RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Graphical Abstract

Red phosphor $Cs_2GeF_6:Mn^{4+}$ synthesized by the cation exchange method exhibits intense red emission with high colour-purity. Warm WLED fabricated with this phosphor emits intense white light under 20 mA current excitation.

RSC Advances

Highly efficient red phosphor Cs₂GeF₆:Mn⁴⁺ for warm white lightemitting diodes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Zhengliang Wang,* Yayun Zhou, Yong Liu, Qiang Zhou,* Lijun Luo, Huiying Tan, Qiuhan Zhang, Guo Chen and Jinhui Peng

Red phosphor $Cs_2GeF_6:Mn^{4+}$ has been synthesized by the cation exchange method. The as-prepared phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDS), atomic absorption spectrophotometer (AAS), thermogravimetry (TG) and differential scanning calorimetry (DSC). Its optical properties were investigated by photo-luminescent spectra (PL), diffuse reflectance spectra (DRS), low-temperature emission spectrum and the luminescence decay curve. The sample doped with 8.78 mol% Mn^{4+} exhibits intense red emission with high thermal stability and appropriate CIE coordinates (x = 0.69, y = 0.31), and its emission intensity is higher than that of commercial $K_2TiF_6:Mn^{4+}$. The white light-emitting diodes (WLEDs) fabricated with this sample exhibits intense warm white-light with low color temperature ($T_c = 3673$ K), high color rendering index ($R_a = 84.9$) and high luminous efficacy (LE = 141.5 lm/W). So $Cs_2GeF_6:Mn^{4+}$ may be a promising red component for warm WLEDs.

Introduction

White light-emitting diodes (WLED) have been extensively used in recent illumination systems, due to their high efficiency, long lifetime, energy-saving and environmental friendly properties.¹⁻³ However, the commercial WLEDs fabricated GaN-based LED with YAG:Ce³⁺ (YAG) have low colour rendering index (R_a) and high colour temperature (T_c), because of the absence of red components in their spectra.⁴⁻⁶ To obtain warm WLEDs, some red phosphors were introduced during the fabrication of YAG-type WLEDs.^{7,8}

Recently, Mn^{4+} doped alkaline hexafluorides, $A_2XF_6:Mn^{4+}$ (A = K, Na and Cs, X = Si, Ge, Zr and Ti), have received a great of interests, since these phosphors show intense red emission with broad excitation band in the blue region. And they could find potential application in warm WLEDs.⁹⁻¹⁸ As it known to all, Mn⁴⁺ is sensitive to surrounding environment and hard to be controlled. Hence. Mn⁴⁺ doped fluoride complexes were prepared by different methods, such as the cation exchange method,⁹ the co-precipitation method,¹⁰ and the wet chemical etching route,¹⁸. For example, in our previous work,¹⁹ we have synthesized Na_2XF_6 : $Mn^{4+}(X = Si, Ge,$ Ti) red phosphors by the co-precipitation method. Cs₂GeF₆ also belongs to the family of alkaline hexafluorides with cubic structure.²⁰ Mn^{4+} doped Cs₂GeF₆ has been synthesized by chemically etching Ge shots in aqueous HF/CsMnO₄ solutions.¹⁸ However, this wet chemical etching route to prepare $Cs_2GeF_6:Mn^{4+}$ has some drawbacks, such as expensive cost of Ge shots, long reaction time and low yield.

In this article, red phosphor $Cs_2GeF_6:Mn^{4+}$ was prepared *via* the cation exchange method with K_2MnF_6 as Mn^{4+} source. The optical properties of this phosphor were investigated in details. The asprepared $Cs_2GeF_6:Mn^{4+}$ shows intense red emission with high colour-purity under blue light excitation. The optical performance of WLEDs can be improved by introducing red phosphor $Cs_2GeF_6:Mn^{4+}$.

Experimental

Synthesis

All source materials in this work, including HF (40 *wt%*), CsF, KMnO₄, GeO₂, H₂O₂ (30 *wt%*) and KHF₂ were of analytical grade and without any purification. Commercial YAG yellow phosphor was purchased from Shenzhen Quanjing Photon Co. Ltd., China. Commercial K₂TiF₆:Mn⁴⁺ red phosphor was purchased from Intematix Corporation. K₂MnF₆ was synthesized according to the reference.²¹ Specifically, 0.40 mol KHF₂ and 10 mmol KMnO₄ were dissolved in HF (40 *wt%*) solution, then 10 ml H₂O₂ (30 *wt%*) was added to precipitate K₂MnF₆ yellow powders with 30 min magnetically stirring. Thereafter, the above mixture was cooled in an ice bath for 30 min and then filtered. The resulting K₂MnF₆ solid product was collected carefully from the cup, washed extensively with methanol several times, and dried at 80 °C for 12 hours.

Cs₂GeF₆:Mn⁴⁺was prepared by the cation exchange method with as-prepared K₂MnF₆. In a typical synthesis, 5 mmol GeO₂ was added into 10 ml HF (40 *wt%*) solution until completely dissolved. Then 0.5 mmol K₂MnF₆ and 11 mmol CsF were put into the colorless transparent solution in order. After 30 min magnetically stirring and a quick cooling process in salt-ice bath, the precipitates were collected, washed with methanol several times and dried at 80 °C. At last, the Cs₂GeF₆:Mn⁴⁺ red phosphor sample was obtained.

Fabrication of LED devices.

The single red LED was fabricated by combing GaN chips (~ 450 nm) with the mixture of red phosphors $Cs_2 \text{GeF}_6{:}\text{Mn}^{4+}$ and

Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500, P. R. China.

[†] Prof. Zhengliang Wang, Email: wangzhengliang@foxmail.com.

Electronic Supplementary Information (ESI) available: [details of the relative concentration, concentration dependence of the relative emission intensity of Mn^{4+} in Cs₂GeF₆: Mn^{4+} and decay curve]. See DOI: 10.1039/x0xx00000x

ARTICLE

epoxy resin. Firstly, the phosphors were mixed with epoxy resin thoroughly and coated on the surface of the GaN chip. Then the device was packaged with epoxy resin and solidified at 150 °C for 1 h. At last red LED was obtained. Similarly, WLEDs were fabricated by coating the mixture of commercial YAG, epoxy resin and $Cs_2GeF_6:Mn^{4+}$ (the ratio of mass is 1:10: m, m = 0, 0.5, 1, 1.5 and 2) on GaN chips.

Characterizations

The crystal structure of the as-prepared product was investigated on a powder X-ray diffraction (XRD) with an X-ray diffractometer using Cu K α radiation (λ = 0.15406 nm) and a graphite monochromator from 15° to 70°. The corresponding surface morphology and structure were observed by a scanning electron microscopy (SEM, FEI Quanta 200 Thermal FE Environment scanning electron microscopy) with an attached energy-dispersive X-ray spectrometer (EDS). Compositional analysis was performed on a Shimadzu AA-6300 atomic absorption spectrophotometer (AAS). The diffuse reflectance ultraviolet-visible spectra (DRS) and decay curve were collected on an Cary 5000 UV-Vis-NIR spectrophotometer and an Edinburgh FLS920 combined fluorescence lifetime and steady state spectrometer with a 450 W Xe lamp and 60 W μ F flash lamp, respectively. Excitation and emission spectra were examined on a Cary Eclipse FL1011M003 (Varian) spectrofluorometer with the excitation and emission slits 2.5, and the xenon lamp was used as excitation source. The low temperature emission spectrum (12 K) was measured by using an Xe lamp connected with a monochromator as source. And the sample temperature was controlled by a temperature controller (YANGMING XMTG-6311). The electro-luminescent (EL) spectra of WLEDs were recorded on a high accurate array spectrometer (HSP6000).

Results and discussion

Structure and morphology

Fig. 1 is the XRD pattern of as-prepared Cs₂GeF₆:Mn⁴⁺, which is consistent with the corresponding JCPDS card of Cs₂GeF₆ (No. 76-1398). This result indicates that the obtained phosphor shares the single phase with the cubic structure (space group of *Fm-3m*, *a* = *b* = *c* = 8.99 Å) of Cs₂GeF₆. A little doping of Mn⁴⁺ does not change the crystal structure of this Cs₂GeF₆ host. Fig. 1(b) illustrates the crystal structure of Cs₂GeF₆ unit cell viewed in [110] direction, each Ge⁴⁺ is coordinated with six F⁻ to form a regular GeF₆²⁻ octahedron. Because Mn⁴⁺ not only has the same valence state as Ge⁴⁺, but also the identical ionic radius with Ge⁴⁺ (0.53 Å, CN = 6 vs. 0.53 Å, CN = 6), Mn⁴⁺ in Cs₂GeF₆:Mn⁴⁺ will occupy the site of Ge⁴⁺ in the centre of octahedron.

Fig.1 (a) XRD pattern of the $Cs_2GeF_6:Mn^{4+}$ and (b) crystal structure of Cs_2GeF_6 unit cell viewed in [110] direction

The morphology and composition of the obtained Cs₂GeF₆:Mn⁴⁺ were examined by SEM and EDS analysis, and the representative results are shown in Fig. 2. Obviously, the obtained products exhibit an irregular morphology with smooth surfaces. Closely inspecting the particle size distribution among them, it can be found that the $Cs_2GeF_6:Mn^{4+}$ product displayed an apparent larger size (~ 30 μm).Compared with Cs_2GeF_6:Mn^{4+} prepared by chemically etching Ge shots,¹⁸ obvious edges and corners can be found from our sample, this result shows that the sample has been well crystallized.²² Fig. 2b is the corresponding EDS spectrum. These peaks belong to F, Ge, Cs, and Mn elements, respectively. This result indicates that Mn element has been indeed doped into the matrix lattice to occupy the lattice site of Ge. The peak of Si element in Fig. 2b is due to the silicon wafer used during the measurement of SEM and EDS. Moreover, the absence of oxygen peak in these EDS spectra implies that there is no MnO₂ produced during this precipitation process.23

Fig.2 (a) SEM image and (b) EDS spectrum of the Cs₂GeF₆: Mn⁴⁺

Optical properties

The diffuse reflectance spectra of Cs₂GeF₆ and Cs₂GeF₆:Mn⁴⁺ are shown in Fig. 3. Comparing with Cs₂GeF₆ host, Cs₂GeF₆:Mn⁴⁺ exhibits two obvious absorption bands at ~ 350 nm and ~ 455 nm in Fig. 3b, which are due to the absorption of Mn⁴⁺ in Cs₂GeF₆:Mn⁴⁺. Fig. 3c is the excitation spectrum of Cs₂GeF₆:Mn⁴⁺ by monitoring 633 nm emission. Two broad excitation bands located at ~ 350 nm and ~ 455 nm, which can be assigned to the spin-allowed transitions of Mn⁴⁺ from the ground state ⁴A_{2g} to the excited states ⁴T_{1g} and ⁴T_{2g}, respectively. This result is in agreement with that of DRS spectrum of Cs₂GeF₆:Mn⁴⁺. The strongest excitation band of Cs₂GeF₆:Mn⁴⁺ is located at ~ 455 nm, which just meets with the emission wavelength ($\lambda = ~ 450$ nm) of GaN blue LED chip.

Fig. 3 Diffuse reflectance spectra of (a) Cs_2GeF_6 and (b) $Cs_2GeF_6:Mn^{4+}$, (c) excitation spectrum of $Cs_2GeF_6:Mn^{4+}$

Fig. 4 is the emission spectra of Cs₂GeF₆:Mn⁴⁺ excited by 455 nm light at 293 K and 12K. The as-prepared sample exhibited intense red emission at 12 K, which is due to the spinforbidden ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ transition of Mn⁴⁺. The series of emission peaks located at ~ 615, 624, 633, 636, 649 nm are ascribed as the transitions of the v_6 , zero phonon line (ZPL), v_6 , v_4 , v_3 vibronic modes, respectively.¹⁸ Weaker ZPL emission of the phosphor can be found from the emission spectrum at 12 K. At 293 K, the ZPL emission of Cs₂GeF₆:Mn⁴⁺ disappears, and new emission peak (v_4) at 611 nm appears in the emission spectrum. This result is in accordance with that reported by S. Adachi.¹⁸ Bright red light can be observed form this sample excited by ~ 460 nm blue light. The CIE (Commission Internationale de l'Eclairage, International Commission on Illumination) chromaticity coordinates according to the emission spectrum of $Cs_2GeF_6:Mn^{4+}$ are calculated to be (x = 0.69, y = 0.31), which are very close to the NTSC (National Television Standard Committee) standard values for red (x =0.67, y = 0.33). To ensure the luminous efficiency (LE) of the as-prepared phosphor, the luminescent property of commercial $K_2 Ti F_6{:} {\rm Mn}^{4+}$ red phosphor was investigated, compared with that of $Cs_2GeF_6:Mn^{4+}$. Commercial $K_2TiF_6:Mn^{4+}$ share the similar emission spectrum with that of Cs_2GeF_6 :Mn⁴⁺, except for little blue-shift of emission positions. The emission intensity of as-prepared $Cs_2GeF_6:Mn^{4+}$ is about 1.14 times than that of commercial K₂TiF₆:Mn⁴⁺

ARTICLE

ARTICLE

Fig. 4 Emission spectra of the $Cs_2GeF_6:Mn^{4+}$ and $K_2TiF_6:Mn^{4+}$ (a) at 12 K and (b) 293 K.

In order to investigate the influence of Mn⁴⁺ content on the PL properties, a series of Cs₂GeF₆:Mn⁴⁺ prepared with the different molar ratios of GeO₂ and K₂MnF₆ were synthesized, and their emission spectra are shown in Fig. 5. All the emission spectra are of similar sharps with five main emission peaks from 600 nm to 650 nm. With the increasing of K₂MnF₆ consumption, the emission intensity of $Cs_2GeF_6:Mn^{4+}$ is increasing. When the molar ratio of GeO_2 and K_2MnF_6 is 10:1, the as-obtained sample is of the strongest emission intensity. In order to confirm the concentration quenching phenomenon of Mn^{4+} in $Cs_2GeF_6:Mn^{4+}$, atomic adsorption spectrophotometer was adopted to measure the relative concentration of ${\rm Mn}^{4+}$, and the results were presented in Table S1. With the increasing of K₂MnF₆ consumption, the concentration of Mn^{4+} in $Cs_2GeF_6:Mn^{4+}$ is also increasing. Fig. S1 is concentration dependence of the relative emission intensity of $Mn^{4+4}A_{2g} \rightarrow {}^{4}T_{2g}$ transition in Cs₂GeF₆:Mn⁴⁺. When the concentration of Mn⁴⁺ is 8.78 %, the emission intensity is the strongest among these phosphors.

According to Dexter and Schulman,²⁴ the critical concentration of the concentration quenching can be used as a measure of the critical distance (R_c) of energy transfer. The R_c values can be practically calculated using the following equation:

$$R_c = 2 \left(\frac{3V}{4\pi x_c N}\right)^{\frac{1}{3}}$$
[1]

where x_c is critical concentration, N is the number of Mn^{4+} ions in the unit cell and V is the volume of the unit cell. In this case, x_c is 0.0878, N is 4, and V is 726.57Å³. The calculated R_c value is about 15.8 Å for substitution of Mn^{4+} at the Ge^{4+} site. From this value, the critical distance (R_c) of energy transfer was larger than the distance (R) between the Mn^{4+} ions (R value is about 1.7980 Å, seeing ICSD 35547); as it can be seen that $R < R_c$, it is presumed that energy transfer between Mn^{4+} ions dominate in the case of $Cs_2GeF_6:Mn^{4+}$ phosphor.

Fig. 5 Emission spectra of $Cs_2GeF_6:Mn^{4+}$ prepared with the different molar ratios of GeO_2 and K_2MnF_6

Since LEDs are fabricated and work usually at a temperature below 150 °C,²⁵ the thermal stability and the temperature dependence on luminous efficiency are important parameters for phosphors. As shown in Fig. 6, TG and DSC curves of $Cs_2GeF_6:Mn^{4+}$ show that its thermal decomposition

Fig. 6 (a) TG and (b) DSC curves of Cs₂GeF₆:Mn⁴⁺

Fig.7 exhibits the emission spectra of Cs₂GeF₆:Mn⁴⁺ under different temperature. All the emission peaks are in the same positions with the strongest emission peak at ~ 633 nm, no obvious emission peak position shift can be found. The inserted figure in Fig.7 is the temperature dependence of the relative emission intensity of Cs₂GeF₆:Mn⁴⁺. The integrated intensity of the sample at 140 °C is still higher than that of the sample at room temperature, which indicates that this red phosphor shared high thermal stability. And this result is in according with that of Rb₂SiF₆:Mn^{4+, 22}

Fig.7 Emission spectra of $Cs_2GeF_6:Mn^{4+}$ under different temperature.

Fig. S2 shows the decay curve for ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ (633 nm) of the Mn⁴⁺ in Cs₂GeF₆:Mn⁴⁺ red phosphor. This decay curve is well fitted into single-exponential function, and the lifetime τ value of Cs₂GeF₆:Mn⁴⁺ is 8.8 ms. This result complements the experimental data of previous reports prepared by other methods. **Performance of LED Devices**

Fig. S3 is the EL spectra of the LED chip and red LED based on $Cs_2GeF_6:Mn^{4+}$ under 20 mA current excitation. The emission of GaN LED chip is at ~ 450 nm, and its half-peak width is about 20 nm. Compared with curve a, the emission of LED chip gets

weak in curve b, indicating that $Cs_2GeF_6:Mn^{4+}$ can efficiently absorb the emission of LED chip. The red emission between 600 and 650 nm is due to the ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ transition of Mn⁴⁺ in $Cs_2GeF_6:Mn^{4+}$. Bright red light can be observed from this red LED based on Cs₂GeF₆:Mn⁴⁺. Fig. 8 is the EL spectra of WLEDs with YAG. The broad band in blue region is due to the emission of GaN chip, and the greenish yellow emission is due to the emission of YAG and different amount of Cs₂GeF₆:Mn⁴⁺. Since the emission of YAG in red regions is very weak, this WLED based on YAG exhibits high T_c (6090 K) and low R_a (72.7). With the introduction of $Cs_2GeF_6:Mn^{4+}$, red emission peaks can be observed obviously at ~ 615, 624, 633, 636, 649 nm, which are due to the ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ of Mn⁴⁺. And the emission of LED chip turns weaker. The related parameters of these WLED are list in Table 1. When the amount of $Cs_2GeF_6:Mn^{4+}$ was adjusted from 5 % to 20 %, the examined T_c of the WLEDs was dropped from 5193 to 3673 K, and Ra was improved from 75.2 to 84.9. This performance of the WLEDs can satisfy the requirement of indoor lighting. The corresponding CIE coordinates were shown in Fig. 9, which revealed that the T_c moved to warm white region with the increasing of red colour component.¹⁰ According the survey of X.Y. Chen, et.al, warm WLEDs based on red phosphors doped Mn⁴⁺ with a luminous efficacy higher than 90 lm/W had never been achieved before they fabricated the warm WLED based on $K_2 TiF_6: Mn^{4+}$ (LE = 124 lm/W)under 20 mA current excitation.⁹ In this work, we fabricated highperformance warm WLED based on $Cs_2GeF_6:Mn^{4+}$ with low T_c (3673 K), high R_a (84.9), and high LE (141.5 lm/W). Bright white light can be observed by naked eyes from this WLED, when it was excited with 20 mA current. These results demonstrated that this red phosphor share excellent PL properties, which can find potential application in warm WLEDs.

Fig. 8 EL spectra of WLEDs based on YAG and different amount of Cs₂GeF₆:Mn⁴⁺ udner 20 mA current excitation

Table 1 Performance of the WLEDs with different amount of $Cs_2GeF_6:Mn^{4+}$ at 20 mA forward current.

Device	Cs ₂ GeF ₆ :Mn ⁴⁺ (wt/%)*	<i>Т_с</i> (К)	Ra	CIE(x, y)	LE (Im/W)
а	0	6090	72.7	(0.321 <i>,</i> 0.329)	158.9
b	5	5193	75.2	(0.340 <i>,</i> 0.344)	153.9
с	10	4567	77.2	(0.358, 0.359)	147.2

Page 6 of 7

Λ.		•	г	1	r		
 ٦	г	Γ.		۰.	-	۰.	l

d	15	4081	82.0	(0.377, 0.375)	144.3
e	20	3673	84.9	(0.395 <i>,</i> 0.383)	141.5

* wt/%= $\frac{m_{(Cs_2GeF_6:Mn^{4*})}}{100}$ ×100 % m (epoxy resin)

Fig. 9 Chromaticity coordinates of WLEDs fabricated with different amount of Cs₂GeF₆:Mn⁴⁺ in CIE 1931

Conclusions

Red phosphor $Cs_2GeF_6:Mn^{4+}$ was prepared by the cation exchange method, and their structure, morphology and optical properties were investigated. The as-prepared phosphor $Cs_2GeF_6:Mn^{4+}$ with high thermal stability shows the intense and broad excitation band in blue-light region, and red emission with appropriate CIE coordinates (x = 0.69, y = 0.31). The WLEDs fabricated with Cs₂GeF₆:Mn⁴⁺ and commercial YAG show exhibits intense white light with good optical performances (T_c = 3673 K, R_a = 84.9, LE = 141.5 lm/W). Hence, $Cs_2GeF_6:Mn^{4+}$ is a promising red phosphor for warm WLEDs.

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 21261027), Natural Science Foundation of Yunnan Province, and Department of Yunnan Education (Grants 2014FB147 and 2014Y253), the special-zone projection from Yunnan Minzu University (No.2015TX01), and Program for Innovative Research Team (in Science and

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Technology) in University of Yunnan Province (2011UY09) and Yunnan Provincial Innovation Team (2011HC008).

Notes and references

- 1 S. Pimputkar, J. S. Speck, S. P. DenBaars and S. Nakamura, Nat. Photonics, 2009, **3**, 180.
- 2 C. C. Yang, H. Y. Tsai and K. C. Huang, opt. Rev., 2013, 20, 232.
- 3 H. Daicho, T. Iwasaki, K. Enomoto, Y. Sasaki, Y. Maeno, Y. Shinomiya, S. Aoyagi, E.Nishibori, M. Sakata, H. Sawa, S. Matsuishi and H. Hosono, *Nat. Commun.*, 2012, **3**, 1132.
- 4 C. C. Lin and R. S. Liu, J. Phys. Chem. Lett., 2011, 2, 1268.
- 5 H. S. Jang; W. B. Im, D. C. Lee, D. Y. Jeon and S. S. Kim, J. Lumin., 2007, **126**, 371.
- 6 X. J. Wang, G. H. Zhou, H. L. Zhang, H. L. Li, Z. J. Zhang and Z. Sun, J. Alloys Compd., 2012, **519**, 149.
- 7 K. A. Denault, A. A. Mikhailovsky, S. Brinkley, S. P. DenBaars and R. Seshadri, J. Mater. Chem. C, 2013, 1, 1461.
- 8 M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung and D. H. Yoon, *Mater. Lett.*, 2015, **141**, 27.
- H. M. Zhu, C. C. Lin, W. Q. Luo, S. T. Shu, Z. G. Liu, Y. S. Liu, J. T. Kong, E. Ma, Y. G. Cao, R. S. Liu and X. Y. Chen, *Nat. Commun.*, 2014, 5, 4312.
- L. L.Wei, C. C. Lin, M. H. Fang, M. G. Brik, S. F. Hu, H. Jiao and R. S. Liu, *J. Mater. Chem. C*, 2015, **3**, 1655.
- 11 L. F. Lv, Z. Chen, G. K. Liu, S. M. Huang and Y. X. Pan, J. Mater. Chem. C, 2015, 3, 1935.
- 12 X. Q. Li, X. M. Su, P. Liu, J. Liu, Z. L. Yao, J. J. Chen, H. Yao, X. B. Yu and M. Zhan, *CrystEngComm.*, 2015, **17**, 930.
- 13 S. Adachi and T. Takahashi, J. Appl. Phys., 2009, 106, 013516.
- 14 Y. K. Xu and S. Adachi, J. Appl. Phys., 2009, 105, 013525.
- 15 C. X. Liao, R. P. Cao, Z. J. Ma, Y. Li, G. P. Dong, K. N. Sharafudeen and J. R. Qiu, J. Am. Ceram. Soc., 2013, 96, 3552.
- 16 J. H. Oh, H. Kang, Y. J. Eo, H. K. Park and Y. R. Do, *J. Mater. Chem. C*, 2015, **3**, 607.
- 17 R. Kasa and S. Adachi, J. Appl. Phys., 2012, 112, 013506.
- 18 Y. Arai and S. Adachi, J. Electrochem. Soc., 2011, 158, J179
- 19 Z. L. Wang, Y. Liu, Y. Y. Zhou, Q. Zhou, H. Y Tan, Q. H, Zhang and J. H. Peng, *RSC Adv.*, 2015, **5**, 58136.
- 20 M.G. Brik, Solid State Commun., 2010, 150, 1529.
- 21 W.G. Palmer, *Experimental Inorganic Chemistry*, Cambridge University Press, 1954, pp. 484.
- 22 M. H. Fang, H. D. Nguyen, C. C. Lin and R. S. Liu, J. Mater. Chem. C, 2015, 3, 7277.
- 23 H. D. Nguyen, C. C. Lin, M. H. Fang and R. S. Liu, J. Mater. Chem. C, 2014, 2, 10268.
- 24 D. L. Dexter, J. H. Schulman, J. Chem. Phys., 1954, 22, 1063.
- 25 H. Wang, P. He, S. Liu, J. Shi and M. Gong, *Appl. Phys. B*, 2009, **97**, 481.

RSC Advances