RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

RSC Advances (RA-ART-08-2015-016382)

Shaping of Bacterial Community Structure in Microbial Fuel Cells by Different Inocula

Xiaoxue Mei^a, Changhong Guo^{a, b*}, Bingfeng Liu^b, Yu Tang^b, Defeng Xing^{b*}

^aCollege of Life Science and Technology, Harbin Normal University, Harbin 150025,

China

bState Key Lab of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China *Corresponding author. School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China

E-mail address: kaku_2008@163.com; dxing@hit.edu.cn

Abstract

To understand shaping community structure of the anode biofilms is important for enhancing performance of microbial fuel cell (MFC). The activated sludge (AS), garden soil (GS), wastewater (WW) and river sediment (RS) were inoculated into single-chamber MFCs to assess the effects of inocula on the power outputs and microbial communities of MFCs. MFCs with different initial inocula showed the differences in acclimation time and power densities. MFC-RS (river sediment inoculum) obtained a maximum power density (744.8mW/m²), followed by MFC-AS, MFC-GS and MFC-WW. Illumina Miseq sequencing of 16S rRNA gene and comparative analyses indicated that microbial community structure of established anode biofilms obviously differentiated from that in initial inocula. The principal component analysis (PCA) proved that MFC-AS and MFC-GS were closely clustered and were separated from MFC-WW and MFC-RS. The majority of dominant populations of MFC-RS was affiliated with *Azoarcus* (45.20%). The most dominant

genus belonged to *Flavobacterium* (14.18%) in MFC-AS, *Geobacter* (14.40%) in MFC-GS and *Azovibrio* (11.11%) in MFC-WW, respectively. This study implies that different inocula influenced substantially shaping community structure of the anode biofilms of MFCs.

Keywords: Microbial fuel cells; Inoculum; Microbial community structure; Exoelectrogen; High throughput sequencing

1. Introduction

The microbial fuel cell (MFC) is a promising technology due to simultaneously pollutant removal and energy production from wastewater or solid waste ¹. Exoelectrogenic microorganisms oxidize organic matters and transfer extracellularly electron to the electrode, this environmentally-friendly process produces electricity without the combustion of fossil fuels ^{2, 3}. Understanding electron transfer of exoelectrogenic microorganisms and optimizing MFC configurations are important for enhancing power generation of MFC. In the previous studies, researchers made effort to improve the power output at many aspects. Simplified MFC without proton exchange membrane had higher power generation due to a lower internal resistance ⁴. Electrode materials (carbon felt, graphite fiber, carbon cloth et.al.), operational conditions include substrate, temperature, pH and external resistance etc. have been extensively studied ⁵⁻¹¹. In order to use the electrical current, different types of microbial electrochemical systems (MESs) derived from MFC such as microbial electrolysis cell (MEC), microbial desalinization cell (MDC) and microbial reverse-electrodialysis cell (MRC) were developed 12-15. However, the capacity of extracellular electron transfer of microbial biofim is key for improving performance of MESs ¹⁶.

Extracellular electron transfer of fixe-configuration microbial electrochemical systems (MES) depends upon community composition of biofilm. Niche-based deterministic factors such as temperature, pH and light conditions play significant role in shaping microbial community structure of MESs ¹⁷⁻¹⁹. A recent study demonstrated that stochastic assembly plays a dominant role in determining community structure in MECs ²⁰. Both deterministic and stochastic factors play important role in shaping microbial community structure of biofilm in MES. Understanding relationship between ecosystem function and community structure is important for improving MES configuration and enhancing electron transfer.

Although some exoelectrogenic bacteria have been isolated from MFCs, understanding microorganism capable of extracellular electron transfer in natural environment is still deficient ². Community analysis proves that more diverse populations exist in the electrode biofilm. Exploring unknown exoelectrogenic microbes in natural environmental or engineered system will facilitate an illuminating insight into electron transfer. Some recent studies showed that interspecific interaction between exoelectrogens and non-exoelectrogens in MFCs for soil bioremediation ²¹⁻²³. Wastewater or activated sludge is used frequently as inoculum while mixed culture MFC has been developed as novel wastewater treatment technology ¹. Almost all previous studies on MFC inoculum were performed using two-chamber MFCs. Inocula (wastewater, waste sludge, defined mixed- or pure culture) influenced

obviously power production and internal resistance of two-chamber MFCs ^{10, 24, 25}. In order to enhance phenanthrene degradation in MFCs, community composition of electrode was shaped by supplementing *Pseudomonas aeruginosa* into mixed cultures ²⁶

A recent study analyzed microbial community of MFC with two kinds of wastewater inoculum using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene ⁹. Community analysis by conventional molecular tool such as DGGE and clone libraries of 16S rRNA gene provides incomplete information due to limited throughput and resolution. Although previous studies showed that inoculum influenced power generation of MFC, how the initial inoculum influence shaping community structure is still yet unknown based on high throughput sequencing. Community structure of microbial biofilm may be shaped by different initial inoculum, which will result in different electricity generation of MFC.

In this study, the effect of different inocula from natural consortia and wastewater on performance of microbial fuel cell was investigated. The bacterial communities of anode biofilm of MFC and initial inocula were assessed by sequencing 16S ribosomal RNA (rRNA) gene amplicons with the Illumina MiSeq technology.

2 Materials and methods

2.1 MFC configuration and operation

Cubic single-chamber MFC was made from polymethylmethacrylate (PMMA) (cylindrical chamber volume of 25 ml) as previous description ⁶. Graphite fiber brush

was used as anode ²⁶. The air-cathode was made from carbon cloth (7 cm² projected area) with a layer of platinum catalyst and three polytetrafluoroethylene (PDFE) diffusion layers ⁵.

Four types of initial inocula were used in MFCs. Natural consortia of river sediment (RS) were obtained from the Songhua River in Harbin. Garden soil (GS) was obtained from shrubs in Harbin. Wastewater (WW) and activated sludge (AS) were obtained from primary clarifier and secondary sedimentation tank of Wenchang Wastewater Treatment Plant of Harbin, respectively. The MFC reactors were fed a nutrient medium containing 1 g/L sodium acetate as substrate in a 50 mM phosphate buffer solution (PBS)(11.55 g Na₂HPO₄·12H₂O, 2.77 g NaH₂PO₄·2H₂O, 0.31 g NH₄Cl and 0.13 g KCl) ²⁸ amended with 1.25 ml/L mineral solution and 0.5 ml/L vitamin solution. All MFC Reactors were operated in fed-batch mode, and every batch cycle was regarded as a period. The solution was replaced when the voltage decreased lower than 0.05 V. All MFC reactors were operated in a constant temperature room set at 30 °C.

2.2 Calculations and analyses

The cell voltage across an external resistor of 1000 Ω in MFC was collected automatically every 30 min by a multichannel data acquisition system (Model 2700 with 7702 module, Keithley Instruments Inc., USA) and then connected to a personal computer via PCI interface. The polarization curve was measured by changing the external resistance from 3000 to 50Ω . Power density and coulombic efficiency (CE) were calculated as previously described ⁶.

2.3 Illumina sequencing analysis of 16S rRNA gene amplicons

After the MFC steadily operated more than 2 month, brush anodes were cut and fragmented by sterile scissors ¹⁷. Genomic DNA of anode biofilm and initial inocula was extracted using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) according to the manufacturer's instructions. Bacterial 16S rRNA genes targeting the hypervariable regions of V4~V5 were amplified using a pair of universal primers as follows: 515F (5'-GTGCCAGCMGCCGCGG-3') and 907R (5'-CCGTCAATTCMTTTGAGTTT-3'). Individual samples were barcoded for pooling multiple samples in one run of an Illumina Miseq (Illumina, San Diego, CA)

2.4 Analysis of 16S rRNA sequencing data

The resultant sequencing reads were analyzed using using Quantitative Insights into Microbial Ecology (QIIME) software (http://qiime.org) ²⁹. Operational taxonomic units (OTUs) were determined at 97% similarity levels using UPARSE software (http://drive5.com/uparse/). A representative sequence from each OTU was selected for taxonomic identification using the Silva database (http://www.arb-silva.de) and Ribosomal Database Project (RDP) classifier (http://rdp.cme.msu.edu) with a 0.80 confidence threshold. Diversity index, the species richness of the Chao1 estimator and the ACE estimator of each sample was generated in the MOTHUR (http://www.mothur.org). The heat map of genus level was generated using a hierarchical clustering algorithm. Principal component analysis (PCA) and hierarchical cluster analysis were performed to visualize and interpret difference in microbial community structure between data set.

3. Results

3.1 Power production of MFCs with different inocula

All MFCs showed voltage production after acclimation, there was obvious difference in lag phase after MFCs were inoculated with different inocula (Fig.1). A maximum peak voltage of MFC with active sludge inoculum (MFC-AS) reached more than ~540 mV after 4 day faster than that obtained by other MFCs, suggesting that mixed culture from sludge inoculum may have a high vitality. After 6 days MFC with river sediment inoculum (MFC-RS) and MFC with wastewater inoculum (MFC-WW) reached the maximum peak voltage except MFC with garden soil inoculum (MFC-GS). A small proportion of exoelectrogenic microorganism in the soil ecosystem may result in longer lag growth. When all MFC reactors produce reproducible current, the maximum power density of 744.8±11.7 mW/m² was obtained by MFC-RS, with 666.3±19.1 mW/m² of MFC-AS, 654.7±30.1 mW/m² of MFC-GS and 536.1±6.3 mW/m² of MFC-WW (Fig. 2).

3.2 COD removal and coulombic efficiency

All MFCs with different inocula had similar COD removal rates, and the maximum COD removal rate of 95.7% was obtained by MFC-AS, followed by MFC-WW (95.4%), MFCs-GS (94.3%) and MFC-RS (93.6%) after operating for 20 days. Although the MFC-AS achieved the highest COD removal rate, but not the maximum power density, suggesting that some non-exoelectrogens in anode biofilm resulted in lost energy production. The coulombic efficiency (CE) of MFC-AS, MFC-RS, MFC-WW and MFC-GS were 27.4%, 28.6%, 29.8% and 31.2%,

respectively.

3.3 Bacterial diversity of the anode biofilms and initial inocula

All high-quality reads of 98263 (average length of 402 bp) were obtained from the Illumina Miseq sequencing of 16S rRNA gene for identifying operational taxonomic units (OTUs) of eight individual samples (Table 1). A total 362 (MFC-AS), 169 (MFC-RS), 164 (MFC-GS) and 124 OTUs (MFC-WW) were determined at level of 97% similarity. Initial inocula showed higher relative abundance of OTUs, with 594 (GS), 478 of (AS) and 403 (RS) OTUs except 156 OTUs (WW). The species richness of MFC biofilms was lower than that of original inocula expect MFC-WW biofilm. GS inoculum had the greatest species richness than WW, RS and AS inocula. MFC-AS had the highest diversity (Shannon index, 4.04 and Simpson, 0.0429), followed by MFC-GS, MFC-WW, MFC-RS (Table 1).

3.4 Comparative analysis of microbial community structures

Hierarchical clustering and heatmap analysis were used to identify the differences of eight bacterial community structures (Fig. 3). The heatmap based on genus level showed clear distinctions of community structure between each anode biofilm and inoculum. Hierarchical cluster analysis of OTUs (on the top of heatmap) indicated that the anode biofilms of MFCs differentiated from initial inocula, suggesting obvious shaping community structure existed after enrichment of exoelectrogens in MFCs. The principal component analysis (PCA) showed that the anode biofilms and inocula were well separated, with 21.91% and 19.28% variation explained by PC1 and PC2, respectively (Fig. 4). MFC-AS and MFC-GS were closely

clustered and were separated from MFC-WW and MFC-RS.

3.5 Community compositions of the anode biofilms and initial inocula

In terms of the assignment at the phylum level, *Proteobacteria* and *Bacteroidetes* were predominant in all communities, followed by *Firmicutes* except in GS and AS inocula. *Proteobacteria* apparently occupied the most composition of the sequences were 72% (MFC-RS), 69.33% (MFC-WW), 51.79% (MFC-GS), 34.42% (MFC-AS), 54.39% (WW), 22.05% (GS), 41.41% (RS) and 38.47% (AS), respectively (Fig. 5(a)). Among all phyla, *Bacteroidetes* accounted for 20.12% (MFC-RS), 11.29% (MFC-WW), 16.81% (MFC-GS), 35.99% (MFC-AS), 28.7% (WW), 15.05% (GS), 30.49% (RS) and 21% (AS), respectively.

The majority of classes or subclasses belonged to *Betaproteobacteria* in MFC-RS (55.80%), MFC-GS (20.77%), MFC-WW (33.66%), AS (27.53%) and RS (19.45%) (Fig. 5(b)). The predominant classes were affiliated with *Flavobacteria* (19.22%) in MFC-AS, *Acidobacteria* in GS (11.63%), *Epsilonproteobacteria* (29.26%) and *Bacteroidia* (27.59%) in WW, respectively.

The difference in dominant populations was more distinct at genus level (Fig. 6). The taxonomic assignments of genera were significantly shifted after the anode biofilms were enriched from different initial inocula. The populations accounted for less than 4% of relative abundance were designated as "others". The majority of dominant populations in MFC-RS were affiliated with *Azoarcus* (45.20%). The dominant populations in MFC-AS belonged to *Flavobacterium* (14.18%), *Stenotrophomonas* (11.96%) and *Geobacter* (6.73%), compared to *Geobacter*

(14.40%) and Victivallis (8.62%) in MFC-GS, and Azovibrio (11.11%), Alishewanella (9.43%) and Pseudomonas (7.97%) in MFC-WW.

4. Discussion

The effect of inocula (natural consortia and mixed culture) on performances of single-chamber air-cathode MFCs was investigated. Our results were similar with previous reports that showed effect of inoculum types on the power density of MFCs ³⁰. At the beginning of start-up, MFCs inoculated by activated sludge and wastewater inocula showed higher peak voltages, compared to MFCs with RS and GS inocula (Fig. 1). After several cycles, the peak voltage of MFC-RS gradually increased. Compared to other MFCs, MFC-RS obtained a maximum power density. Our results implied that exoelectrogens inhabited widely in natural habitat and wastewater treatment bioreactor result in to obtain easily inoculum for MFC.

Community analyses based on Illumina Miseq sequencing of 16S rRNA gene indicated that different inocula resulted in the difference in community composition in the anode biofilms ³¹. PCA analysis proved that MFC-AS and MFC-GS were closely clustered and were separated from MFC-WW and MFC-RS, which also obtained similar maximum power densities (Fig. 3). These results implies that the difference in power densities may arise from different community structure of anode biofilms. Microbial community structures of biofilms in MFCs were shaped by inocula, however stochastic factors may also play a role in the biofilm establishment as previous description ²⁰.

Although MFC-RS obtained the maximum power density, the population

diversity of anode biofilm was low (Table 1), presumably exoelectrogens were predominant in the community. The relative abundance of *Geobacter* (well-known exoelectrogen) in MFC-RS only accounted for 1.46%, compared with 6.73% (MFC-AS) and 14.40% (MFC-GS)(Fig. 6). A nitrogen fixing bacterium *Azoarcus* (45.20%) was predominant genus in MFC-RS, which was found as the dominant population in the anode biofilm in previous report ³². The capacity for extracellular electron transfer of *Azoarcus* should be further tested in the future. The functions of uncultured and low abundance bacteria are unclear in anode biofilms, suggesting the large quantities of unknown exoelectrogens may be present in the natural environment.

Conclusions

The effect of different inocula including river sediment, activated sludge, garden soil and wastewater on microbial communities and performances MFCs was investigated. MFC with river sediment inoculum (MFC-RS) achieved the maximum power density, followed by MFC-AS, MFC-GS and MFC-WW. Community analyses indicated that different inocula resulted in the difference in community composition in the anode biofilms. The dominant populations of anode biofilms of differentiated obviously from that in the initial inocula. The principal component analysis (PCA) of OTUs showed that MFC-AS and MFC-GS were closely clustered and were separated from MFC-WW and MFC-RS. The results confirmed that the different initial inocula influenced community structures and power generation of MFCs.

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos.

31270004, 51422805), the State Key Laboratory of Urban Water Resource and

Environment (Harbin Institute of Technology)(No. 2013DX13), the Fundamental

Research Funds for the Central Universities (No. HIT.BRETIII. 201232).

Reference

- 1. H. Liu, R. Ramnarayanan and B. E. Logan, *Environ. Sci. Technol.*, 2004, **38**, 2281-2285.
- 2. B. E. Logan and J. M. Regan, *Trends Microbiol.*, 2006, **14**, 512-518.
- 3. D. R. Bond and D. R. Lovley, *Appl. Environmen. Microbiol.*, 2003, **69**, 1548-1555.
- 4. H. Liu and B. E. Logan, Environ. Sci. Technol., 2004, 38, 4040-4046.
- 5. S. Cheng, H. Liu and B. E. Logan, *Electrochem. Commun.*, 2006, **8**, 489-494.
- 6. J. Jia, Y. Tang, B. Liu, D. Wu, N. Ren and D. Xing, *Bioresource Technol.*, 2013, **144**, 94-99.
- 7. Y. Ahn, M. C. Hatzell, F. Zhang and B. E. Logan, *J. Power Sources*, 2014, **249**, 440-445.
- 8. I. Ieropoulos, J. Winfield and J. Greenman, *Bioresource Technol.*, 2010, **101**, 3520-3525.
- 9. J. Yu, Y. Park and T. Lee, *Bioproc. Biosys. Eng.*, 2014, **37**, 667-675.
- 10. A. L. Vázquez-Larios, O. Solorza-Feria, G. Vázquez-Huerta, F. Esparza-García, N. Rinderknecht-Seijas and H. M. Poggi-Varaldo, *Int. J. Hydrogen Energy*, 2011, **36**, 6199-6209.
- 11. F. Zhang, T. Saito, S. A. Cheng, M. A. Hickner and B. E. Logan, *Environmen. Sci. Technol.*, 2010, 44, 1490-1495.
- 12. H. M. Wang and Z. J. Ren, Biotechnol. Adv., 2013, 31, 1796-180.
- 13. R. D. Cusick, M. Hatzell, F. Zhang and B. E. Logan, *Environ. Sci. Technol.*, 2013, 47, 14518-14524.
- 14. F. Harnisch and U. Schroder, *Chem. Soc. Rev.*, 2010, **39**, 4433-4448.
- 15. H. M. Wang, J. D. Park and Z. J. Ren, *Environ. Sci.Technol.*, 2015, **49**, 3267-3277.
- 16. Y. Kim and B. E. Logan, Environ. Sci. Technol., 2011, 45, 5834-5839.
- 17. D. Xing, S. Cheng, J. M. Regan and B. E. Logan, *Biosen. Bioelectron.*, 2009, **25**, 105-111.
- 18. L. Lu, N. Ren, X. Zhao, H. Wang, D. Wu and D. Xing, *Energy Environ. Sci.*, 2011, **4**, 1329-1336.
- 19. Z. He, Y. L. Huang, A. K. Manohar and F. Mansfeld, *Bioelectrochemistry*, 2008, 74, 78-82.
- 20. J. Zhou, W. Liu, Y. Deng, Y. Jiang, K. Xue, Z. He, J. Van Nostrand, L. Wu, Y. Yang and A. Wang, *mBio*, 2013, **4**, e00584-00512.
- 21. L. Lu, T. Huggins, S. Jin, Y. Zuo and Z. J. Ren. *Environ. Sci. Technol.*, 2014, **48**, 4021-4029.

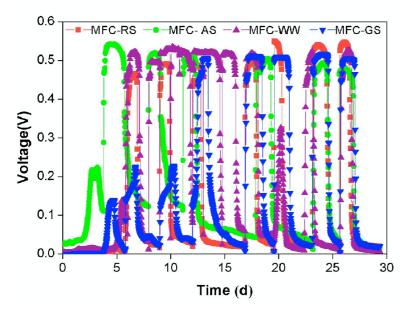

- 22. L. Lu, D. Xing and Z. J. Ren, *Bioresource Technol.*, 2015, 195, 115-121.
- 23. X. Li, X. Wang, Z. J. Ren, X. Zhang, N. Li and Q. Zhou, *Chemosphere*, 2015, **141**, 62-70.
- 24. A. Yadav, P. Panda and B. Bag, *Energy Source, Part A.*, 2013, **35**, 1828-1835.
- 25. A. S. Mathuriya, *Environ. Technol.*, 2013, **34**, 1957-1964.
- 26. O. Adelaja, T. Keshavarz and G. Kyazze, Eng. Life Sci., 2014, 14, 218 228.
- 27. B. E. Logan, S. Cheng, V. Watson and G. Estadt, *Environ. Sci. Technol.*, 2007, **41**, 3341-3346.
- 28. D. Wu, D. Xing, X. Mei, B. Liu, C. Guo and N. Ren, *Int. J. Hydrogen Energy*, 2013, **38**, 15568-15573.
- 29. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Tumbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight, *Nat. Methods*, 2010, 7, 335-336.
- 30. H. Lin, X. Wu, C. Miller and J. Zhu, *Biomass Bioenerg*, 2013, **54**, 170-180.
- 31. C. Gao, A. Wang, W. Wu, Y. Yin and Y. Zhao, *Bioresource Technol.*, 2014, **167**, 124-132.
- 32. J. R. Kim, S. H. Jung, J. M. Regan and B. E. Logan, *Bioresource Technol.*, 2007, **98**, 2568-2577.

Table 1 Number of reads, operational taxonomic units (OTUs), Abundance-based Coverage Estimator (ACE), estimator Chao 1 and Shannon index obtained from different samples at 97% nucleotide identity.

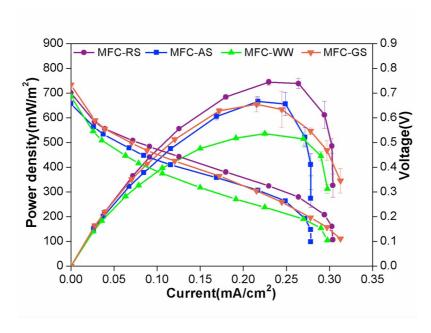
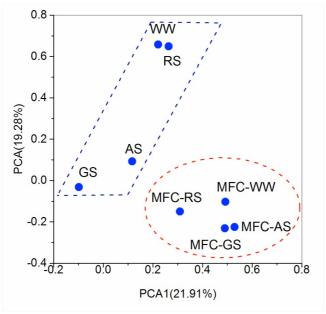
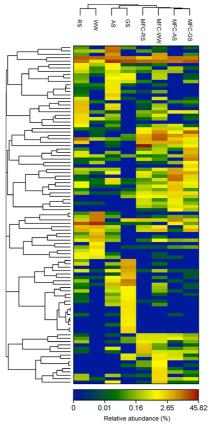
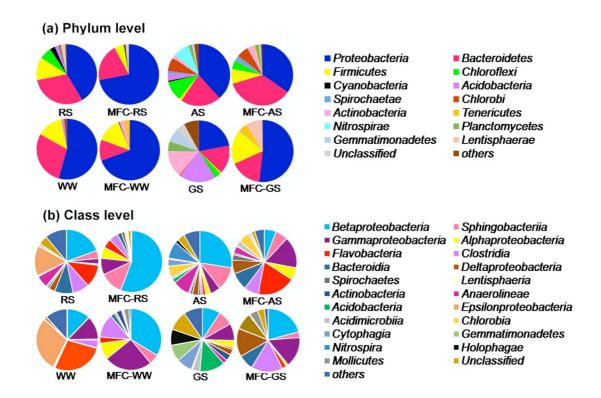

-	Samples	Reads	OTUs	Ace	Chao1	Shannon	Simpson
	WW	11608	156	182	189	3.21	0.0894
	GS	14896	594	605	607	5.58	0.0068
	RS	9291	403	474	492	4.48	0.0313
	AS	11876	478	512	510	4.75	0.0278
	MFC-WW	10860	124	185	200	3.63	0.043
	MFC-GS	11230	164	275	217	3.63	0.0453
	MFC-RS	15927	169	293	238	2.5	0.2276
	MFC-AS	12575	362	443	476	4.04	0.0429

Figure Captions


- Fig. 1. Voltage generation (external resistance of 1000 Ω) of MFCs with different inocula. MFC-AS, MFC-RS, MFC-WW and MFC-GS were inoculated using active sludge, river sediment, wastewater and garden soil, respectively.
- **Fig. 2.** Polarization curves of MFCs with different inocula. Error bars represent standard deviation based on measurements from duplicate reactors in three cycles.
- **Fig. 3.** Principal component analysis (PCA) based on operational taxonomic units of anode biofilms of MFCs and initial inocula. Inocula and MFCs were clustered in the parallelogram and ellipse, respectively.
- **Fig. 4.** Hierarchical clustering and heatmap analysis of eight bacterial community structures based on Illumina sequencing of 16S rRNA gene. Hierarchical cluster analysis is based on the OTUs abundance on the top of the heatmap. The heatmap is plotted at genus level. The bar on the bottom represents scale of the relative abundance.
- **Fig. 5.** Microbial community structures of the MFC anodes and inocula at the phylum (a) and class (b) level. Items with relative abundance lower than 1% of total composition were classified into group "Others".
- **Fig. 6.** Relative abundance of dominant genera in microbial communities of the MFC anode biofilms and inocula. Genera with relative abundance lower than 4 % of total composition were classified into group "Others".


Fig. 1. Voltage generation (external resistance of 1000 Ω) of MFCs with different inocula. MFC-AS, MFC-RS, MFC-WW and MFC-GS were inoculated using active sludge, river sediment, wastewater and garden soil, respectively.


Fig. 2. Polarization curves of MFCs with different inocula. Error bars represent standard deviation based on measurements from duplicate reactors in three cycles

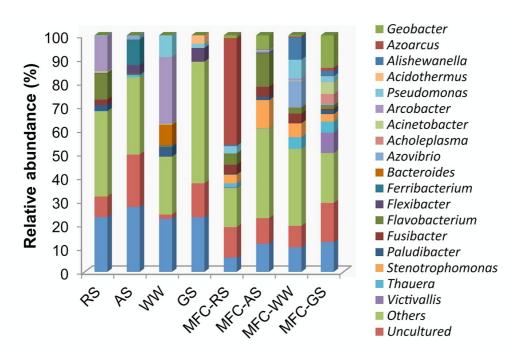

Fig. 3. Principal component analysis (PCA) based on operational taxonomic units of anode biofilms of MFCs and initial inocula. Inocula and MFCs were clustered in the parallelogram and ellipse, respectively.

Fig. 4. Hierarchical clustering and heatmap analysis of eight bacterial community structures based on Illumina sequencing of 16S rRNA gene. Hierarchical cluster analysis is based on the OTUs abundance on the top of the heatmap. The heatmap is plotted at genus level. The bar on the bottom represents scale of the relative abundance.

Fig. 5. Microbial community structures of the MFC anodes and inocula at the phylum (a) and class (b) level. Items with relative abundance lower than 1% of total composition were classified into group "Others".

Fig. 6. Relative abundance of dominant genera in microbial communities of the MFC anode biofilms and inocula. Genera with relative abundance lower than 4 % of total composition were classified into group "Others".