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Abstract 

DNA methylation is an epigenetic mechanism mediated by the family of proteins DNA 

methyltransferases (DNMTs). The misregulation of the covalent modification of DNA through the 

addition of a methyl group at the carbon-5 position of cytosine residue is common in many diseases 

including cancer. Recent advances in synthetic and screening technologies for DNMT inhibitors 

(DNMTi) have made significant contributions to uncover promising candidates for epigenetic drug 

discovery. The structure-activity information, not available few years ago, is being collected in public 

molecular databases. However, no systematic chemoinformatic studies that analyze the structural 

diversity and coverage of the chemical space of DNMTi with experimental activity have been 

discussed thus far. Herein, we report the assembly and curation of a molecular database of small-

molecule DNMTi with a special focus on inhibitors of DNMT1. The compound collection was 

characterized using a comprehensive chemoinformatic approach that involved physicochemical 

properties, structural fingerprints, and molecular scaffolds. The availability of activity information 

enabled to conduct chemotype enrichment analysis and suggest potential privileged epigenetic 

scaffolds. The structures of inhibitors of DNMT1 were compared to drugs approved for clinical use, 

compounds in clinical trials, a commercial screening library focused on epigenetic targets, and a 

general screening collection. The results of this work provided key insights to start characterizing the 

epigenetic relevant chemical space. 
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activity relationships 

 

Abbreviation List: AUC, area under the curve; CSR, cyclic systems retrieval; DNMT, DNA 

methyltransferase; DNMTi, DNA methyltransferase inhibitor; ECFPs, Extended Connectivity 

Fingerprints; EF, enrichment factor; GpiDAPH3, Pharmacophore Graph Triangle; HBA hydrogen bond 

acceptors; HBD, hydrogen bond donors; HEMD, Human Enzyme and Modulator Database; MOE, 

Molecular Operating Environment; MW, molecular weight; PC, principal component; PCA, principal 

component analysis; RB, rotatable bonds; SlogP, partition coefficient octanol/water; SMILES, 

Simplified Molecular Input Line-Entry System; TGD, Typed Graph Distance; TPSA, topological polar 

surface area; TTD, Therapeutic Target Database. 

 

1. Introduction 

DNA methylation is an epigenetic modification involving the addition of methyl group at position 5C 

of a cytosine residue. This process plays a key role in mammal’s development and in cancer cell 

growth. The methylation process is mediated by an enzymatic family called DNA methyltransferases 

(DNMTs). In humans, this family includes DNMT1, DNMT2, DNMT3A and DNMT3B.
1 

DNMT1 and 

DNMT3B exhibit larger activity, which can be inferred from the strong reduction in DNA methylation 

in cell lines with double knock-out. 
 
DNA methylation represents one of the main mediation of 

epigenetic regulation. Therefore, the identification of novel DNMT inhibitors (DNMTi) is a promising 

research avenue to develop novel therapies against cancer and other diseases associated with epigenetic 

alterations.
2-4

 

Currently, 5-aza and 5-aza-2´-deoxycytidine are two drugs approved for clinical use for the 

treatment of myelodysplasia (Figure 1). 5-Aza and 5-aza-2´-deoxycytidine are nucleoside analogues 

which, after its incorporation into DNA, cause depletion of the DNMTs. However, these drugs have 
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high toxicity, low bioavailability and low chemical stability, coupled with an uncertain mechanism of 

antitumor activity.
5
 For this reason, research efforts to discover non-nucleoside DNMTi with greater 

specificity and lower toxicity are needed.  

<Insert Figure 1 here> 

One of the main advantages of non-nucleoside DNMTi is that they do not need to be incorporated 

into the DNA. This characteristic contributes to the possible development of selective inhibitors against 

different DNMTs with the consequent decrease of unwanted side effects. Thus far, several non-

nucleoside inhibitors have been identified such as SGI-1027, procainamide, tea polyphenol (-)-

epigallocatechin 3-gallate, genistein, NSC401077, hydralazine, among others.
6,7 

The first-generation of 

inhibitors showed low activity and selectivity against DNMTs. However, new generations of inhibitors 

with increased activity and selectivity profile have been developed, such as analogs of SGI-1027 

(Figure 1).
8
 Nevertheless, these compounds have low potency especially in cells and lack of selectivity 

towards different DNMTs. Figure 1 shows representative inhibitors of DNMT1 and molecules 

associated with demethylating properties. 

The increased research efforts to develop more potent and specific DNMTi have augmented 

notoriously the number of screening data. Compounds from different sources including general 

screening collections and synthetic compounds have been tested for inhibition of DNMTs, in particular 

DNMT1. The results are being reported and collected not only in research papers but also in compound 

databases available in the public domain. Examples of such databases are the Human Epigenetic 

Enzyme and Modulator Database (HEMD),
9 

developed at the Shanghai Jiao Tong University, and 

EpiDBase,
10

 a recently manually curated epigenetic database that contains 11,422 small molecules with 

activity against different epigenetic targets. 

Compound collections either in-house or publicly available are an essential part on lead 

identification and drug development efforts.
11,12

 Chemoinformatic characterization of chemical libraries 

is a major first step towards the virtual and or experimental screening to identify new molecules with 

biological activity. As discussed in detail elsewhere, analysis of the structural diversity and analysis of 

Page 3 of 33 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



4 

 

distribution in chemical space of compound databases can be a crucial early step in virtual 

screening.
13,14

 For example, diverse libraries are appropriate to identify hit compounds with novel 

chemical scaffolds for a given target such as DNMTs. Focused libraries would be more suitable in lead 

optimization efforts.
13

 Chemoinformatic analysis of chemical libraries has found several applications 

not only in the research area of epigenetic-related libraries discussed in this work but also in drug and 

probe discovery based on natural products, combinatorial libraries and food-related chemicals.
11,13,15

 

As part of our ongoing efforts towards the development of DNMTi, herein we compiled and 

curated a molecular database of DNMTi. Specifically, we collected structure and activity information 

currently available in public molecular databases and recent scientific literature for compounds tested 

as inhibitors of DNMT1. Part of this data set was recently analyzed using an activity landscape 

approach to identify ‘activity cliff generators’, that is, compounds that are structurally similar to other 

molecules but have different activity profiles.
16

 As explained in detailed in that report, the activity 

landscape study was based on systematic pair-wise comparisons of the structure and activity similarity. 

The structure-activity relationships of the activity cliff generators were explained, at the molecular 

level, using docking studies.
16

 In contrast, in this work the structural diversity and coverage of the 

chemical space
14

 of the assembled library was characterized using multiple criteria including 

physicochemical properties, structural fingerprints, and molecular scaffolds. The herein collection of 

DNMTi was compared to several reference compound databases commonly used in drug discovery 

campaigns such as approved drugs, compounds in clinical trials, a general screening collection, and a 

commercial screening library focused on epigenetic compounds. It has been demonstrated that 

chemoinformatic characterization of compounds collections gives rise to valuable insights that guide 

the discovery and development of bioactive molecules.
12,14,17,18

 Of note, the present chemoinformatic 

analysis is focused on the structural aspects of the chemical structures of a large collection of inhibitors 

of DNMT. This work complements other recent reviews and research reports that discuss in detail 

three-dimensional aspects of the protein-ligand interactions of inhibitors of DNMT1.
19-21
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A substantial advance to the field of this work relative to previous chemoinformatic analysis of 

epigenetic-related databases
22

 is that herein we analyze a curated data set with experimental DNMT 

inhibitory activity. This is in sharp contrast with a chemoinformatics study published four years ago for 

a commercial DNMT-focused library but with no experimental activity. As discussed above, the 

growing interest of the scientific community on epigenetic drug discovery has boosted the availability 

of screening data until recent years. 

 

2. Methods 

2.1 Compound Databases 

2.1.1 Database of inhibitors of DNMT1 

A molecular database of inhibitors of DNMT1 was assembled collecting information from four major 

sources including three public compound databases and literature searching. The three public databases 

were ChEMBL
23

 using the query text ‘DNMT1’ in the target browser; HEMD
9
 with the information 

located in the enzyme browser, option DNA and submenu DNA (cytosine-5)-methyltransferase 1; and 

Binding Database,
24

 in the IC50 menu and submenu DNA methyltransferase. The search retrieved 265, 

106, and 337 molecules from ChEMBL, HEMD, and Binding Database, respectively. In order to 

identify additional compounds not reported in the three major public databases literature was searched 

using Web of Science (https://isiknowledge.com) focusing the search on papers published from 2013 to 

the time of writing this manuscript (March 2015). Literature searching retrieved 47 additional 

molecules. Table 1 summarizes the molecular databases and number of compounds analyzed in this 

study. Activity data for all compounds (IC50 values) were converted to micro molar units. 

<Insert Table 1 here> 

Data curation was carried out following the methodology reported by Fourches et al.
25

. Linear 

notation canonical structure according to simplified molecular input line-entry system (SMILES) was 

obtained for each molecule. Molecules where further prepared using the “wash” module available in 
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Molecular Operating Environment (MOE)
26

 by disconnecting metal salts, remove simple components, 

rebalance protonation state and deleting compounds with the same structure and activity data. Identical 

compounds with close but different activity values were kept taking, for only one structure, the mean 

value of the IC50 value. If the difference of the IC50 value was too large, the compound was removed 

from the analysis.  

 

2.1.2 Reference databases 

The database of DNMT1 was compared to four reference collections, namely; 1) a general screening 

collection obtained from Selleckchem (henceforth referred as ‘general’), 2) a screening collection 

focused on epigenetic compounds also obtained from Selleckchem
27-29

 (henceforth referred as 

‘focused’); 3) compounds in clinical trials obtained from the Therapeutic Target Database (TTD) 

(henceforth referred ‘clinical’),
30 

and approved drugs obtained from DrugBank (henceforth referred 

‘approved’).
31

 Table 2 summarizes the reference collections. 

<Insert Table 2 here> 

2.2 Structure representation
 

The compound databases were analyzed using three complementary representations, namely; 

physicochemical properties, structural fingerprints and molecular scaffolds.
18

 Three representations 

were used to balance the advantages and disadvantages of each one. For example, physicochemical 

properties are whole molecule descriptors straightforward to interpret and commonly used to build 

“drug-like” and other similar empirical rules.
32

 However, physicochemical properties do not give 

information about the molecular structural pattern and different structures may present similar or equal 

physicochemical properties. Similar to physicochemical descriptors, molecular scaffolds are 

straightforward to interpret and allow an easy communication with medicinal chemists and biologists. 

Certainly, scaffold analysis has led to concepts widely used in medicinal chemistry and drug discovery 

such as ‘scaffolds hopping’ and ‘privileged structures’. However, one of the disadvantages of scaffolds 

analysis is the lack of information due to side chains and the inherent similarity or dissimilarity of the 
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scaffolds themselves. To overcome this limitation, structural fingerprints can be used since they usually 

encode the information from the entire chemical structure. Structural fingerprints are widely used and 

have been successfully applied in many diversity studies and assessment of chemical space.
33,34

 

Nevertheless, a disadvantage of the most commonly used molecular fingerprints is that they are not 

straightforward to interpret and the dependence of chemical space with the type of fingerprint used.
35

 

This limitation can be approached obtaining consensus conclusions obtained from several different 

fingerprints and representations. 

 

2.2.1 Physicochemical properties 

Six physicochemical properties of pharmaceutical interest were calculated for the curated databases 

using MOE: partition coefficient octanol/water (SlogP), rotatable bonds (RB), hydrogen bond donors 

(HBD), hydrogen bond acceptors (HBA), topological surface area (TPSA) and molecular weight 

(MW). The six descriptors include the three important properties of size (MW), flexibility (RB), and 

molecular polarity. This set of properties is commonly used to compare compound collections for drug 

discovery.
36

 The distribution of the six properties was calculated and summary statistics were obtained 

including the mean, median, interquartile distances and standard deviation. For each database and 

properties notched-boxplot and violin plot were generated, as well as distribution type. 

Homoscedasticity analysis and subsequent hypothesis testing and post-hoc analysis were carried in 

RGui with package PMCMR.
37 

In order to generate a visual representation of the property space (i.e., 

chemical space based on physicochemical properties), a principal components analyses (PCA) was 

carried out on the six calculated properties using MOE and DataWarrior.
38

  

 

2.2.2 Structural fingerprints 

Compound databases were studied using fingerprints of different design:
18

 Molecular ACCess System 

(MACCS) keys (166-bits), Pharmacophore Graph Triangle (GpiDAPH3), and  Typed Graph Distance 

(TGD), as implemented in MOE, and Extended Connectivity Fingerprints (ECFPs) with radius equal to 
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four and six as implemented in MayaChem Tools (available at 

http://www.mayachemtools.org/docs/scripts/html/index.html). MACCS keys were originally developed 

to increase speed in structure search. Each bit describes a small substructure with maximum ten atoms 

except hydrogen. GpiDAPH3 consists of a pharmacophore of three points calculated from the two 

dimensions structure graph; TGD is a distance graph fingerprint type, where each fingerprint represent 

a set of three elements in the form (u, v, d), where u and v are atoms types like acid, base, hydrogen 

bond donor and acceptor, among others; and d is the minimum distance between two vertices of the 

graph. ECFP is a circular topology fingerprint with variable diameter distance. Despite the fact 

MACCS keys where designed to augment molecular diversity and conduct similarity searching, they 

have proven to be very useful to  describe chemical space of compound databases.
39  

Since different 

fingerprints provide complementary information, it was possible to derive a consensus assessment of 

the structural diversity of the compound databases. 

The structural similarity was computed using the Tanimoto similarity coefficient:
40,41

  

  (1) 

where a and b are the number of fragment bits corresponding to the i-th and j-th molecules and c is the 

number of fragments bits common to both molecules. For each similarity matrix, random samples of 

5000 similarity values off the diagonal were extracted to calculate statistics (e.g., mean, median, 

interquartile distances and standard deviation) and generate plots of the cumulative distribution 

functions. The distribution type, homoscedasticity, hypothesis testing and post-hoc analysis were 

conducted using PCMCR package in RGui.
37

 

 

2.2.3 Molecular scaffolds 

In this study the scaffolds also called cyclic systems were generated by systematically removing the 

side chains from the molecules i.e., removal of the vertex with degree one, with the program Molecular 

Equivalent Indices (MEQI).
42

 The cyclic systems are part of the chemotypes defined in the 
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methodology developed by Johnson and Xu. For each cyclic system a unique chemotype identifier 

(chemotype code) with five characters is assigned. The cyclic systems represent equivalent classes and 

molecules classified in a cyclic system do not fall into other chemotype class. MEQI has been broadly 

used for the scaffold analysis of a large number of compound databases.
43-45

 

In order to measure the scaffold diversity of the inhibitors of DNMT1 the number of cyclic 

systems was recorded along with singletons (cyclic systems that contain only one compound). The 

fraction of cyclic systems relative to the size of the data set, the fraction of singletons relative to the 

size of the data set and the number of cyclic systems were computed and compared to values 

reported in the literature for other data sets.46 The distribution of the molecular scaffolds was 

further characterized using the cyclic systems retrieval (CSR) curve which is fully discussed 

elsewhere.
46,47

 Briefly, a CSR curve measures the fraction of cyclic systems contained in a given 

fraction of the database. To generate this curve, the list of cyclic systems of the inhibitors of DNMT1 

was ordered by frequency. Then, the fraction of cyclic systems was plotted on the X axis and the 

fraction of compounds containing cyclic systems was plotted on the Y axis. The CSR curve was 

characterized by the fraction of cyclic systems that contain 50% of the inhibitors of DNMT1 and the 

area under the curve (AUC).
46

 

 

2.3 Active scaffolds in the database of inhibitors of DNMT1 

The molecular scaffolds containing ‘active’ DNMT1 inhibitors were also analyzed. For this analysis a 

compound was considered ‘active’ for IC50 values was lower than 10µM. DNMT1 active scaffolds 

were detected using well-established measures
43

 briefly described hereunder.  

The background activity Act(C) is the fraction of active compounds in the data base and was 

calculated with the expression: 

Act(C) = [C*] / [C]  (2) 

where [C] is the total number of compounds, and [C*] is the total number of active compounds. 
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The fraction of active compounds in a specific chemotype Act(Cλ) was computed with the 

equation: 

Act(Cλ) = [Cλ
*
] / [Cλ]  (3) 

where [Cλ] and [Cλ
*
] are the total number of compounds and active compounds, respectively, in the 

chemotype class λ.  

The enrichment factor (EF) for chemotype λ was computed with the expression: 

EF(Cλ) = Act(Cλ) / Act(C) (4) 

EF(Cλ) measured the proportion of active molecules of a particular chemotype relative to the 

proportion of active compounds in the data set. Therefore, the molecular scaffolds with the highest EF 

were the most attractive. To further differentiate the most attractive cyclic systems i.e., molecular 

scaffolds with the highest frequency, chemotype enrichment plots were generated plotting the EF on 

the X-axis and the cyclic systems frequency on the Y-axis.
43

 Chemotype enrichment plots have been 

used in the scaffold analysis of compound databases.
43, 44

 

 

3. Results and discussion 

The analysis of the database of inhibitors of DNMT1 is organized in two major parts: diversity 

assessment using different representations and exploration of the cyclic systems with DNMT1 

inhibitory activity. 

 

3.1 Analysis of compounds tested as inhibitors of DNMT1 

This section is further divided in three major parts, each one focused on a different representation. 

 

3.1.1 Physicochemical properties 

Figure 2 shows the distributions of the pharmaceutically relevant physicochemical properties calculated 

with MOE. For all data sets the distributions are summarized as notch box plots. In these plots the 
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boxes represent the interquartile distance and enclose data points with values within the first and third 

quartile. The bold black line denotes the median of the distribution, and the lines above and below 

indicates the maximum and minimum value excluding the outliers. The open circles denote the outliers 

and notch represents the 95% confidence interval of the median. Summary statistics of the distributions 

are presented below each plot. 

<Insert Figure 2 here> 

None of the distributions showed a normal distribution as measured using the Shapiro test 

implemented in R.
37

 The statistical difference between the distributions was assessed using the non-

parametric Kruskal-Wallis analysis and a post hoc Nemenyi test implemented in R package PMCMR.
37

 

Results of the statistical analysis are presented in Figure S1 in the Supporting Information. 

The database of inhibitors of DNMT1 showed, overall, a slightly larger number of HBA and HBD 

than approved drugs, compounds in clinical trials and the general screening collection. The distribution 

of both properties of the inhibitors of DNMT1 was comparable with the collection focused on 

epigenetic targets (i.e., median HBA and HBD values of 5 and 2, respectively, and a significant 

pairwise differences p values of 0.35 and 0.79, respectively (see Figures 2 and S1). Inhibitors of 

DNMT1 also had higher TPSA values than other reference databases. These results indicated that the 

compounds screened as inhibitors of DNMT1 are, in general, more polar than other compounds 

considered in this study. 

The distribution of SlogP and MW values of inhibitors of DNMT1 was similar to the other 

reference collections except approved drugs. Actually, the collection of approved drugs showed slightly 

lower SlogP and MW values than the other databases including compounds in clinical trials.  

Finally, the distribution of RB of inhibitors of DNMT1 was similar to the other reference 

collections (Figure 2). In particular the statistical analysis showed a very similar distribution of the RB 

values (p=0.99) of the DNMT1 compounds and screening molecules focused on epigenetic targets. 

Also, the general and focused screening collections showed high similarity (p=0.88) of the distributions 

of RB values (Figure S1). These results indicated comparable flexibility as measured by this property. 
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3.1.1.1 Visual representation of the property space 

The six physicochemical properties were subjected to a principal component analysis (PCA). Table 3 

summarizes the percent of covariance that captures each of the first four principal components (PCs). 

These values indicate that the first two PCs captured 77.3% of the variance while the first three PCs 

captured 89.4 of the variance indicating that 2D and 3D PCA plots are reasonable visual 

representations of the property space generated for these libraries. Table 3 also summarizes the loading 

values of each property for the first four PCs. For the first PC, HBD and HBA had the highest loadings 

(0.134 and 0.106, respectively). SlogP was the property with the highest contribution to the second PC 

(loading value of 0.236), and RB was the property with the main contribution to the third PC (loading 

value of 0.220). 

<Insert Table 3 here> 

Figure 3 shows a 2D representation of the chemical space scatter plot of the first two PCs. As 

discussed above, this PCA plot captures 77.3% of the variance. This figure represents a 2D visual 

representation of the chemical space of the database of compounds tested as DNMT1 as compared to 

other four reference databases. All plots are in the same coordinate system. The panel at the top left 

shows all databases while the reminder of the panels depicts each data set separately. Figure S2 in the 

Supporting Information shows a 3D representation of the chemical space generated by plotting the first 

three PCs. 

<Insert Figure 3 here> 

The visual representation of the chemical space shows that, as expected, the general screening 

(data points in yellow), clinical (blue), and approved drugs (cyan) cover a wide area of the property 

space. Similar conclusions have been obtained in other studies comparing the property space of general 

screening collections with currently approved drugs.
18

 In contrast, the collection focused on epigenetic 

targets (green) covers a more restricted area of the space. The compounds tested as inhibitors of 

DNMT1 (red) also cover a broad area of the property space. The more densely populated area is also 
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occupied by drugs, compounds in clinical trials and the general screening collection. However, the 

DNMT1 collection has molecules (data points) that expand a wide range of scores along PC1 (x-axis). 

As discussed above, HBD and HBA are the properties with the largest contributions to PC1. This is in 

agreement with the results of the distinct distributions of these properties for DNMT1 compounds (vide 

supra, Figure 2). Note, however that while interpreting the visual representation of the chemical space 

one needs to bear in mind that this is an approximation of the chemical space that is fully represented 

with the six properties.
48

 Putting together the results of the visual representation of the property space is 

possible to conclude that most of the compounds tested as DNMT1 inhibitors cover the traditional 

medicinal property space and there are molecules that expand the traditional space.  

 

3.1.1.2 Active vs. inactive inhibitors of DNMT1 

We also investigated the distribution in the property space of the most active compounds tested as 

inhibitors of DNMT1, namely; 378 compounds with IC50 values lower than 10µM and 32 molecules 

with IC50 values lower than 1µM. The distribution of the six properties was compared with the 

properties of the remaining inactive compounds i.e., molecules with higher IC50 values. Results are 

summarized in Figure S3 in the Supporting Information. HBA, HBD, and TPSA showed similar 

distributions for actives and inactives. Overall, active compounds showed higher MW and SlogP values 

suggesting that they are bigger and less hydrophilic that the inactive molecules as captured by these 

properties. Also, active compounds had slightly higher values of RB suggesting that active compounds 

are more flexible than the inactives. 

 

3.1.2 Molecular fingerprints 

3.1.2.1 Structural diversity of all data sets 

First the structural diversity of the five compound databases was evaluated using four fingerprint 

representations of different design as described in the Methods section. As discussed above, different 

structural representations were used to address the dependence of chemical space with the 
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representation.
49

 Figure 4 illustrates the cumulative distribution function of the similarity values 

computed with MACCS keys and TGD. Figure S4 in the Supporting Information shows summary 

statistics of the similarity distributions obtained with the Tanimoto coefficient and the four fingerprints. 

<Insert Figure 4 here> 

Results indicated that each representation has different magnitude of the similarity values. Overall, 

for any given compound database, similarity values calculated with TGD had the highest values (e.g., 

mean similarity values between 0.54 and 0.64) followed by MACCS keys (e.g., mean similarities 

between 0.31 and 0.41), GpiDAPH3 (e.g., mean values between 0.13 and 0.26) and ECFP4 (e.g., mean 

similarity values between 0.06 and 0.07). The same relative order has been noted for other compound 

databases which can be associated with the design of the fingerprint.
18

 For instance, the very low 

similarity values computed with ECFPs is associated with the high resolution of this fingerprint.  

The distributions of the similarity values (Figure 4 and S4) showed that, in general, the set of 

compounds tested as inhibitors of DNMT1 are structurally diverse. The structural diversity of this set is 

comparable to the diversity of the set focused on epigenetic targets according to TGD, MACCS, and 

GpiDAPH3. For example, for MACCS keys which is highly used to compare compound 

databases,
11,17,18

 the median similarities for the DNMT1 and focused set are 0.398 and 0.394, 

respectively. Similar conclusions can be obtained from other statistics for MACCS keys and other 

fingerprint representations used in this study. 

The molecular fingerprint analysis indicated that the data set of approved drugs showed the highest 

structural diversity also according to TGD, MACCS keys and GpiDAPH3 fingerprints (for example, 

with median similarity values of 0.56, 0.30, and 0.14, respectively). Similar conclusions can be 

obtained with other statistics. The second and third most diverse libraries were the set of compounds in 

clinical trials and general screening collections, respectively. 

Despite the fact ECFP4 has many successful applications in similarity-based virtual screening and 

activity landscape studies,
16,50

 the very low similarity values made difficult to obtain quantitative 

conclusions in diversity analysis. Indeed, in a recently published activity landscape study of inhibitors 
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of DNMT1, extended connectivity fingerprints were useful to uncover activity cliff generators. 

However, the methods used in that work
16

 were based on systematic pair-wise comparisons of the 

structure and activity similarity giving different insights of the structural diversity studies reported in 

this manuscript.  

 

3.1.2.2 Structural diversity of active vs. inactive inhibitors of DNMT1 

We also compared the structural diversity of the ‘actives’ (i.e., 378 molecules with IC50 < 10 µM) and 

‘inactive’ compounds in the data set of inhibitors of DNMT1 as computed with the Tanimoto 

coefficient and TGD and MACCs keys. Both sets of compounds showed similar distributions (data not 

shown) suggesting that, in general, the active compounds are also diverse and may be comprised of 

several different scaffolds. The molecular scaffold analysis, described in the next section, enabled to 

test this hypothesis. 

 

3.1.3 Molecular scaffolds  

The scaffold diversity of the compounds tested as inhibitors of DNMT1 was assessed using frequency 

counts and CSR curve as detailed in the Methods section. Table 4 includes a summary of the number of 

the cyclic systems (N), the fraction of cyclic systems relative to the number of molecules in the data set 

(N/M), and the number of cyclic systems with a single molecule, i.e., singletons (Nsing). The fractions 

of singletons as compared to the number of cyclic systems (58%) and to the number of compounds in 

the data set (30%) are indicative of the large scaffold diversity of this compound collection. These 

numbers are comparable to the equivalent fractions of cyclic systems reported in the literature for data 

sets with activity against different molecular targets.
46

 The corresponding CSR curve for the set of 

compounds tested as inhibitors of DNMT1 is presented in Figure S5 in the Supporting Information. 

This curve shows and AUC value of 0.67 and F50 value of 0.23 and further supported the conclusion 

that the DNMT1 is a diverse set.
46

 

<Insert Table 4 here> 
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3.2 Active scaffolds in the database of inhibitors of DNMT1 

Figure 5 depicts the most frequent cyclic systems for the data set of compounds tested as inhibitors of 

DNMT1. The chemotype identifier along with the cyclic system frequency and percentage are shown. 

The most frequent scaffolds can be classified in two major groups, namely; no-nucleosidic and cofactor 

related analogs. The most frequent scaffolds, with chemotyope identifiers FUIL1 and H8B7P had 

frequencies between 4 and 5% and are related to the co-factor S-adenosyl-L- methionine (SAM). 

Actually, the cyclic systems with chemotype identifiers FUIL1, H8B7P, KQ2XT, and WU6XX share 

the same sub-structure (of cyclic system H8B7P). All four cyclic systems together cover 72 compounds 

(12.7%) of the DNMT1 set. In contrast, the most frequent scaffolds associated with non-nucleosidic 

compounds (RYLFV, SU70D, 4E1HD, G5AA5, and RNDWX) add up only 40 molecules (7.1%) of 

the entire set. Other than the ubiquitous benzene (RYLFV) scaffold,
18,51

 these results may be related to 

the historical development of inhibitors of DNMT1 that was initially based on the optimization of the 

approved drugs that are nucloeosidic compounds and cofactor analogs. However, due to the increased 

interest to develop non-nucleosidic compounds is expected an increase in the number of compound to 

be tested as inhibitors of DNMT1.  

<Insert Figure 5 here> 

3.2.1 Chemotype enrichment 

In order to identify the most relevant cyclic systems in the set of DNMT1 compounds, the chemotype 

EF was calculated for the nine most frequent scaffolds in Figure 5. As discussed in the Methods 

section, the chemotype EF measures the proportion of active compounds for in a given scaffold (using 

a pre-established criterion to define an ‘active’ compound) relative to the proportion of active 

molecules in the entire data set. Considering this measure, the scaffolds with the highest EF values are 

the most attractive. Frequency is a second criterion to distinguish the most attractive scaffolds i.e., 

those with higher frequencies have more reliable SAR information that those scaffolds with fewer 

compounds. In this context, chemotype enrichment plots are valuable 2D graphs to rapidly classify the 
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scaffolds by representing the enrichment factor on one axis of the plot and the frequency on the second 

axis. These plots have been used to identify attractive chemical scaffolds for data sets with different 

biological activity.
43

 However, this this work represents the first analysis of the activity enrichment of 

chemotypes with DNMT1 inhibitory activity. Of note, a chemotype enrichment analysis was not 

possible to conduct with limited structure-activity relationship data. 

Figure 6 shows the chemotype enrichment plot for the nine most frequent cyclic systems identified 

for the set of inhibitors of DNMT1. This plot shows that there are four cyclic systems with EF greater 

than 1.0 and three with EF greater than 1.4 (SU70D, G5AA5, and RNDWX). Interestingly, all four 

have a non-nuclosidic scaffold. Out of the four, SU70D was the cyclic system with the highest 

frequency (10 compounds) and, therefore, with the most reliable SAR in this set of scaffolds. The 

molecules with cyclic systems SU70D, RNDWX, and G5AA5 were obtained from high-throughput 

screening. The molecules sharing these molecular scaffolds were hits in a Fluorescent Molecular 

Beacon assay made by Sanford-Burnham Center for Chemical Genomics (PubChem Bioassay ID –AID 

– 602386).
52

 These results encourage the additional exploration of the SAR of the compounds with 

these cyclic systems (either as potential chemotherapeutic agents or as molecular probes) and test its 

potential to become ‘epigenetic privileged scaffolds’ targeting DNMT1. For instance, these selected 

molecular scaffolds can be used as references (or queries) to conduct sub-structure searching on other 

compound databases from different origin e.g., natural products or synthetic compounds. Hit 

compounds of the sub-structure search can be synthesized or purchased if they are commercially 

available. 

<Insert Figure 6 here> 

Molecules sharing the 4E1HD chemotype were identified from the study of Chen et al.
53

 In that 

study the authors filtered a commercial screening database with 111,121 molecules. The filtered 

compounds were subject to docking-based virtual screening and clustering. Based on these results 51 

molecules were selected for biological testing. Finally, homologous compounds of the hit molecules 

were acquired for further testing of their activity and selectivity profile with DNMTs. 
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The chemotype enrichment plot in Figure 6 shows that the cyclic system FU1L1 has an EF close to 

1  (EF=0.93). This cyclic system is related to the co-factor SAM and was the scaffold with the highest 

frequency (29 compounds) in the entire set. 

 

Conclusions and future directions 

In this study we present a comprehensive chemoinformatic characterization of herein collected data set 

of small-molecule inhibitors of DNMT1 retrieved from public repositories. The chemical structures 

were characterized using complementary approaches. Analysis of the distributions of physicochemical 

properties indicated that, in general, compounds screened as inhibitors of DNMT1 are more polar than 

approved drugs, molecules in clinical trials, and screening compounds as measured by the distribution 

of HBA, HDB, and TPSA. Inhibitors of DNMT1 have similar flexibility as measured by RB. The 

visual representation of the property space revealed that compounds tested as DNMT1 inhibitors cover 

the traditional medicinal property space and there are molecules that expand the traditional space. The 

structural diversity of the databases computed with the Tanimoto coefficient and fingerprint 

representations revealed that the compounds tested and DNMT1 inhibitors are structurally diverse. In 

agreement with the diversity studies using different fingerprint representations it was concluded that 

the compounds focused on epigenetic targets are less diverse than the compounds approved as drugs, in 

clinical studies and general screening collection. The data set of approved drugs was the most diverse. 

The chemotype analysis of inhibitors of DNMT1 pointed to four specific molecular scaffolds that are 

potential ‘epigenetic privileged scaffolds’ and warrant the further acquisition and exploration of the 

local SAR to test this hypothesis. The four scaffolds are non-nucleosidic which is in agreement with the 

current trend to develop non-nucleoside inhibitors of DNMT1 as promising therapeutic agents or 

molecular probes. For representative compounds, including molecules with potential epigenetic 

privileged scaffolds, it remains to conduct, in addition to the present chemoinformatic analysis, 

comparative rigid and induce-fit docking (IFD) studies with the three-dimensional structure of 

Page 18 of 33RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



19 

 

DNMT1. Indeed, IFD studies for selected inhibitors of DNMT1 have been reported aimed to explain, at 

the molecular level, large changes in the biological activity associated with small changes in the 

chemical structure.
54
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TABLES 

 

Table 1. Sources of compounds to build the database of inhibitors of DNMT1 studied in this work 

Source type  Source Ref. Number of compounds 

Public database Binding Database  
24

 265 

 ChEMBL 
23

 163 

 HEMD 
9
 96 

Literature search Web of Science https://isiknowledge.com 42 

TOTAL  Non-duplicate and curated set of DNMT1 inhibitors 566 
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Table 2. Reference compound collections considered in this study 

Database Source Number of compounds 

Approved drugs Drug Bank 1,490 

General screening collection Selleck 1,100 

Compounds in clinical trials Therapeutic Target  

Database  

837 

Screening compounds focused of 

epigenetic targets 

Selleck 113 
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Table 3. Loadings for the first four principal components (PC) of the property space. 

 PC1 PC2 PC3 PC4 

Cumulative eigenvalue % 53.86 77.31 89.35 95.11 

HBA 0.106 -0.023 -0.134 0.155 

HBD 0.134 -0.111 -0.280 -0.619 

RB 0.051 0.083 0.220 -0.216 

SlogP -0.011 0.236 -0.213 -0.086 

TPSA 0.005 -0.004 0.002 0.007 

MW 0.002 0.002 0.000 0.001 
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Table 4. Measures of scaffold diversity of the compounds tested as inhibitors of DNMT1  

 DNMT1 set 

N 291 

N/M 0.525 

Nsing 170 

Nsing/N 0.58 

Nsing/M 0.30 
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FIGURES 

 

 

Figure 1. Chemical structures of representative inhibitors of DNMT1 and compounds associated with 

demethylating properties. 
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Figure 2. Box notch plots of six physicochemical properties of five compound databases: approved 

drugs (‘A’), compounds in clinical trials (‘C’), screening compounds focused on epigenetic targets 

(‘E’), general screening collection (‘I’), and inhibitors of DNMT1 (‘D’). The properties are hydrogen 

bond acceptors (HBA) and donors (HDB), rotatable bonds (RB), SlogP, topological polar surface area 

(TPSA), and molecular weight (MW). 1Q and 3Q, 1
st
 and 3

rd
 quartiles, respectively; SD, standard 

deviation. 
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Figure 3. Property space of five data sets obtained by principal component analysis (PCA) of six 

physicochemical properties. The variance of the first two principal components is 77.3%. DNMT1 

inhibitors (red); approved drugs (cyan); focused on epigenetic targets (green); clinical (blue); general 

screening (yellow). All plots are in the same coordinate system.  
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Figure 4. Cumulative Distributions Function (CDF) of pairwise Tanimoto similarity values computed 

for all data sets with A) TGD and B) MACCS keys fingerprints. Approved drugs (‘App’), compounds 

in clinical trials (‘Clin’), screening compounds focused on epigenetic targets (‘Epi’), general screening 

collection (‘Inhi’), and inhibitors of DNMT1 (‘DNMT’). 
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Figure 5. Most frequent cyclic systems identified in the data set of compounds tested as inhibitors of 

DNMT1. For each scaffold, the frequency and relative percentage are indicated in parenthesis. 
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Figure 6. Chemotype enrichment plot for the nine most frequent cyclic systems in the data set of 

compounds tested as inhibitors of DNMT1. The chemical structures of the cyclic systems are shown in 

Figure 5. 
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For Tables of Contents 

 

The first comprehensive exploration of the epigenetic relevant chemical space is reported in this work 

with a special emphasis on inhibitors of DNA methyltransferases. 
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