Fig. 5.
263	
262	method are 750.3 and 1233 m ² g ⁻¹ , respectively.
261	rGO-NMTi-3 and NH ₂ -MIL-125(Ti), calculated via Brunauer-Emmett-Teller (BET)
260	rGO-NMTi-3, which consisted of micro- and meso-pore. The specific surface areas of
259	adsorption and desorption branches illustrated the existence of slit-pores in the
258	adsorption capacities almost kept at a constant. The shape of hysteresis loop between
257	NH ₂ -MIL-125(Ti) whereas when the pressure range of p/p_0 is more than 0.4, both
256	remarkably, meaning the existence of a large amount of micropores in
255	seen that the adsorption contents at pressure range of $p/p_0 = 0.05-0.3$ increased
254	rGO-NMTi-3 and NH ₂ -MIL-125(Ti) attributed to IV-type adsorption curve. It can be

The photocatalytic activities of the as-synthesized NH2-MIL-125(Ti) and 267 268 rGO-NMTi-x hybrid nano-composites were evaluated via the photodegradation of MB under visible light irradiation (> 420 nm), as shown in Fig. 6. It can be seen that 269 there is not the photodegradation of MB to occur in the absence of photocatalyst 270 271 (Fig.6a) whereas all of rGO-NMTi-x photocatalysts show much higher photocatalytic 272 activities than NH₂-MIL-125(Ti) for the photodegradation of MB under the same experimental conditions due to the synergistic effect between NH₂-MIL-125(Ti) and 273 274 rGO. However, when the rGO content increased to 20 wt% there was a slight decrease 275 in photocatalytic activity (Fig. 6e), which is still better photocatalytic performance of 276 NH₂-MIL-125(Ti) due to the fact that the higher contents of rGO in the rGO-NMTi-x

277	hybrid nanocomposites will result in an redundant ratio between rGO and
278	NH ₂ -MIL-125(Ti), thereby lowering the electron transfer efficiency of the
279	photoinduced electrons on NH ₂ -MIL-125(Ti) to rGO surfaces. We may envisage that
280	the photocatalytic activity of rGO-NMTi-4 declines with much higher loading in the
281	composite photocatalyst under visible light irradiation. This result indicates that both
282	rGO and NH ₂ -MIL-125(Ti) play an important role in improving the photocatalytic
283	activity due to the significant synergistic effect between rGO and NH ₂ -MIL-125(Ti)
284	for the photodegradation of MB under visible light irradiation.

285

286

Fig. 6.

287

288 **3.4.** Clarification of the reaction mechanism.

It is well known that high adsorption ability, an efficient charge migration, and 289 large surface area play a vital role for improving the photocatalytic activity.⁵⁰ The 290 existence of rGO sheets could facilitate charge migration and reduce the 291 recombination of electron-hole pairs of the rGO based photocatalysts.⁵¹ Here, a 292 293 possible photocatalytic process is schematized in Fig. 7. The photo-generated electrons originated from MB or rGO transfer to the Ti⁴⁺ in the titanium-oxo clusters 294 of NH₂-MIL-125(Ti) due to the adsorption or the heterojunction structure, Ti⁴⁺ is thus 295 reduced to Ti³⁺. Oxygen molecules adsorbed onto porous NH₂-MIL-125(Ti) to form 296 superoxide (• $O^{2^{-}}$) ion radicals *via* electron transfer from Ti³⁺ to O₂ molecules due to 297 the strong reducing ability of Ti³⁺. The Ti³⁺ ions are oxidized and further convert to 298

Ti⁴⁺ ions. The electron transportation in the titanium–oxo clusters of NH₂-MIL-125(Ti) 299 *via* the presence of $Ti^{3+} - Ti^{4+}$ intervalence electron transfer had been verified by 300 previous reports.⁴³ The formed $\cdot O^{2-}$ radicals could efficiently degrade MB (or MB⁺ \cdot) 301 into CO2 and water. Simultaneously, the generated holes of rGO are capable of 302 oxidizing MB directly.⁵² 303 304 305 Fig. 7. 306 307 3.5. Recyclability and stability of rGO-NMTi-3

308 The recycle experiments of rGO-NMTi-3 for photocatalytic reaction were carried out under the condition of visible-light irradiation to evaluate the stability of the 309 310 photocatalyst. As shown in Fig. 8a, the efficiency for the photodegradation of MB after 5th-runs are still kept above 96.7%, indicating that the rGO-NMTi-3 can be used 311 successively without the variation of photocatalytic performance during the oxidation 312 313 of pollutant. The HRTEM images, XRD and Raman results of rGO-NMTi-3 before and after 5th-runs (Fig. 5a-c and Fig. 8b-d) revealed the high stability of the 314 315 rGO-NMTi-3 photocatalyst in the structure and composition. Therefore, rGO-NMTi-3 316 hybrid nano-composites can be used as efficient visible-light photocatalyst for 317 application in wastewater treatment.

318

Fig. 7.

319

320 **4. Conclusion**

321	A series of rGO-NMTi-x hybrid nanocomposites with large surface area, high
322	activity and stability were successfully synthesized by means of a simple
323	solvothermal strategy where rGO acted as the support for the formation of
324	heterostructures. The results indicated that the rGO-NMTi-3 hybrid nanocomposites
325	showed remarkably higher photocatalytic performance for the degradation of MB than
326	NH2-MIL-125(Ti) under the condition of visible-light irradiation due to the
327	synergistic effect between NH ₂ -MIL-125(Ti) and rGO as well as the $Ti^{3+}-Ti^{4+}$
328	intervalence electron transfer. Furthermore, the rGO-NMTi-3 hybrid nanocomposites
329	can be used as efficient visible-light photocatalyst for application in wastewater
330	treatment in the near future.
331	
332	Acknowledgement
332 333	Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science
332 333 334	Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122).
332333334335	Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122).
 332 333 334 335 336 	Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References
 332 333 334 335 336 337 	Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X Xu C Bandorn P Efstathiou and LT Irvine Nat Mater. 2012. 11, 595
 332 333 334 335 336 337 338 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A.
 332 333 334 335 336 337 338 320 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayas. <i>Nature</i>, 2008, 452, 301
 332 333 334 335 336 337 338 339 240 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, <i>Nature</i>, 2008, 452, 301. 2 T. B. Yacon, M. A. Jachaw and J. Du. <i>Nat. Cham.</i> 2010, 2, 527.
 332 333 334 335 336 337 338 339 340 211 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, <i>Nature</i>, 2008, 452, 301. 3 T. P. Yoon, M. A. Ischay and J. Du, <i>Nat. Chem.</i>, 2010, 2, 527.
 332 333 334 335 336 337 338 339 340 341 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, <i>Nature</i>, 2008, 452, 301. 3 T. P. Yoon, M. A. Ischay and J. Du, <i>Nat. Chem.</i>, 2010, 2, 527. 4 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, <i>ACS Nano</i>, 2009, 4, 380.
 332 333 334 335 336 337 338 339 340 341 342 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, <i>Nature</i>, 2008, 452, 301. 3 T. P. Yoon, M. A. Ischay and J. Du, <i>Nat. Chem.</i>, 2010, 2, 527. 4 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, <i>ACS Nano</i>, 2009, 4, 380. 5 J. Zhang, Q. Xu, Z. Feng, M. Li and C. Li, <i>Angew. Chem. Int. Ed.</i>, 2008, 47, 1766.
 332 333 334 335 336 337 338 339 340 341 342 343 	 Acknowledgement We gratefully acknowledge the joint financial support of Nation Natural Science Foundation of China and BAOSTEEL Group Corporation (Grant No.50876122). References 1 X. Xu, C. Randorn, P. Efstathiou and J. T. Irvine, <i>Nat. Mater.</i>, 2012, 11, 595. 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, <i>Nature</i>, 2008, 452, 301. 3 T. P. Yoon, M. A. Ischay and J. Du, <i>Nat. Chem.</i>, 2010, 2, 527. 4 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, <i>ACS Nano</i>, 2009, 4, 380. 5 J. Zhang, Q. Xu, Z. Feng, M. Li and C. Li, <i>Angew. Chem. Int. Ed.</i>, 2008, 47, 1766. 6 O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, <i>Nano Lett.</i>, 2009, 9,

- 7 H. Yu, S. Chen, X. Fan, X. Quan, H. Zhao, X. Li and Y. Zhang, *Angew. Chem. Int. Ed.*, 2010, 49, 5106.
- 8 R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han and C. Li, *Nat. Commun.*, 2013, 4, 1432.
- 9 F. Huang, D. Chen, X. L. Zhang, R. A. Caruso and Y. B. Cheng, *Adv. Funct. Mater.*,
 2010, 20, 1301.
- 10 S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky and M. Moskovits, *Nat. Nanotechnol.*, 2013, 8, 247.
- 353 11 W. Chen, Z. Fan, B. Zhang, G. Ma, K. Takanabe, X. Zhang and Z. Lai, J. Am.
 354 Chem. Soc., 2011, 133, 14896.
- 355 12 L. J. Murray, M. Dinca and J. R. Long, Chem. Soc. Rev., 2009, 38, 1294.
- 356 13 J. R. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc. Rev., 2009, 38, 1477.
- 357 14 J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, *Chem.* 358 *Soc. Rev.*,2009, **38**, 1450.
- 15 A. C. McKinlay, R. E. Morris, P. Horcajada, G. Ferey, R. Gref, P. Couvreur and C.
 Serre, Angew. Chem. Int. Ed., 2010, 49, 6260.
- 361 16 G. Kickelbick, ed. *Hybrid materials*. 2007, Wiley-vch.
- 362 17 J. Su, M. Cao, L. Ren and C. Hu, J. Phys. Chem. C, 2011, 115, 14469.
- 363 18 J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu and Y. Sun, *Chem.*364 *Commun.*, 2013, 49, 6761.
- 365 19 S. Abedi and A. Morsali, ACS Catal., 2014, 4, 1398.
- 20 C. F. Zhang, L. G. Qiu, F. Ke, Y. J. Zhu, Y. P. Yuan, G. S. Xu and X. Jiang, J. *Mater. Chem. A*, 2013, 1, 14329.
- 368 21 K. Jayaramulu, V. M. Suresh and T. K. Maji, *Dalton Trans.*, 2015, 44, 83.
- 369 22 G. Lu, S. Z. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Y. Qi, Y. Wang, X. Wang,
- 370 S. Y. Han, X. G. Liu, J. S. DuChene, H. Zhang, Q. C. Zhang, X. D. Chen, J. Ma, S.
- 371 C. J. Loo, W. D. Wei, Y. H. Yang, J. T. Hupp and F. W. Huo, *Nat. Chem.*, 2012, 4,
 372 310.
- 373 23 W. N. Zhang, G. Lu, C. L. Cui, Y. Y. Liu, S. Z. Li, W. J. Yan, C. Xing, Y. R. Chi,
- 374 Y. H. Yang and F.W. Huo, *Adv. Mater.*, 2014, **26**, 4056.

- 375 24 A. Aijaz, A. Karkamkar, Y.J. Choi, N. Tsumori, E. Ronnebro, T. Autrey, H.
- 376 Shioyama and Q. Xu, J. Am. Chem. Soc., 2012, **134**, 13926.
- 377 25 W. X. Zhang, J. Z. Zheng, C. H. Tan, X. Lin, S. R. Hu, J. H. Chen, X. L. You and
 378 S. X. Li, *J. Mater. Chem. B*, 2015, 3, 217.
- 26 S. H. Cheng, T. M. Weng, M. L. Lu, W. C. Tan, J. Y. Chen and Y. F. Chen, *Sci. Rep.*, 2013, **3**, 2694.
- 381 27 L. L. Tan, W. J. Ong, S. P. Chai and A. R. Mohamed, *Nanoscale Res. Lett.*, 2013,
 382 8,465.
- 28 Y. Y. Fan , W. G. Ma , D. X. Han , S. Y. Gan , X. D. Dong , and L. Niu, *Adv. Mater.*, 2015, 27, 3767.
- 385 29 R. Tenne, *Nat. Nano*, 2006, **1**, 103.
- 30 M. M. Gui, S. P. Chai, B. Q. Xu and A. R. Mohamed, *Sol. Energy Mater. Sol. Cells*, 2014, **122**, 183.
- 388 31 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 2010, 4, 380.
- 32 J. Du, X. Y. Lai, N. L. Yang, J. Zhai, D. Kisailus, F. B. Su, D. Wang and L. Jiang,
 ACS Nano, 2011, 5, 590.
- 33 C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen and Q. Cai, *Carbon*, 2011, 49,
 5312.
- 34 O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, *J. Phys. Chem. C*, 2010, **114**, 12955.
- 395 35 N. Li, G. Liu, C. Zhen, F. Li, L. L. Zhang and H. M. Cheng, *Adv. Funct.*396 *Mater.*,2011, 21, 1717.
- 397 36 N. Yang, J. Zhai, D. Wang, Y. Chen and L. Jiang, ACS Nano, 2010, 4, 887.
- 398 37 B. C. Qiu, M. Y. Xing and J. L. Zhang, J. Am. Chem. Soc., 2014, 136, 5852.
- 38 Z. X. Gan, X. L. Wu, M. Meng, X. B. Zhu, L. Yang, and P. K. Chu, *ACS Nano*,
 2014, 8, 9304.
- 401 39 Y. Wu, H. Luo and H. Wang, *RSC Adv.*, 2014, **4**, 40435.
- 40 Y. Zhang, G. Li, H. Lu, Q. Lv and Z. Sun, RSC Adv., 2014, 4, 7594.
- 403 41 C. H. Zhang, L. H. Ai and J. Jiang, Ind. Eng. Chem. Res., 2015, 54, 153.
- 404 42 C. H. Tan, W. X. Zhang, J. Z. Zheng, X. L. You, X. Lin and S. X. Li, J. Mater.

- 405 *Chem. B*, 2015, **3**, 7117.
- 406 43 Y. H. Fu, D. R. Sun, Y. J. Chen, R. K. Huang, Z. X. Ding, X. Z. Fu and Z. H. Li,
 407 *Angew. Chem. Int. Ed.*, 2012, **124**, 3420.
- 408 44 J. Hafizovic, M. Bjørgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga, C. Prestipino, C.
 409 Lamberti and K. P. Lillerud, *J. Am. Chem. Soc.*, 2007, **129**, 3612.
- 410 45 M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez and G. Férey, J.
 411 Am. Chem. Soc., 2009, 131, 10857.
- 412 46 M. Jahan, Z. Liu and K.P. Loh, *Adv. Funct. Mater.*, 2013, 23, 5363.
- 413 47. B. R. Singh, M. Shoeb, W. Khan, A. H. Naqvi, J. Alloys Comps, 2015, 651, 598.
- 414 48 J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu and Y. Sun, *Chem.*
- 415 *Commun.*, 2013, **49**, 6761.
- 416 49 S. X. Li, J. Z. Zheng, D. J. Chen, Y. j. Wu, W. X. Zhang, F. Y. Zheng, J. Cao and
 417 Y. L. Liu, *Nanoscale*, 2013, 5, 11718.
- 418 50 P. Wang, B. Huang, Y. Dai and M. H. Whangbo, *Phys. Chem. Chem. Phys.*, 2012,
 419 14, 9813.
- 420 51 N. Zhang, M. Q. Yang, S.Q. Liu, Y. G Sun and Y. J. Xu, *Chem. Rev.*,2015, 115,
 421 10307.
- 422 52 L. Shi, L. Liang, J. Ma, F. Wang and J. Sun, Catal. Sci. Technol., 2014, 4, 758.
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431

432 **Figure captions**

- **Fig. 1.** SEM images for the parent materials and the hybrid nanocomposites. (a) GO,
- 434 (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d) rGO-NMTi-2, (e) rGO-NMTi-3, and (f)
- 435 rGO-NMTi-4.
- 436 Fig. 2. XRD patterns of (a) rGO, (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d)
- 437 rGO-NMTi-2, (e) rGO-NMTi-3 and (f) rGO-NMTi-4 hybrid composite.
- 438 Fig. 3. FT-IR spectra of (a) GO, (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d)
- 439 rGO-NMTi-2, (e) rGO-NMTi-3, and (f) rGO-NMTi-4.
- 440 Fig. 4. UV-vis DRS spectrum of (a) rGO-NMTi-1, (b) rGO-NMTi-2, (c)
- 441 rGO-NMTi-3, and (d) rGO-NMTi-4.
- Fig. 5. (a, b) HRTEM images, (c) Raman spectra and (d) N₂ adsorption/desorption
 isotherms of rGO-NMTi-3 (or NH₂-MIL-125(Ti)).
- 444 Fig. 6. MO degradation photocatalytic performance of (a) no catalyst, (b)
- 445 NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d) rGO-NMTi-2, (e) rGO-NMTi-3, and (f)
 446 rGO-NMTi-4.
- Fig. 7. Schematic diagram showing the process of the photocatalytic dye degradationover the rGO-NMTi hybrid nanocomposite.
- 449 Fig. 8. (a) Recyclability, (b) HRTEM image, (c) XRD patterns and (d) Raman spectra
- 450 of rGO-NMTi-3 photocatalyst in five successive cycles for degradation of MO under
- 451 visible light irradiation.
- 452

Fig. 1. SEM images for the parent materials and the hybrid nanocomposites. (a) GO, (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d) rGO-NMTi-2, (e) rGO-NMTi-3, and (f) rGO-NMTi-4.

Fig. 2. XRD patterns of (a) rGO, (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d) rGO-NMTi-2, (e) rGO-NMTi-3 and (f) rGO-NMTi-4 hybrid composite.

Fig. 3. FT-IR spectra of (a) GO, (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d) rGO-NMTi-2, (e) rGO-NMTi-3, and (f) rGO-NMTi-4.

Fig. 4. UV–vis DRS spectrum of (a) rGO-NMTi-1, (b) rGO-NMTi-2, (c) rGO-NMTi-3, and (d) rGO-NMTi-4.

Fig. 5. (a, b) HRTEM images, (c) Raman spectra and (d) N_2 adsorption/desorption isotherms of rGO-NMTi-3 (or NH₂-MIL-125(Ti)).

Fig. 6. MO degradation photocatalytic performance of (a) no catalyst, (b) NH₂-MIL-125(Ti), (c) rGO-NMTi-1, (d) rGO-NMTi-2, (e) rGO-NMTi-3, and (f) rGO-NMTi-4.

Fig. 7. Schematic diagram showing the process of the photocatalytic dye

degradation over the rGO-NMTi hybrid nanocomposite.

Fig. 8. (a) Recyclability, (b) HRTEM image, (c) XRD patterns and (d) Raman spectra of rGO-NMTi-3 photocatalyst in five successive cycles for degradation of MO under visible light irradiation.

