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Fig. 1 (a) Top view and (b) side view of crystal structure of monolayer

MX2. The primitive vectors are a(a,0,0), b(a/2,
√

3a/2,0), and c(0,0,c).

parameter, which altogether lead to a high thermal conductivity
according to the Slack’s theory16.

Recent theoretical investigations have provided a quantitative
analysis of the roles of mass, structure, bond strength and anhar-
monicity in thermal expansion and thermomechanics of MX2 and
other 2D materials such as graphene19–22. However, the roles of
mass, interatomic bonding, and anharmonic vibrations in phonon
transport still remain uninvestigated. Clear knowledge of the un-
derlying physics will be helpful for understanding and modulating
the thermal transport in MX2, for example, through doping other
M or X atoms such as Mo1−xWxS2 and MoS2(1−x)Se2x

23,24.
Here we investigate fundamental vibrational properties to un-

derstand phonon transport in MoS2, MoSe2 and WS2. The mea-
sured phonon frequencies are well reproduced in our calcula-
tions. The thermodynamic properties are calculated within quasi-
harmonic approximation, and the calculated thermal conductivi-
ties agree well with the measurements. Combining first principles
calculations and the Slack model, the roles of mass, interatomic
bonding, and anharmonicity in thermal transport are clearly re-
vealed.

2 Methodology

All calculations are implemented in the Vienna ab initio simula-
tion package (VASP) based on the density functional theory (DFT)
method25. The Perdew, Burke, and Ernzerhof (PBE) parametriza-
tion within the generalized gradient approximation (GGA) is used
for the exchange-correlation functional. A plane-wave basis set is
employed with the kinetic energy cutoff of 600 eV. A 15×15×1 k-
mesh is used during structural relaxation for the unit cell until the
energy differences are converged within 10−6 eV, with a Hellman-
Feynman force convergence threshold of 10−4 eV/Å. We maintain
the interlayer vacuum spacing larger than 12 Å to eliminate the
interaction with periodic boundary condition.

In the calculation of phonon dispersion, the harmonic inter-
atomic force constants (IFCs) are obtained by density functional
perturbation theory (DFPT) using the supercell approach, which
calculates the dynamical matrix through the linear response of
electron density26. A 5×5×1 supercell with 5×5×1 k-mesh is
used to ensure the convergence. The phonon dispersion is ob-
tained using the Phonopy code with the harmonic IFCs as input27.

Table 1 Calculated lattice parameters and band gap of monolayer MX2.

Experimental data are also given in parentheses for comparison.

MoS2 MoSe2 WS2

a (Å) 3.165 3.300 3.163
(3.16029) (3.28829) (3.15430)

Eg (eV) 1.81 1.56 1.97
(1.8831) (1.5732) (1.9533)

      (a)                                               (b)                                                    (c)
 

      MoS2                                            MoSe2                                                 WS2

Fig. 2 Total and atom projected DOS for (a)MoS2, (b)MoSe2, and

(c)WS2.

3 Results and discussion

3.1 Crystal structures and interatomic bonding

Monolayer MX2 has honeycomb structure with space group
P6̄m2

28, as shown in fig. 1. An M atom layer is sandwiched be-
tween two X atom layers, connected by covalent bonds. Each M
atom is coordinated to six X atoms. The optimized lattice parame-
ters of all studied MX2 are shown in table 1. Our GGA calculations
overestimate the lattice parameters by 0.16%, 0.36%, and 0.29%,
respectively, which is a general feature of the GGA functional.

The electronic structures of all studied MX2 are calculated by
DFT method. As shown in table 1, the calculated band gap is
consistent with the measurements31–33. The total and atom pro-
jected density of states (DOS) are shown in fig. 2. The valence
band from -7 to 0 eV is mainly composed of M-d and X-p states,
and the bands on each side of the band gap originate primarily
from M-d state, which is in agreement with previous work4. The
conduction band minimum from 0 to 5 eV mainly originates from
M-d states, together with a small contribution of X-p states. Due
to the less localized DOS of W atoms, the overlap between W-d
and S-p states in both valence and conduction bands of WS2 from
-7 to 12 eV is larger than the other two materials, indicating a
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Fig. 3 ELF profiles of (a)MoS2, (b)MoSe2, and (c)WS2 in the [1̄10] plane.

strong hybridization between W-d and S-d orbitals.
To explore the bonding characteristics of all studied MX2, the

electron localization function (ELF)34–37 is investigated. The ELF
is a position dependent function with values that range from 0 to
1. ELF=1 corresponds to perfect localization and ELF=0.5 corre-
ponds to the electron-gas like pair probability. Fig. 3 presents the
ELF profile of all studied MX2 in the [1̄10] plane. The electrons
are localized at X atoms, and are depleted at M atoms, suggest-
ing that the electrons are transferred from M cations to X anions.
Fig. 3 also indicates that MX2 has both covalency and ionicity in
the M-X bond, which compete with each other: with increasing
nucleon number of both M and X atoms, the covalency of the M-X
bond increases, while the ionicity of the M-X bond decreases20. In
fact, the strength of the M-X bonding increases (decreases) with
increasing the cation (anion) nucleon number13,20. Therefore,
the W-S bonding is the strongest. The interatomic bonding will
further affect the heat transport in these three materials.

3.2 Debye temperatures: Roles of mass and interatomic

bonding

The phonon spectra of all studied MX2 structures are calculated
using the supercell approach, with the real-space force-constants
calculated in the density-functional perturbation theory (DFPT)26

within the Phonopy code27. Fig. 4 presents the phonon spectrum
along several high symmetry directions, together with the corre-
sponding projected phonon density of states (PDOS). The prim-
itive cell of monolayer MX2 contains 3 atoms, corresponding to
three acoustic and six optical phonon branches.

The average atomic mass of all studied MX2 are shown in ta-
ble 2, as well as the mass ratio mM/m2X. The phonon frequency
in fig. 4 decreases with increasing mass. The largest phonon fre-
quencies of MoS2, MoSe2, and WS2 are 461.6 cm−1, 345.2 cm−1,
432.8 cm−1, respectively. It should be noted that, although MoSe2

and WS2 have similar average atomic mass, the optical phonon

Γ Γ

Γ Γ

Γ Γ

(a)

(b)

(c)

Fig. 4 Phonon spectrum and projected PDOS for (a)MoS2, (b)MoSe2,

and (c)WS2.

frequency of WS2 is much higher than that of MoSe2, since the
optical phonon frequency is more sensitive to the anion mass m2X

than the cation mass mM
20.

The average acoustic Debye temperature for monolayer MX2 is
determined from38

1

θ 3
D

=
1

2
(

1

θ 3

LA

+
1

θ 3

TA

), (1)

where θi for each acoustic branch i (i = LA, TA) is defined as

θi =
h̄ωi,max

kB
, (2)

where h̄ is Planck constant, ωi,max is the phonon frequency at
the zone boundary of the i-th acoustic mode, and kB is Boltz-
mann constant. The calculated Debye temperatures θD for MoS2,
MoSe2, and WS2 are 262.3 K, 177.6 K, and 213.6 K, respec-
tively, which are in good agreement with previous results, i.e.

260-320 K for MoS2 estimated from specific-heat measurement39,
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Table 2 The average atomic mass M, mass ratio mM/m2X, and Debye

temperature θD of all studied MX2.

Structure M (amu) mM/m2X θD (K)
MoS2 53.36 1.50 262.3
MoSe2 84.63 0.61 177.6
WS2 82.66 2.87 213.6

197.3±6.6 K for MoSe2 estimated from photoconductivity mea-
surements40, 210 K for WS2 estimated from the Lindemann for-
mula41.

As we mentioned above, low average atomic mass M and strong
interatomic bonding will lead to a high Debye temperature. The
average atomic mass plays a more important role in determining
the Debye temperatures of MoS2 and WS2. For MoS2 and MoSe2,
it is found that the M of MoS2 is approximately two thirds the M

of MoSe2, and the calculated θD of MoS2 is about 1.5 times larger
than that of MoSe2. For WS2 and MoSe2 which have similar mass,
the effect of interatomic bonding is crucial in determining the
Debye temperatures. The strong covalent W-S bonding in WS2

can result in a relatively higher Debye temperature as compared
to MoSe2.

3.3 Phonon vibrational properties

Concerning thermal vibrations, the Debye temperature is a mea-
sure of the temperature above which all modes begin to be excited
and below which modes begin to be frozen out42. We also inves-
tigate the vibrational properties of all studied MX2 by calculating
the projected PDOSs for the M(XY), M(Z), X(XY), and X(Z) vi-
brations as shown in fig. 4. Similar to the diatomic linear chain
model, the scale of the acoustic (optical) phonon branch is dom-
inated by atoms with larger (smaller) mass in three materials.
As the mass ratio of all studied MX2 (mM/m2X) in table 2 show,
the acoustic phonon vibration in the PDOS is governed by the
larger mass. Therefore the weight of M (X) atoms in the acous-
tic branch increases with increasing mM (mX). The mass ratio
of MoS2 is most close to 1, while that of WS2 is much larger 1.
Therefore the low-frequency acoustic phonon branches of MoS2

up to 233.9 cm−1 are mainly from the Mo(XY), Mo(Z) and S(XY)
vibrations due to similar mass, whereas those of WS2 up to 182.3
cm−1 are mainly from the W(XY) and W(Z) vibrations due to the
much larger mass of W atoms. In contrast to other two materials,
the mass of transition metal atoms in MoSe2 is smaller than the
mass of chalcogenide atoms. Thus, although all Mo(XY), Mo(Z),
Se(XY), and Se(Z) vibrations contribute significantly to the low-
frequency branches of MoSe2 up to 157.5 cm−1, the PDOS of the
Se(XY) and Se(Z) vibrations is higher than other two vibrations
due to the relatively larger mass of Se atoms.

In addition, we investigate the vibrational mode of all studied
MX2 through the group-theoretical analysis. Since the monolayer

Table 3 Theoretical determined optical phonon frequencies (cm−1) at

the Γ point. The experimental results are also given in parentheses for

comparison.

Structure E ′′ E ′ A′
1

A′′
2

MoS2 278.4 377.2 397.7 461.6
(28345) (38545) (40445) (47046)

MoSe2 163.3 235.7 279.3 345.2
(16747) (24047) (28247) (35147)

WS2 291.6 350.8 413.0 432.8
(29845) (35745) (41945) (43844)

          A2’’                A1’                   E’                        E’’                      A2’’                       E’

Fig. 5 Schematic phonon vibrations in MX2.).

MX2 belongs to the D3h point group, the optical lattice-vibration
modes at Γ point can be thus decomposed as

Γoptical = A′′
2(IR)+A′

1(R)+E ′(IR+R)+E ′′(R), (3)

where IR and R denote infrared- and Raman-active mode respec-
tively. Table 3 lists the optical phonon frequencies at the Γ point.
The calculated phonon frequencies are in agreement with the
experimental results, and the discrepancy is less than 3%. The
LO/TO splitting is very small and can be neglected here43,44.

The schematic vibrations for the phonon modes are shown in
fig. 5, where one A′′

2
and one E ′ are acoustic modes, the other

A′′
2

(E ′) is IR (both IR and R) active as shown in Eq. (3). A′′
2

and A′
1

modes vibrate along the z-direction, and E ′ and E ′′ modes
vibrate in the x−y direction. As shown before in fig. 4, in the case
of E ′(LA/TA) in monolayer MoS2, the Mo and S atoms vibrate
with similar amplitudes; for A′′

2
(ZA) in MoS2, the vibrations of

Mo atoms have much larger amplitudes. For both E ′(LA/TA) and
A′′

2
(ZA) in monolayer MoSe2, the Se atoms vibrate with greater

amplitudes than Mo atoms. The vibration of W atoms dominates
both E ′(LA/TA) and A′′

2
(ZA) vibrational modes in monolayer WS2

due to the large mW/m2S.

3.4 Grüneisen parameter

The Grüneisen parameter γ, which describes the thermal expan-
sion of a crystal on its vibrational properties, provides information
on the anharmonic interactions. A larger Grüneisen parameter
indicates stronger anharmonic vibrations. The expression for the
Grüneisen parameter is given by48,49

γ =
3αBVm

CV
, (4)
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Table 4 Comparison between the calculated and measured bulk

modulus B (GPa), linear thermal expansion coefficient α (10−6 K−1),

and isometric heat capacity CV (J mol−1 K−1). The experimental results

are also given in parentheses.

Structure B α CV

MoS2 52.3 17.4 62.97
(53.4±1.053) (10.756) (63.5550)

- (8247) -
MoSe2 57.3 19.5 68.75

(45.7±0.354) (7.2457) (68.6051)
(6255) (10547) -

WS2 77.9 14.8 63.49
(61±158) (6.3530) (63.8±0.352)

where α is the linear thermal expansion coefficient, B is the bulk
modulus, Vm is the molar volume, and CV is the isometric heat
capacity.

Table 4 compares the calculated bulk modulus, linear thermal
expansion coefficient, and isometric heat capacity with experi-
mental results at 300 K. The bulk modulus B and linear thermal
expansion coefficient α are calculated using the quasi-harmonic
approximation (QHA), which takes the first-order anharmonicity
into account27. The obtained B for MoS2 is in agreement with the
experimental value53. For MoSe2, the computed B is in the range
of measured values54,55. Great discrepancies between the calcu-
lated and experimental B are present for WS2. The bulk modulus
is used to describe the stiffness of MX2

20. Since WS2 is found
to have larger bulk modulus, the bonding in WS2 appears to be
much stronger comparing to other two materials. The calculated
α for MoS2 and MoSe2 at 300 K are in the range of measured
values47,56,57, while the calculated α is larger than the measured
one for WS2.

The isometric heat capacity can be calculated as

CV =

(

∂E

∂T

)

V

= ∑
n,q

kB

(

h̄ωn(q)

kBT

)2
eh̄ωn(q)/kBT

(eh̄ωn(q)/kBT −1)2
, (5)

where T is temperature, and ωn(q) is the phonon frequency of

(a)                                                 (b)                                                           (c)

Fig. 6 Calculated temperature-dependent Grüneisen parameter for

(a)MoS2, (b)MoSe2 and (c)WS2.

the n-th branch with wave vector q. The calculated values of
CV for MoS2, MoSe2, and WS2 at room temperature are in good
agreement with the experimental results50–52.

 Γ                        M             K                             Γ

 Γ                        M             K                             Γ

 Γ                        M             K                             Γ

(a) MoS2

(b) MoSe2

(c) WS2

Fig. 7 Calculated mode Grüneisen parameter for (a)MoS2, (b)MoSe2

and (c)WS2 with respect to frequencies, and with respect to wave

vectors as shown in the inset.

As shown in fig. 6, the temperature-dependent Grüneisen pa-
rameter is calculated using Eq. (4). The Grüneisen parameter can
also be calculated by averaging the mode Grüneisen parameter
γn(q),

γmode
ave =

1

CV
∑
n,q

γn(q)CV,n(q), (6)

where CV,n(q) is the mode heat capacity. The mode Grüneisen
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parameter is given by

γn(q) =−
a0

ωn(q)

∂ωn(q)

∂a
, (7)

where a0 is the equilibrium lattice constant at 0 K. Fig. 6
also shows the calculated γmode

ave , which is consistent with the
Grüneisen parameter calculated using Eq. (4).

The frequency dependence of mode Grüneisen parameter of
MoS2 in the irreducible BZ is plotted in fig. 7, and the mode
Grüneisen parameter along symmetry directions is shown in the
inset. Similar to diamond, graphite and graphene59, negative
γZA is observed at low frequencies (less than 50 cm−1 in MoS2,
30 cm−1 in MoSe2 and 50 cm−1 in WS2), which originates from
the low lattice dimensionality. The average Grüneisen parameter
is negative at low temperatures in fig. 6 because only the low-
frequency ZA phonons are excited. At higher temperatures, the
excitation of other positive-γ modes results in positive γmode

ave . Our
results are in agreement with previous calculations60–62. The cal-
culated γmode

ave at room temperature are 1.22, 1.20 and 1.15 for
MoS2, MoSe2, and WS2, respectively, indicating the high anhar-
monicity of MoS2, while the anharmonicity of WS2 is weak.

3.5 Thermal conductivity

Assuming that only the acoustic phonon modes participate in the
heat conduction process, the lattice thermal conductivity in the
temperature range where three-phonon scattering is dominant,
as derived by Slack16,38, is given as following,

κl = A
Mθ 3

Dδn1/3

γ2T
, (8)

where δ 3 is the volume per atom, n is the number of atoms in the
primitive unit cell, and A is a constant which is given by63

A =
2.43×10

−6

1−0.514/γ +0.228/γ2
(9)

when the units of κl , M, and δ are taken as W/mK, amu, and
Å, respectively. The obtained lattice thermal conductivities for
monolayer MoS2, MoSe2, and WS2 at room temperature are 33.6
W/mK, 17.6 W/mK and 31.8 W/mK, respectively, which are in
good agreement with the experimental value of 34.5± 4 W/mK
for monolayer MoS2

14, and 32 W/mK for monolayer WS2
15. Al-

though there is no experimental value for monolayer MoSe2, our
calculated κl is a reasonable prediction.

The factor Mθ 3
Dδ and A/γ2 in Eq. (8) are crucial to understand

the thermal transport in MoS2, MoSe2, and WS2. The Slack’s ex-
pression attempts to normalize the effect of mass density, crystal
structure, interatomic bonding, and anharmonicity16–18. The fac-
tor Mθ 3

Dδ in Eq. (8) is maximized for light mass, strong bonded
crystals, because low average atomic mass and strong interatomic
bonding lead to a large θ 3

D, and the θ 3
D term dominates the over-

all behaviour16. The Debye temperature reflects the magnitude
of sound velocity. Higher Debye temperature means increased
phonon velocities, and increased acoustic-phonon frequencies as
mentioned above, which suppress phonon-phonon scattering by
decreasing phonon populations17. The factor A/γ2 in Eq. (8) im-
plies that high thermal conductivity is correlated to low anhar-
monicity (small γ).

Our results suggest that the average atomic mass plays a key
role in determining the phonon dispersion of MoS2 and WS2,
and subsequently determines the Debye temperature. MoS2 with
much lower average atomic mass has higher Debye temperature,
which results in a higher thermal conductivity.

As compared to MoSe2, although WS2 has similar average
atomic mass, the strong W-S bonding leads to a higher Debye tem-
perature. Furthermore, small γ of WS2 means low anharmonicity,
which also results in a higher thermal conductivity. Therefore the
thermal conductivity of WS2 is determined by the competition
between high average atomic mass, strong covalent W-S bonding
and low anharmonicity.

4 Conclusion

In summary, we investigate the lattice dynamics and thermody-
namic properties of MoS2, MoSe2, and WS2 by first principles cal-
culations. The obtained phonon frequencies and lattice thermal
conductivity agree well with experimental measurements. Our
calculations show that the thermal conductivity of MoS2 is high-
est among the three materials due to its largest Debye tempera-
ture, which is attributed to the lowest average atomic mass. We
also find that the stronger W-S bonding and lower anharmonicity
of WS2 lead to a much higher thermal conductivity compared to
MoSe2.
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Graphical Abstract 

 

 

 

The present work shows that the thermal conductivity of MoS2 is largest among 

the three MX2 (Figs. a-b) materials due to its largest Debye temperature, which 

is attributed to the lowest average atomic mass, and WS2 has stronger W-S 

bonding (ELF profile in Fig. e) and lower anharmonicity (Fig. h), leading to a 

much larger thermal conductivity of WS2 compared to MoSe2. 
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