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Abstract 30 

A novel nanocomposite (BT-HAp) was developed by chemical synthesis of 31 

hydroxyapatite nanoparticles and bentonite clay that further applied for toxic lead (Pb) 32 

removal from aqueous solution. Three types of bentonite clay based nanocomposite were 33 

prepared by varying the pH of the solution (3, 7 and 10) and addition of glutaraldehyde as 34 

a cross-linking agent. The formation and performance of the prepared BT-HAps were 35 

examined herein. A clear and sharp XRD peaks suggested the presence of hydroxyapatite 36 

and bentonite clay compound in composite. FTIR spectrum confirmed the existence of 37 

functional groups required to develop the nanocomposite. The Bt-HAp nanocomposites 38 

were also characterized in terms of the BET, FESEM and TEM etc. to establish its 39 

formation. The synthesized nanocomposite showed highest sorption capacity at pH 7 than 40 

3 and 10. A mathematical and statistical optimizing technique (response surface 41 

methodology) was applied to verify the interactive effects of various parameters on 42 

sorption capacity. The analysis of variance was discussed for factors and response, that 43 

confirmed the significance of the predicted model (R2 = 0.9906). Langmuir isotherm 44 

model best represented the phenomenon having sorption capacity of 346 mg g-1 at 30 C. 45 

The sorption mechanism was well described by the Pseudo 2nd order kinetic model 46 

indicating coexistence of both physisorption and chemisorption. Moreover, a 47 

considerable amount of toxic Pb (~99 %) removal was observed by the synthesized 48 

nanocomposite via sorption. 49 

 50 

Key Words: Synthesis, Nanocomposite, lead removal, optimization. 51 

 52 

 53 
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1. Introduction 60 

Application of nanoparticles for contaminated water treatment has gained remarkable 61 

interest to the scientific community in recent time. The metal oxide nanoparticles like 62 

Al2O3, MnO2, MgO and TiO2 were used for heavy metal removal from aqueous system.1 63 

Similarly, silver nanoparticles also gained considerable attention for their antimicrobial 64 

activity.2 Simeonidis et al. (2015) found that Fe magnetite nanoparticles (20 nm) were 65 

able to remove toxic chromium from drinking water.3 The removal capacity of Cr by 66 

magnetic nanoparticle was 1.8 µg Cr (VI) mg-1for a residual concentration of 50 µg l-1 at 67 

a neutral pH.3 However, these nanoparticles have some disadvantages in terms of 68 

separation period and reusability of nanoparticles from treated water.4-7 Therefore, it is 69 

utmost important to overcome these drawbacks to produce fresh water. The composite 70 

material has gained considerable research attention in recent years for toxic contaminants 71 

removal from aqueous system. These materials are easily separable from filtered water 72 

due to their comparatively large size. Nanocomposite consist two or more component 73 

having at least one in nano dimension with different chemical and physical properties 74 

than individual. However, development of nanocomposite in combination with 75 

nanoparticles (NPs) having superior property e.g. large surface area, surface reactivity 76 

and high mechanical stimuli can be a possible solution.8, 9  77 

A significant threat occurs to the environment and public health due to the discharge of 78 

heavy metals especially Pb from printing, textile industries or other sources to the water 79 

body.10 It can cause structural damage in the mammalian eye, central nervous system and 80 

blood cells.11 Adsorption is widely used method for heavy metal remediation due to its 81 

simple and economic operation process compared to other conventional methods. In this 82 

context, the Pb adsorption by nanocomposite could be a feasible way to remediate toxic 83 

elements from aqueous solution.12-17  84 

Natural and synthetic nanomaterials incorporated into other functional groups for getting 85 

the desired nanocomposite with significant performance has gained attention nowadays. 86 

Several clay based nanocomposites mixed with nanoparticles are reported for the removal 87 

of water contaminants. Chao et al. (2015) reported that the adsorption characteristics are 88 

strongly influenced by bentonite clay and metal oxide nanocomposite.18 A new 89 

nanocomposite was developed by acid activated clay to study the adsorption feasibility of 90 
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crystal violet dye.19 Bentonite clay composite materials are now widely applied due to 91 

improved sorption time, efficiency and life cycles in water purification system including 92 

heavy metal adsorption, rather than insitu application.19, 20-23 Bentonite clay based 93 

hydroxyapatite nanocomposite has not been reported till now. Although Cynthia et al. 94 

(2014) suggested that hydroxyapatite may be an alternative approach for removal of toxic 95 

contaminants.24 Very recently, the synthesized hydroxyapatite have been combined with 96 

metal oxide nanoparticles for potential applications in water purification.25-27  97 

It is well known that bentonite is a natural, low cost clay mineral and largely available 98 

material. Therefore, in this study a new nanocomposite was developed combining 99 

bentonite with hydroxyapatite nanomaterial (BT-HAp). Inclusions of ceramic material 100 

such as bentonite clay improve the sorption capacity as well as the mechanical properties 101 

of hydroxyapatite. Glutaraldehyde is used as a cross-linking agent to adhere the 102 

components in composite. Additionally, it has disinfectant property with low toxicity and 103 

also enhances the mechanical property of the nanocomposite.28 Reports are not available 104 

to the best of our knowledge regarding bentonite clay based hyroxyapatite nanocomposite 105 

synthesis and its application as a sorbent for Pb removal from synthetic water.    106 

Additionaly, effect of different independent variables on Pb sorption capacity has been 107 

optimized in this study. Central Composite Design (CCD) is considered to design the 108 

experimental data in Response surface methodology (RSM) optimization method. 109 

Moreover, the relationship of the response and the independent variable as pH, initial Pb 110 

concentration, dosage is established by statistical analysis.  111 

 112 

2. Experimental 113 

2.1. Materials 114 

Calcium nitrate tetrahydrate (Ca (NO3)2 .4H2O) (99%); diammonium hydrogen phosphate 115 

((NH4)2HPO4), (99%); ammonia (NH3.H2O); glutaraldehyde; lead nitrate (Pb(NO3)2) 116 

(99%); from Merck, Germany were used. Bentonite clay was obtained from CSIR-117 

CGCRI, Kolkata, used without further purification. 118 

 119 

2.2. Synthesis of hydroxyapatite NPs 120 
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The HAp nanoparticle synthesis was conducted by chemical precipitation method with 121 

some modification.29 In brief, according to Ca/P ratio of 1.6:1, the Ca (NO3)2 and 122 

(NH4)2HPO4 was dissolved in 100 ml Mili-Q water separately. The aqueous NH3 was 123 

used to maintain the pH of the solutions at 10. The solution of Ca (NO3)2 was added 124 

dropwise into (NH4)2HPO4 solution in rapid stirring (250 rpm) condition. Gelatin was 125 

added later as an adhesion material during the precipitation. The greenish precipitate was 126 

repeatedly washed to remove the impurities like ammonia and its by-products. 127 

Subsequently, the green compact was washed with Mili-Q water for several times. The 128 

solid product was oven dried at 50 ºC for overnight and sintered at 1200 ºC for 2 hrs. 129 

Finally, the calcined HAp was powdered for advance applications. 130 

 131 

2.3. Preparation of BT-HAp nanocomposite  132 

The equal ratio (1:1) of bentonite clay and synthesized hydroxyapatite NP was 133 

maintained for nanocomposite preparation. Both of the solutions (50 ml) were stirred 134 

(250 rpm) in a 250 ml beaker separately for 12 hrs. Hydroxyapaptite solution was then 135 

poured into the bentonite clay solution in continuous stirring condition. Glutaraldehyde 136 

(6ml to 100ml) was added drop wise to the solution mixture as a crosslinker. Three sets 137 

of experiments were conducted at different pH range such as 3, 7 and 10. The pH was 138 

adjusted by using of 0.1 (N) HCl and 0.1 (N) NaOH solutions. Finally all the solutions 139 

were stirred at 250 rpm for 12 hrs at room temperature. Washing-centrifugation 140 

procedure was then followed to make the neutral supernatant. Finally, prepared BT-HAp 141 

nanocomposite was dried at 60 C for 2 hrs and powdered by mortar pestle. Fig. 1 shows 142 

the schematic of the nanocomposite formation process with changes of morphology. The 143 

prepared samples were stored in the air tight container for further uses.     144 

 145 

2.4. Experimental design 146 

RSM is a well known optimization approach that simultaneously considers several 147 

parameters at different design levels. Moreover, this mathematical and statistical 148 

modeling tool is used to achieve the desired product with less number of experiments 149 

without the requirement of observing all probable combinations experimentally.30-34 150 

Central composite design was undertaken to establish the relationship between the 151 
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 6 

independent variables with the response of the Pb sorption capacity. Two-level three 152 

factors (23) were employed with a series of experiments. Design Expert software was also 153 

used to express the regression model and graphical analysis of the data. Coded level (-154 

1,0,+1) of variables viz., nanocomposite dosage 0.5-1.5 g L-1 (A), initial Pb concentration 155 

50-150 (B) mg L-1 and initial solution pH 4.1-6.1(C) were designed by CCD to study the 156 

effects on sorption capacity (Table 1).     157 

The quadratic model was designed by CCD and the response variables were expressed as 158 

a function of process variables. In this method, a set of twenty experiments were 159 

conducted. The quadratic model for optimum value calculation is represented below  160 

 161 
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 163 

where, β0 is constant, βi, βii, βij are regression coefficients and xi, xj denotes the 164 

independent variables. Predicted response is represented as Y.35 165 

In this study, the independent given variables were considered as pH, initial Pb 166 

concentration and nanocomposite dosage, whereas sorption capacity was dependent 167 

experimental response. 168 

 169 

2.5. Material characterization  170 

The X-Ray Diffraction (XRD) analysis of the BT-HAp nanocomposite was performed by 171 

Philips 1710 diffractometer using Cu as anode (Netherlands). The morphology of the 172 

powdered sample was investigated using field emission scanning electron microscopy 173 

(FESEM, Gemini Zeiss SupraTM, 35 VP Model, Germany). Moreover the qualitative 174 

energy dispersive X-ray spectroscopy (EDX, Leo S430I, U.K and Carl Zeiss, IGMA-175 

Germany) was used to detect the elements presents in samples. Various functional groups 176 

were detected by Fourier transform infrared spectroscopy (FTIR, Perkin Elmer, USA). 177 

The surface area was measured by adsorption-desorption of nitrogen using multipoint 178 

Braunauer-Emmett-Teller (BET) method by using Quantachrome (USA). Transmission 179 

electron micrograph (TEM, Technai G2 30ST-FEI, USA), particle size distribution of 180 

synthesized materials (Zetasizer, Nanoseries, Malvern) were also used to understand the 181 
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 7 

nature of the synthesized powder. The solution pH was measured by pH meter 182 

(EUTECH, India). After adsorption processes, Pb contaminated nanocomposite was also 183 

characterized for any changes of functional groups or morphology.  184 

 185 

2.6. Lead adsorption experiments  186 

The adsorption study was carried out in batch mode. All solutions were prepared using 187 

ultrapure water from Milipore-Q (USA) system. The synthetic solutions at different 188 

concentrations were prepared by diluting the standard Pb solution (1000 mg L-1) obtained 189 

by dissolving quantitatively Pb(NO3)2 in Mili-Q water at room temperature. The sample 190 

of 10 ml volume was collected at different initial concentration with nanocomposite dose 191 

of 1 g L-1. Adsorption studies were performed in a batch reactor at 250 rpm by magnetic 192 

stirrer for 24 h. The pH, nanocomposite dosage, initial Pb concentration variations were 193 

conducted for efficient Pb sorption studies. In addition, the Pb sorption was carried out at 194 

different temperature to observe its effect on removal efficiency. The concentration of Pb 195 

was measured by ion chromatography (881 Compact IC pro, Metrohm). The repeatability 196 

study was carried out for all experiments and the errors were found minimum. The 197 

sorption capacity qe (mg g-1) and removal efficiency (R) were calculated from the 198 

following equations: 199 

      200 

  mCCVq ee  0       (2) 201 

 202 

  10000  CCCR e      (3) 203 

 204 

where, V is the volume of solution (L), C0 & Ce are the initial and equilibrium Pb 205 

concentration (mg L-1), m (g) is the mass of the nanocomposite as adsorbent. 206 
 207 
2.7. Desorption study 208 

Desorption study was accomplished in batch mode with 0.1 M Ethylene diamine tetra 209 

acetic acid (EDTA), NaOH and HNO3. The other conditions remained unchanged and 210 

about 0.01 g spent nanocomposite were taken for each solution. Desorption study was 211 
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 8 

carried out at 250 rpm for 180 minutes at 30 C. Desorption efficiency was estimated 212 

from the following standard equation: 213 

 214 

100%  ad CCDesorption      (4) 215 

 216 

where, Cd and Ca are the amount of metal ion desorbed and adsorbed in mg L-1. 217 

 218 

3. Results and Discussion 219 

3.1. Characterization of nanocomposite 220 

The XRD patterns of BT-HAp nanocomposite are shown in Fig. 2(a-c). The crystal phase 221 

was obtained by XRD analysis clearly shows the increase in crystalinity for BT-HAp 222 

nanocomposite at pH 7 (Fig. 2b) than BT-HAp at pH 3 and 10 (Fig. 1a and 1c). This 223 

result demonstrated about high crystalline structure of BT-HAp-7. The sharp and major 224 

peaks related to HAp were observed as 25.94, 29.02, 31.89, 32.28, 33.0, 34.15, 39.93, 225 

49.6, 53.3 at 2θ degree. The positions and d-values were well matched with JCPDS No. 226 

09-0432.26 However, the peaks at 2θ = 5.3, 24.5, 34.7, 63.2 confirmed the presence of 227 

bentonite clay in composite. The similar findings were reported previously by T. S. 228 

Anirudhan et al, 2006.36 Therefore, the formation of nanocomposite by BT-HAp was 229 

justified by XRD analysis. The crystallite size was estimated by Scherrer’s equation from 230 

XRD pattern,  cosD , where constant k is 0.9-1, λ is the X-ray wavelength, β is 231 

the full width half maxima and θ is the Bragg’s angle. The crystallite sizes of BT-HAp-3, 232 

7, 10 were 28.6 nm, 36.7 nm and 45.9 nm, respectively.      233 

In Fig. 3, FTIR spectra a, b and c denotes the synthesized nanocomposite BT-HAp-3, 7, 234 

and 10. The functional groups of the composite material were present in above mentioned 235 

three type of nanocomposite with variation of transmittance. The absorption bands at 236 

3627-3630 cm-1 were assigned to the hydroxyl group (-OH). The broad absorption bands 237 

at 3434 and 1633 cm-1 may be attributed to the –OH stretching and bending, respectively 238 

for absorption of water molecules on clay and hydroxyapatite surface. Chemical cross-239 

linker glutaraldehyde helped to attach the active groups (e.g. aldehyde) of HAp particle 240 

or clay mineral with each other.37 Absorption bands at 1040-1044 cm-1 signifies the 241 

presence of Si-O-Si bond in BT-HAp. Additionally, another form of silica was observed 242 
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 9 

at 522-527 cm-1, respectively for the BT -HAp nanocomposite prepared at pH 3, 7 and 243 

10. The presence of typical vibrations of 6 member rings compiled with alumina and 244 

silica-oxygen tetrahedral at 633 cm-1.38 The –PO4 characteristic groups were assigned to 245 

the absorption band at 1036-1043 cm-1 which confirms the presence of hydroxyapatite in 246 

BT-HAp nanocomposite. In addition, the occurrence of hydroxyapatite in nanocomposite 247 

may be verified by the absorption band in FTIR spectra. Thus, above observation clearly 248 

indicates the formation of BT-HAp nanocomposite. After sorption of Pb, the intensity 249 

was shifted and the reduced intensity of OH-1 group is shown in Fig. 3 (d). The change in 250 

the FTIR spectrum after Pb sorption clearly demonstrated that the Pb ions were adsorbed 251 

on BT-HAp surface due to electrostatic attraction which signifies the physical sorption 252 

process.39 The FESEM images (Fig. 4 (a-e)) describes surface morphology of the 253 

synthesized powder before and after sorption process. Fig. 4(a) signifies about the 254 

formation of nearly uniform spherical HAp nanoparticles with the particle size of 35-40 255 

nm. The EDX analysis associated with FESEM was very useful to detect the elemental 256 

composition of the nanocomposite. The EDX analysis (inset of Fig. 4a) confirmed the 257 

presence of calcium, phosphate and oxygen elements in HAp nanoparticle. On the other 258 

hand, from Fig. 4(b-d) the porous surface of nanocomposite and the particle size varied 259 

from 75-80 nm was observed. In Fig. 4(e), the micrograph revealed Pb sorption on the 260 

nanocomposite surface that was also confirmed by EDX analysis (inset of fig. 4e).      261 

The bright field TEM image confirmed the nanocomposite size ranges from 50-80 nm 262 

with porous surface (Fig. 5(a-c)). The HRTEM images are presented in the inset of TEM 263 

images of the particular nanocomposite. The interlayer spacing is equal to 0.294 nm of 264 

BT-HAp-7 nanocomposite in the HRTEM corresponds to the (211) plane. From low 265 

resolution of TEM image, the characteristic crystalline spot were obtained from SAED 266 

pattern (Fig. 5 d-f). The diffraction rings and bright spots were due to polycrystalline 267 

nature of the nanocomposite. A very clear rings and spots of nanoparticles suggested 268 

about the formation of highly crystalline BT-HAp-7 (Fig. 5e). Similar observation was 269 

also found in XRD pattern.               270 

The surface area was measured by absorption-desorption of nitrogen by multipoint BET 271 

method. Further chemical treatment was not performed. The samples were under 272 

degassing at a temperature of 200 ºC for 2 hrs followed by flushing by helium gas. The 273 
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 10

moisture content and unwanted air was removed from the pores of the samples by helium 274 

degassing. The relative pressure was maintained in the range of 0.05-0.3 to measure the 275 

surface area. The surface area of BT-Hap was decreased as the pH of solution increases 276 

(pH 3- 21.89, pH 7- 12.4, pH 10- 11.9 m2 g-1) and therefore, the maximum surface area 277 

was obtained for BT-HAp-3. However, the particle size of the nanocomposite behaves 278 

inversely with the surface area and it increased with increasing solution pH. The 279 

crystallite size is also observed earlier in the same pattern. The average pore diameter and 280 

pore volume was determined by Barret-Joymer-Halender (BJH) method. It was observed 281 

that the pore diameter and pore volume were much higher (e.g. HAp-7: 522.9Å and 282 

0.1627 cc g-1) which plays a significant role for sorption of metal ions. From intensity vs. 283 

particle diameters plot, it was observed that the average particle size (d50) of the 284 

nanoparticle was obtained around 100 nm.  285 

 286 

3.2. Response surface optimization: ANOVA result 287 

According to the design matrix by CCD, ANOVA results from software are listed in 288 

Table 3. A quadratic regression model equation describing the sorption process resulted 289 

from ANOVA study can be expressed as follows:  290 

 291 

 292 
       (5) 293 

The above regression model shows the relation between the response and the independent 294 

variable in terms of coded factor. It can be predicted from the equation that the dosage 295 

and solution pH has a positive effect on adsorption and initial Pb+2 concentrations have 296 

negative effect on sorption capacity. The highest order of the significant effect by 297 

different independent variable and their interactions on sorption capacity is B and lowest 298 

is AB. ANOVA study was performed to justify the significance of the quadratic model. 299 

The model F-value of 117.34 implies the significance of the model (Table 3). There was 300 

only 0.01% possibility to make noise in the predicted model. A good correlation was 301 

observed between the experimental data and predicted data. The multiple correlation 302 

coefficient (R2) was found as 0.9906 which implies that 99.06% of the variations of 303 
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 11

sorption capacity could be explained by the model. The ‘Pred R2’of 0.9051 was in logical 304 

conformity with the ‘Adj R2’ of 0.9822.    305 

 306 

3.3. Interactive effect of variables on sorption capacity 307 

The effect of experimental variables and the response of sorption capacity were analyzed 308 

which was designed by CCD with full factorial based on three factors. Table 4 represents 309 

a comparative study on Pb sorption capacity among the nanocomposites and its basic 310 

components with 100 mg L-1 initial Pb solution at pH 7. The maximum sorption capacity 311 

was found for BT-HAp-7 nanocomposite (97.94 mg g-1) than BT-HAp-3 (95 mg g-1) and 312 

10 (93 mg g-1) which are shown in table 4. Hence, all the sorption experiments were 313 

carried out by potential BT-HAp-7 nanocomposite. Although bentonite clay (78 mg g-1) 314 

and HAp nanoparticles (83 mg g-1) individually did not show good sorption capacity 315 

compared to BT-HAp nanocomposite, combination of these two components were 316 

explored for potential capacity. It was reported that particle sizes influenced the sorption 317 

process noticeably during in situ application of nanoparticles.43 Results shows that 318 

although BT-HAp-7 nanocomposite has less surface area than BT-HAp-3, it has got 319 

better adsorption property than BT-HAp-3. Therefore, particle size was not solely 320 

responsible for sorption capacity. The Pb solution was possibly able to diffuse through 321 

the particles and a poor correlation might obtain by external surface, suggests that particle 322 

size was not the prime parameter to control the equilibrium sorption. However, at 323 

equilibrium, the sorption capacity and specific surface area were not directly proportional 324 

to each other. 17 Fig. 6(a) reveals the combine effect of dose corresponding with initial Pb 325 

concentrations on sorption capacity of nanocomposite in contour plot. In this plot, we 326 

observed that the sorption capacity was increases with increasing dosage whereas at the 327 

same time under same experimental condition, sorption capacity was decreased with 328 

increasing Pb concentration. The sorption capacity was reduced from 99.4 % to 75% with 329 

increasing Pb concentration from 50 mg L-1 to 150 mg L-1 with 1 mg L-1 dose, therefore, 330 

metal ion uptake by the nanocomposite was reduced by decreasing driving force in form 331 

of concentration gradient. On other hand the sorption capacity was enhanced with 332 

increasing dosage of nanocomposite due to attachment of Pb with the higher surface area 333 

of nanocomposite.  334 
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The combine effect of dose and the solution pH on Pb removal are shown in Fig. 6(b). It 335 

was observed that the sorption capacity was increases with increasing nanocomposite 336 

dosage. It was also found by quadratic model that the dose parameter have positive effect 337 

on sorption capacity however, change in sorption capacity beyond 1 g L-1 dose 338 

considering 100 mg L-1 Pb+2 concentration was insignificant. Therefore, the optimum 339 

dose was considered as 1 g L-1 with same experimental condition. The solution pH is an 340 

important factor that significantly influenced the sorption capacity or removal efficiency. 341 

The contour plot revealed that the sorption capacity was increases from 96% to 99.4% 342 

with increasing pH from 4.5 to 5, respectively. However, the sorption capacity was 343 

decreases from 99.48 to 97.8% with changing pH from pH 5 to 5.5, respectively. At a 344 

lower pH (<5), BT-HAp nanocomposite surfaces become positively charged due to 345 

higher H+ ion concentration, resulting lower sorption capacity due to repulsion between 346 

positively charged nanocomposite surface and Pb+2. The solution was favored higher 347 

sorption capacity at pH 5 due to electrostatic attraction between negatively charged BT-348 

HAp nanocomposite surface and the Pb+2. Although beyond this pH, the sorption 349 

experiment was unsuccessful due to precipitation of Pb as lead hydroxide.41 Hence, 350 

selection of exact pH is very important and in this study optimum pH was found as 5 by 351 

response surface methodology.  352 

The pH has a positive effect on sorption capacity (Eqn. 5). Fig. 6(c) represents the 353 

collective effect of pH and initial Pb concentration on sorption capacity. The sorption 354 

capacity was decreases from 99.4% to 75% with increasing Pb concentration from 50 to 355 

150 mg L-1 by applying 1 g L-1 dose at pH 5. The nanocomposite active sites were 356 

enclosed by more Pb ions and get saturated when higher Pb concentration was used and 357 

therefore, sorption capacity decreases.42 Similar observations were also found for other 358 

pH values.  359 

 360 

3.4. Validation and confirmation of model 361 

Validation is a technique of RSM that used to check the accuracy of the predicted model 362 

and the corresponding results are shown in Table 2. Assessment of experimental test and 363 

predicted findings confirms similar responses (Fig 7). The software was allowed to select 364 

the targeted goal for factors or responses from numerical optimization. In this study, the 365 
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factors were within the range and based on corresponding 10 optimum conditions, the 366 

sorption capacities was about 97.94 mg g-1 with 0.95% deviation from experimental 367 

value. From 10 optimum conditions in numerical optimization method, the desirability as 368 

an objective function was found out 1 by considering the desired goals (Table 5). 369 

Therefore, the regression model successfully explained the process with high accuracy 370 

and reliable for predicting the sorption capacity.32 371 

 372 

3.5. Adsorption isotherm and kinetics 373 

Sorption capacity estimation is necessary to ascertain the amount of sorbent required for 374 

potential removal of heavy metal such as Pb from aqueous solution. Adsorption isotherm 375 

study was conducted by varying the Pb concentration from 50 to 150 mg L-1 with dosage 376 

of 1 g L-1 for 24 hrs contact time. Temperature was varied as 20º, 30º and 50º C to 377 

conduct the isotherm study.  378 

Equilibrium data was further analyzed by Langmuir and Freundlich isotherm model to 379 

understand the sorption behavior. The Langmuir model is based on monolayer coverage 380 

with homogeneous surface sites whereas Freundlich model is applicable only for highly 381 

heterogeneous surfaces.43, 44 Table 6 represents the result of isotherm model and we 382 

observed that Langmuir model fitted well with co-relation coefficient (R2) of 0.99. The 383 

higher n value indicates the favorable condition of adsorbate on sorbent surface. Pb 384 

monolayer was bonded with functional groups of BT-HAp-7 nanocomposite during 385 

sorption. The maximum sorption capacity was found as 346 mg g-1 that was significantly 386 

higher compared to other materials shown in the table 7. 387 

Pseudo kinetic models were studied to observe the sorption mechanism. The Pseudo 1st 388 

order and 2nd order kinetic models with the empirical equations were used to determine 389 

the rate kinetics.49 It was observed that the sorption capacity was very fast within first 15 390 

minutes but after that the process became slower before reaching equilibrium. The 391 

pseudo 2nd order model was best fitted with linear regression correlation coefficient (R2) 392 

value of 0.999. The rate constant (k2) value indicated the chemisorptions process of Pb 393 

ions on the nanocomposite surface.50 394 

                                                                                                                                                                                                                                                           395 

3.6. Desorption study of nanocomposite 396 
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The adsorbents were loaded with toxic heavy metals which results an environmental 397 

hazard solid spent waste. Therefore, regeneration of spent materials can make the process 398 

cost-effective. Desorption study was conducted using EDTA, HNO3 and NaOH solution. 399 

Maximum desorption about 64% from spent nanocomposites containing 97 mg g-1 of Pb 400 

was observed using EDTA solution whereas only 0.12% for and 0.01% desorption was 401 

observed for HNO3 and NaOH, respectively at 60 minutes contact time. Equilibrium was 402 

reached after 120 minutes at constant stirring condition. Three consecutive sorption-403 

desorption cycles were performed and sorption capacity of the nanocomposite decreases 404 

about 12-16% during this period. Y. Ren et al.(2012) discussed that the sorption-405 

desorption process involved the complexation, physisorption and ion exchange reaction.50 406 

However, the reason behind improved desorption efficiency of EDTA solutions can be 407 

explained by the reaction of loosely bound Pb+2 with EDTA, that produced a stable lead 408 

acetate complex and desorbed quickly. Therefore, nanocomposites were regenerated for 409 

further uses.51  410 

 411 

4. Conclusions 412 

The nanocomposite (BT-HAp) was successfully synthesized from bentonite clay and 413 

hydroxyapatite by chemical synthesis method. The novelty of this work lies on 414 

development of three different nanocomposite from clay and HAp powder having 415 

distinguished property. Additionally, the novel nanocomposite was potentially applied for 416 

toxic heavy metal (Pb) remediation. A very simple synthesis process is discussed in this 417 

report, where raw materials are of very low-cost. Hence there is a possibility to scale-up 418 

the process in a cost-effective manner with a less hazardous component. BT-HAp 419 

nanocomposite was synthesized at neutral pH which is very significant for application in 420 

natural condition and use of minimum chemicals makes the process environment 421 

friendly. The formation of BT-HAp nanocomposite was confirmed through XRD, FTIR, 422 

FESEM, EDX and TEM analysis. BT-HAp-7 was established as potential sorbent having 423 

less surface area than BT-HAp-3. This observation indicated that the external surface was 424 

not the main parameter for sorption. The ANOVA results showed optimization of Pb 425 

sorption on nanocomposite by RSM was in well agreement with experimental result 426 

under optimized condition. The multiple correlation coefficient (R2=0.9906) value was 427 
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also justified the above observations. The model designed by CCD well describes the 428 

sorption process where the sorbent dose and the pH have a positive effect. However, 429 

initial Pb concentration had negative effect on sorption process. The Numerical 430 

optimization method showed that Pb sorption capacity of nanocomposite was about 97.94 431 

mg g-1. The sorption process fits well with the Langmuir isotherm model signifies 432 

monolayer Pb sorption on nanocomposite surface. The sorption mechanism of 433 

nanocomposite was also well explained by Pseudo 2nd order model indicated 434 

chemisorption. In summary, the experimental and theoretical results suggest that BT-435 

HAp nanocomposite could be a potential, low cost sorbent for heavy metal remediation 436 

from waste water towards an environmental friendly approach. 437 
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                                                              Tables 687 
 688 
Table 1: Experimental range and levels (coded) 689 
 690 

 691 
 692 
 693 
 694 
 695 
 696 
 697 
 698 

 699 
 700 
 701 
 702 
 703 
 704 
 705 
 706 
 707 
 708 
 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
 729 
 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 

Independent variable Factor 
code 

Range and Level (Coded) 
 

-1 0 +1 
Dose, g L-1 A 0.5 1 1.5 
Initial Pb 
concentration, mg L-1 

B 50 100 150 

pH C 4.5 5 5.5 
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Table 2: 23 factorial design matrix and experimental response as sorption capacity (mg g-1) 738 
 739 

 740 
 741 
                                                   742 
                743 
 744 
                          745 
  746 
 747 
   748 
 749 
 750 
 751 
 752 
 753 
 754 
 755 
 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 
 764 
 765 

 766 
 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 

Run           A: 
Dose          

B: Initial Pb 
conc.            

C: pH        Response: 
Sorption capacity, 
Actual value 

Response: 
Sorption capacity, 
Predicted value 

1 0.50 50.00 4.50 98 94.78 
2 1.00 156.00 5.00 68 68.10 
3 1.50 50.00 5.50 99 98.46 
4 0.50 50.00 5.50 98.5 99.05 
5 1.50 150.00 5.50 70 70.59 
6 1.00 100.00 5.00 97 97.72 
7 1.50 50.00 4.50 99 100.25 
8 1.00 100.00 5.00 96.7 97.72 
9 1.84 100.00 5.00 98.2 96.96 
10 1.00 100.00 5.84 96 95.15 
11 1.00 100.00 5.00 97.5 97.72 
12 0.20 80.00 4.00 84 86.09 
13 0.50 150.00 4.50 68 67.16 
14 1.50 150.00 4.00 70 70.5 
15 1.00 100.00 5.00 98 97.72 
16 1.00 50.00 5.00 99 100.37 
17 1.00 100.00 5.00 97.3 97.72 
18 1.00 100.00 5.00 97.5 97.72 
19 1.00 100.00 4.16 95.5 93.52 
20 0.50 150.00 5.50 71 70.88 
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Table 3: ANOVA for the quadratic model 789 
 790 

R2 = 0.9906, Adj R2 = 0.9822, Pred R2 = 0.9051 791 
 792 
 793 
 794 
 795 
 796 
 797 

798 

Source Sum of squares Degree of 
freedom 

(df) 

Mean square F -value Probablity>F Coefficient 
estimate 

model 2973.11 9 330.35 117.34 <0.0001 - 
A 17.08 1 17.08 6.07 0.0335 1.29 
B 1911.58 1 1911.58 679.01 <0.0001 -13.87 
C 3.61 1 3.61 1.28 0.2841 0.48 

AB 0.041 1 0.041 0.015 0.9059 0.074 
AC 30.09 1 30.09 10.69 0.0084 -1.51 
BC 0.18 1 0.18 0.062 0.8082 -0.14 
A2 9.91 1 9.91 3.52 0.0900 -1.04 
B2 575.49 1 575.49 204.42 <0.0001 -11.23 
C2 30.77 1 30.77 10.93 0.0079 -1.20 
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Table 4: Comparative study of lead sorption capacity. 799 
 800 

Sorbent Adsorption 
capacity, mg 

g-1 
BT-HAp-3 95 

BT-HAp-7 97.94 

BT-HAp-10 93 

Bentonite clay powder 78 

HAp nanopowder 83 

 801 
 802 
 803 
 804 
 805 
 806 
 807 
 808 
 809 
 810 
 811 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
 822 
 823 
 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 
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 832 
Table 5: Numerical optimization of the experiment: 10 solutions with desirability of 1 833 
 834 

A  
(Dose, g L-1) 

B  
(Initial Pb 

concentration, mg L-1) 

C  
(pH) 

R1  
(Sorption capacity, mg 

g-1) 
0.80 97.33 5.13 97.9469 
1.01 149.53 4.66 72.2151 
0.65 99.96 4.74 95.1846 
0.53 87.31 4.77 97.2562 
0.76 100.15 4.83 96.2751 
0.79 98.81 5.36 97.5142 
0.69 128.46 5.15 85.2497 
1.34 93.27 5.43 98.4342 
1.10 111.00 5.50 93.3238 
0.60 94.23 5.43 98.0828 

 835 
 836 
 837 
 838 
 839 
 840 
 841 
 842 
 843 
 844 
 845 
 846 

847 
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Table 6: Langmuir and Freundlich isotherm model parameters for lead sorption 848 

 849 
 850 
 851 
 852 
 853 
 854 
 855 

856 

Langmuir model Freundlich model 
R2 qm 

(mg g-1) 
KL  

(L mg-1) 
R2 KF  

mg g-1(mg L-1)n 
n 

0.99 346 0.015 0.97 2.6 1.39 
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Table 7: Adsorption capacity of various nanocomposite 857 
 858 

Nanocomposite Adsorption 
capacity, mg/g 

Reference 

AC-HAp  9-14 M.S. Fernando et al.45 
doi:10.1016/j.apsusc.2015.05.092 

SWCNTs/WSh 185.2 S.Saadat et al.46 
doi:10.1016/j.jece.2014.08.024 

Poly(o-phenylenediamine) 
/reduced graphene oxide 

228 L. Yang et al.47 
doi:10.1016/j.apsusc.2014.04.083 

Silica nanopowders/alginate 83.33 R. D. C. Soltani et al.48 
doi:10.1016/j.jtice.2013.09.014 

BT-HAp  346 This study 
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 874 
 875 
 876 

Fig. 1: Schematic of nanocomposite preparation process with changes in morphology 877 
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 899 
 900 
 901 
 902 
 903 
 904 
  905 
 906 
 907 
 908 

 909 
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 911 

 912 
Fig. 2: XRD pattern of nanocomposite for: BT-HAp- (a) pH-3, (b) pH-7 and (c) pH-10  913 
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 963 
Fig. 3: FTIR spectra of the nanocomposite for: (a) pH-3, (b) pH-7, (c) pH-10, (d) after 964 

sorption and (e) HAp Np. 965 
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 987 
 988 
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 1026 
 1027 

Fig. 4: FESEM and EDX spectra: (a) HAp nanoparticles, nanocomposites: (b) BT-HAp-1028 
3, (c) BT-HAp-7, (d) BT-HAp-10 and (e) after sorption process 1029 
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Fig. 5: TEM image of BT-HAp nanocomposite: Bright field images (a-c) with HRTEM 1076 
in inset and (d-f) SAED pattern 1077 

 1078 
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 1079 
 1080 
 1081 
 1082 
 1083 
 1084 
 1085 

 1086 
 1087 
 1088 

Fig. 6: Contour plots demonstrating the effect of independent variable on sorption 1089 
capacity. (a) dose vs. Initial Pb conc., (b) dose vs. pH and (c) initial Pb conc. Vs. pH. 1090 
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 1132 
Fig. 7: Validity of model: Actual vs. Predicted plot  1133 

 1134 
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