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Graphical Abstract 

 

 

 

A framework for sample partitioning is proposed to take into account the tunable ratio of numbers of calibration and 

prediction samples, in consideration with the randomness, stability and robustness of calibration models. In the 

calibration-prediction-validation procedure, a fixed-number portion of validation samples (V set) is firstly extracted from 

the initial sample pool of the experimental data before the calibration-prediction partitioning. Then the remaining 

samples (M set) are partitioned into calibration set and prediction set. A fixed partitioning ratio generating a pair of 

calibration and prediction sets is marked as a volunteer data group (G sets). The partitioning ratio for calibration and 

prediction samples would influence the stability and robustness of this framework. The varied partitioning ratio 

corresponding to different calibration-prediction combinations result in different volunteer groups (G1, G2… GK) for the 

parametric optimizational process. By comparing the modeling results, we can find out an optimized volunteer group 

(Gopt) to guarantee the stability and robustness of models. 
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Soil organic carbon (SOC) can be quantitatively determined with enhanced stability of near-infrared (NIR) 
measurement. NIR analysis requires a modeling-validation division for real samples. The research of 
modeling robustness should be discussed in the modeling process, based on the investigation of the 
calibration-prediction sample partitioning. A framework for sample partitioning is proposed with the 10 

consideration of the tunable ratio of numbers of calibration and prediction samples. We addressed this 
issue in the multivariate calibration for NIR analysis of SOC, by using least squares support vector 
machine regression (LS-SVR) method with the interactive grid search of its two modeling parameters of γ 
and σ, where γ is the regularization parameter directly influencing the Lagrange multiplier in kernel 
transformation, and σ2 represents the kernel width which is used to tune the degree of generalization. We 15 

created 7 volunteer groups for different ratios of calibration-prediction partitions. The calibration and 
prediction samples were re-produced for each volunteer group. LS-SVR models were established and 
parameters optimally selected by considering the stability and robustness based on the statistical theory of 
mean value and relative standard deviation. Furthermore, in all comparative partition ratios, the optimal 
volunteer group was selected, with the partition of 65 calibration samples and 35 prediction samples. 20 

Consequently, the optimized calibration model with correspondent optimal volunteer group was evaluated 
by the independent validation samples. The optimal LS-SVR parameters (γ, σ) were (110, 7), and the 
validation results observed a root mean square error of 0.302 and a correlation coefficient of 0.907. This 
validation effect was much satisfactory for the random validation samples because we have chosen an 
optimal volunteer group for calibration-prediction partition to guarantee the modeling stability and 25 

robustness in the process of model optimization. 

 

1. Introduction 
Near-infrared (NIR) spectroscopy is a rapid and reagent-less 
physical technique, requiring minimal or no sample preparation 30 

and, in contrast with traditional chemical analysis, does not 
require reagents, nor produces wastes [1-2]. This technology has 
been widely used in many industries including agriculture, 
environment, food processing, pharmaceutical and biomedicine 
[3-6]. NIR spectrometry permits the prediction of many soil 35 

properties from the measurements. It has become popular in field 
measurement for in situ prediction of various soil properties [7-9]. 
In particular, diffuse reflectance of NIR spectroscopy is sensitive 
to the composition of organic carbon in soil [10-12]. Soil organic 
carbon (SOC) is an important component in agro-ecological soil. 40 

It represents a key parameter in evaluating the fertility of soils. 
SOC can be commonly and successfully predicted by means of 
NIR diffuse reflectance spectroscopy under laboratory controlled 
conditions [13-14]. 

The use of NIR spectroscopy for prediction of soil organic 45 

carbon (SOC) content in the field is highly desirable for soil 
quality assessment and carbon accounting purposes [15-17]. It is 
demonstrated that SOC can be measured in the field with 
enhanced measurement stability, in the expense of a slight 
decrease of accuracy compared to laboratory experiments [18-20]. 50 

Once the spectra have been calibrated for SOC, the chemometric 
methods can provide rapid and inexpensive estimation of SOC in 
the field. 

NIR analysis of SOC requires a modeling-validation division 
for real samples. Validation samples are utilized for model 55 

evaluation, and the strategy of modeling optimization should be 
discussed based on a calibration-prediction sample partitioning 
[21-22]. In multivariate calibration problems involving the 
complex analytes, it is difficult to reproduce the composition 
variability of samples by means of optimized experimental 60 

designs [23]. For the procedure of calibration-prediction 
modeling, differences in the partitioning of calibration and 
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prediction sets will lead to fluctuations in modeling parameters 
and thus yielding unstable results. Especially, changes of the 
numbers of real samples in calibration set and in the prediction 
set will influence the robustness of the calibration models, so that 
the prediction results will be unstable and the modeling 5 

optimization is hard to achieve. In such cases, a representative 
calibration set is intensively desired, which must be extracted 
from the sample pool by considering the randomness, similarity 
and stability of calibration-prediction sample partitioning. This 
refers not only to the samples but also to the partitioning ratio. 10 

Therefore, it is an important research hot spot that a tunable ratio 
of sample numbers for the partitioning of calibration and 
prediction sets. 

Multivariate techniques take the spectrum into account and 
exploit the multi-channel nature of spectroscopic data to provide 15 

the signals of organic carbon from the spectral response of soil. 
Extraction of quantitative information requires use of a reliable 
multivariate calibration method [24-25]. Linear regression 
methods (e.g. principal component regression, PCR, and partial 
least-squares, PLS) showed their ability to output promising 20 

results in specific applications [26-27]. However, agricultural 
translation of the effective chemometrics in NIR analysis has 
been largely impeded by the variations in the measurement [28-
29]. Linear approaches cannot meet the quantitative modeling 
accuracy because the spectroscopic analysis of a single 25 

component in complex systems (such as soil) is influenced by the 
responses of other components and noises. Several investigators 
have recently employed least squares support vector machine 
regression (LS-SVR), a nonlinear multivariate method that can 
handle ill-posed problems and lead to unique global models [30-30 

32]. Several studies addressed the issue of improvement in 
prediction (or classification) accuracy arising from the use of LS-
SVR in relation to conventional linear methods. 

In this study, we emphasize the investigation of calibration-
prediction sample partitioning in the NIR analysis of SOC with 35 

multivariate chemometrics. A framework for calibration-
prediction partitioning is proposed with the consideration of the 
tunable ratio of numbers of calibration and prediction samples. 
First of all, a fixed-number portion of samples is randomly 
selected as the independent validation set, which should not be 40 

subjected to the modeling process. The remaining samples, with a 
dependently fixed number, were carried on for the process of 
modeling optimization. It is worth noting that the stable and 
robust calibration model depends on the partitioning ratio of the 
modeling samples divided into calibration and prediction sets by 45 

considering the randomness, similarity and robustness of the 
framework. We addressed this issue in the multivariate 
calibration problem involving NIR spectrometric analysis of 
organic carbon in soil. For illustration, the total number of 
modeling samples is fixed because, as abovementioned, the 50 

number of the independent validation samples is firstly identified. 
Therefore, the numbers of samples respectively in the calibration 
and the prediction sets can be changed when the tunable 
partitioning ratio varies. A group of calibration and prediction 
sets corresponding to an unchanged partitioning ratio is marked 55 

as a volunteer group. The study involved the comparison of the 
different volunteer groups of calibration and prediction samples. 
The models obtained in this manner can be compared in terms of 

their modeling performance. In each volunteer group, the 
calibration-prediction partitions can be performed for many times 60 

with random selection of calibration samples. Based on the varied 
calibration-prediction partitions, the LS-SVR models can be 
parametric optimized by considering the stability and robustness 
based on the fundamental statistical theory of mean value and 
standard deviation. Further the optimal volunteer group can be 65 

chosen in all comparative partition ratios. Consequently, the 
optimized calibration model with correspondent optimal 
volunteer group can be estimated and evaluated by the samples in 
the independent validation set. 

 70 

2. Theories and Algorithms 
2.1 The framework of Sample Partitioning and model 
optimization 

A framework for sample partitioning is proposed to take into 
account the tunable ratio of numbers of calibration and prediction 75 

samples, in consideration with the randomness, stability and 
robustness of calibration models. 

 

 
Fig 1 The algorithmic flow chart for the framework of the sample 80 

partitioning and model optimization 
 
The algorithmic flowchart of this framework is showed in Fig 

1. As can be seen in Fig 1, in the modeling-validation procedure, 
a fixed-number portion of validation samples (V set) is firstly 85 

extracted from the initial sample pool of the experimental data, 
before the calibration-prediction partitioning. For the purpose of 
ensuring the independence, the validation samples are randomly 
selected and totally not subjected to the modeling process. Then 
the remaining samples (M set), with a determined number, are 90 

partitioned into calibration set and prediction set, and further used 
for the model establishment and parameter optimization. It is 
worth noting that the change in the numbers of calibration 
samples will result in modeling differences, so as to affect the 
validating effects, thus a discussion of the partitioning ratio for 95 

calibration and prediction samples is quite necessary when 
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considering the stability and robustness of this framework. For 
illustration, a fixed partitioning ratio will generate a pair of 
calibration and prediction sets, which are marked as a volunteer 
data group (G sets). We try to change the partitioning ratio of 
calibration-prediction samples and perform model establishment 5 

and parametric optimizational process for each volunteer group 
(G1, G2… GK). By comparing the modeling results, we can find 
out an optimized volunteer group (Gopt) to guarantee the stability 
and robustness of models. 

The calibration-prediction process is carried out respectively 10 

for each volunteer group (Gk, k=1, 2… K). We noted that the 
volunteer data groups (G sets) are only related to a fixed 
partitioning ratio, which means that one volunteer group only 
determines how many samples are used for calibration and how 
many for prediction. There is still another issue for sample 15 

partitioning in each specific volunteer group: which sample for 
calibration can provide an improved modeling result? Several 
experimental evidences indicate that difference in sample 
partitioning of calibration and prediction sets will lead to 
fluctuations in predictive parameters and thus yielding unstable 20 

results [33-35]. On the level of stability and robustness, this issue 
requires this partitioning be randomly carried out for many times 
[36-37], resulting in many different pairs of calibration set and 
prediction set (Cl+Pl, l=1, 2… L). For the varied partitions of the 
calibration and prediction sets, the analytical models are 25 

established and the parameters are optimized by considering the 
modeling stability and robustness based on the mean value and 
standard deviation of the model indicators. For illustration, the 
root mean square error of prediction (RMSEP) and correlation 
coefficients of prediction (RP) are taken as two important 30 

indicators for models. In one specific volunteer group (Gk), the 
modeling results for the pair of Cl+Pl are evaluated by RMSEP(l) 
and RP(l), particularly. Going through all pairs of partitions in the 
fixed Gk, we have one RMSEP value and one RP value for each 
pair of C+P. Based on all partitions in Gk, the mean value and 35 

standard deviation of all RMSEP’s and RP’s are calculated and 
denoted as RMSEPm(Gk), RP,m(Gk), RMSEPsd(Gk) and RP,sd(Gk). 
As for statistical reasons, the relative standard deviation (RSD) 
was proposed here to evaluate the actual frustration accompanied 
with the mean values. The RSD values of RMSEP and RP could 40 

be calculated and denoted as 
sd

rsd
m

RMSEP (G )RMSEP (G )=
RMSEP (G )

k
k

k
, 

P,sd
P,rsd

P,m

R (G )
R (G )=

R (G )
k

k
k

. 

The RMSEPm(Gk) and RP,m(Gk) are used for evaluating the 
prediction accuracy of Gk and the RMSEPrsd(Gk) and RP,rsd(Gk) 45 

are for the modeling stability. According to this strategy, we can 
calculate RMSEPm and RP,m for each volunteer group (Gk, k=1, 
2… K). All of the RMSEP (or RP) values of each volunteer group 
will be located in the designated numerical region of 

m rsdRMSEP (1 RMSEP )× ±  (or P,m P,rsdR (1 R )× ± ). We have 50 

the knowledge that a lower RMSEPm (or alternatively a higher 
RP,m) indicates higher accuracy for the model and lower 
RMSEPrsd and RP,rsd reflect higher modeling stability. Therefore, 
by comparing the values of RMSEPm and RP,m, we can select the 
optimal volunteer group (denoted as Gopt), which are expected to 55 

give a prospective promising result if utilized in validation 
process. 

2.2 The theory of LS-SVR 

LS-SVR algorithm employs a set of linear equations to reduce 
the complexity of optimization process associated with the SVR 60 

methodology [38]. For the NIR spectral data, the predictive 
concentration ˆ jc  of the j-th prediction sample is expressed in the 
following manner, 

P C

1

ˆ ( , )
m

j i j
i

c A Aα ϕ
=

=∑ , and 
1

C T C 1( )
2i i iA Aα
γ

−
 

= + 
 

, 

where αi is the Lagrange multiplier which depends on the 65 

regularization parameter γ [32], ( , )j ix xϕ  is the kernel function, 
P
jA  is the NIR spectrum of the j-th sample in the prediction set, 

and CA  is a linear combination of all the calibration spectra (the 
NIR spectra with m wavenumbers), weighted by the 
concentration values. 70 

The distribution of the feature samples in high dimensional 
space depends on the selection of the kernel and corresponding 
parameters. The Gaussian radial basis function (RBF) kernel has 
moderate robustness and stability to enable nonlinear modeling 
for the acquired NIR dataset, and it is expressed as follows: 75 

P C 2
P C

2

( )
( , ) exp

2
j i

j i

A A
A Aϕ

σ
 −

= −  
 

, 

where σ2 represents the kernel width and is used to tune the 
degree of generalization. When we select RBF as kernel, the 
performance of LS-SVR primarily depends on the selection of 
parameters γ and σ2. The regularization parameter γ determines 80 

the trade-off between the training error (which can be thought of 
as the model accuracy in the calibration dataset) and the model 
robustness. To optimize these two parameters, we proposed a 
multi-scale interactive grid search is performed to enable the 
development of suitable calibration models. Careful selection of γ 85 

and σ2 is quite necessary to search for a smooth subarea to obtain 
a low prediction error. 
 

3 Samples and data 
One hundred and thirty-five soil samples were collected from 90 

three farmlands in Guangxi (one autonomous region, China). In 
all cases the soils were under pure wheat or white rice or 
associated with other species, such as sweet potato. 
Approximately 10% of samples came from red soils and the rest 
of samples were the common yellow soils. The 135 sites were 95 

located depending on the area of each farmland. Based on the 
principle of homogeneous distribution, we chose 38, 45, 52 sites 
respectively from the small, the medium and the large farmland. 
The distances between each adjacent site were slightly different, 
ranging about 3 to 5 meters. At each site, 10-15 cores were 100 

extracted from 0-15 cm in depth. Each core was weighed about 2 
grams and these cores were mixed together to comprise a sample. 
All samples were numbered successively from 1 to 135. The 
samples were firstly dried and finely ground in laboratory, and 
then passed through a 0.5-mm soil sifter, so as to ensure that the 105 

samples were refined to average small-size solid particles. Two 
equivalent sets weighing 10 grams were then extracted from each 
sample, with one set for biochemical measurement and the other 
for spectroscopic detection. The SOC content of each sample was 
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measured by using the routine biochemical method of potassium 
dichromate oxidation [39]. The measured values of all samples, 
in statistics, ranged from 1.10 to 6.42 (%), with an averaging 
value of 2.686 (%) and a standard deviation of 1.056 (%). These 
laboratorial values were used for spectroscopic analysis with the 5 

investigation of calibration-prediction-validation sample divisions. 
The measurement of spectral data was performed by using 

Spectrum One NTS FT-NIR spectrometer (PerkinElmer Inc., 
USA). The inner part of a spectrometer is optical system 
composed by several devices. The NIR light is produced by a 10 

built-in tungsten halogen light source, going through a light-
splitting unit so that the light is split into a series of point lights 
corresponding to each NIR wavelength. Then every point light 
one-by-one goes through the sample filled in a round sample cell. 
This is the key process of spectral scanning. In the sample cell, 15 

the light is absorbed and reflected by the sample particles and the 
out-coming light intensity becomes weakened. A diffuse 
reflectance accessory is equipped here to amplify the out-coming 
light. A pair of InGaAs detectors is monitoring the original and 
the weakened light information. The signal of NIR spectrum 20 

responses is generated by using the amplified original and 
weakened light information. Consequently, the spectrum goes 
through a Fourier transform amplitude analyzer and the signals 
are delivered to a computer for digital analysis. 

The whole spectroscopic measurement should be conditioned 25 

throughout the spectral scanning process. The temperature was 
controlled at 25±1°C and the relative humidity was limited at the 
spot of 46±1%RH. The scanning range of the spectrum spanned 
10000 cm-1 to 4000 cm-1 with a resolution of 8 cm-1. Every 
sample was measured thrice and the average of the three 30 

measurements was further used for modeling. In this way, we had 
135 average absorption spectra of soil (see Fig 2). 
 

 
Fig 2 The near infrared spectra of 135 soil samples 35 

 

4. Results and discussion 
4.1. The NIR dataset  

The whole scanning range of 10000-4000 cm-1 with the 
resolution of 8 cm-1 collected the NIR spectral responses at 1512 40 

discrete wavenumbers per spectrum for each soil sample. The 
spectral absorbance includes the contributions of chemical 
components and also the noises arise from the light scattering and 
base-line drift, due to the sample particle factors (e.g. particle size 
and shape, thickness and tightness, etc.). Data pretreatment is 45 

quite indispensable for extracting the spectral signals. 
Multiplicative scatter correction was utilized for the pretreatment 
of the raw spectra of the calibration samples in each volunteer 
group. 

The NIR dataset was constructed including the pretreated NIR 50 

data and the reference values of SOC. The whole sample pool 
was divided into calibration, prediction and validation sets by the 
framework of sample partitioning for model optimization and 
evaluation. 

 55 

4.2. The Performance of Sample Partitioning on LS-SVR 
models 

All the NIR data of 135 soil samples were prepared as the 
original sample pool. According to the calibration-prediction-
validation procedure, 35 samples were randomly selected into the 60 

independent validation sample set (totally excluded in the 
modeling process), and the other 100 samples were remained. 
The statistic data of the validation samples and the remaining 
samples were showed in Table 1.  

 65 

Table 1 The statistics for the randomly selected validation samples and 
the calibration-prediction samples 

 
Number of 

samples 

SOC content (%) 

 
Maximum 

value 
Minimum 

value 
Averaging 

value 
Standard 
deviation 

Validation 35 5.06 1.35 2.565 0.945 
Calibration-
prediction 

100 6.42 1.10 2.728 1.093 

 
The remaining 100 samples were further divided into 

calibration and prediction sets for modeling. We have to note that, 70 

for one thing, the samples for calibration should not be less than 
those for prediction, and for another, calibration samples should 
not be too much more than prediction samples to prevent over-
fitting. Based on these concepts and on the framework of sample 
partitioning, we set the calibration-prediction partitioning ratio 75 

changed from 1:1 to 4:1. Practically, with the totally 100 
modeling samples, we have the number for calibration changed 
from 50 to 80 with a step of 5, so that the number for prediction 
changed from 50 to 20 with a step of -5. Thus, we generated 7 
different volunteer groups (i.e. K=7) and denoted them as G1, G2, 80 

G3, G4, G5, G6 and G7. The detailed numbers for calibration and 
prediction samples in each volunteer group were listed in Table 2. 
For model establishment, we are planning to have the 100 
modeling samples randomly divided into calibration set and 
prediction set according to the preset numbers designated in each 85 

volunteer group (see Table 2). Seven volunteer groups give seven 
different partitioning cases. We try to discuss which case will 
provide an optimal calibration model with the highest robustness.  

As can be seen in Table 2, the volunteer groups are only 
related to the numbers of calibration and prediction samples, but 90 

a fixed number does not determine what samples for calibration 
and what samples for prediction because we used a random 
division strategy. This will raise the problem that different 
calibration samples influence the modeling results. To discuss 
this issue, we have the modeling sample set randomly partitioned 95 

for 30 times (i.e. L=30), obeying the preset partitioning numbers. 
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This operation would generate 30 different pairs of calibration 
and prediction sets (i.e. C1+P1, C2+P2… C30+P30) for each 
specific volunteer group (Gk, k=1, 2… 7). Calibration models 
were established for each pair of Cl+Pl (l=1, 2… 30) by using LS-
SVR method with interactive grid search of the tunable 5 

parameters of γ and σ2 (hereafter we discussed σ and successively 
easily get σ2). 
 

Table 2 The numbers of calibration and prediction samples in each 
volunteer group 10 

Volunteer group Number of calibration Number of prediction 

G1 50 50 

G2 55 45 

G3 60 40 

G4 65 35 

G5 70 30 

G6 75 25 

G7 80 20 

 
We have γ changing from 10 to 200 with a step of 10, and σ 

changing consecutively from 1 to 20. The LS-SVR models 
corresponding to each combination of (γ, σ) were established and 
the parameters of γ and σ were interactively optimized on a grid. 15 

Based on the 30 different pairs of Cl+Pl (l=1, 2… 30), the 
RMSEPm and RP,m were calculated as the stable modeling results 
corresponding to the interactive effect of γ and σ. The RMSEPrsd 
and RP,rsd were also calculated for evaluating the frustration of 
models. Successively, the optimal parameter combination can be 20 

found by searching for the minimum RMSEPm or the alternative 
maximum RP,m. This optimal result was taken as the stable and 
robust modeling effect for the specific volunteer group Gk. 
Further, the optimal volunteer group can be selected by 
comparing the best values of RMSEPm(Gk) and RP,m(Gk) for the 7 25 

volunteer groups (Gk, k=1, 2… 7). The LS-SVR models with the 
optimal parameter were further selected. Table 3 showed the LS-
SVR modeling results with the optimal parameters for the 7 
designated volunteer groups. We can see from Table 3 that G4 
output the minimum RMSEPm and a corresponding maximum 30 

RP,m. And also the relatively low values of RMSEPrsd and RP,rsd 
demonstrated that the optimal stable LS-SVR model had little 
predicted frustrations. It could be concluded that the optimal 
volunteer group for NIR analysis of SOC is volunteer group G4. 
The partition of 65 calibration samples and 35 prediction samples 35 

brought to the best prospective results. 
 
Table 3 The optimal LS-SVR modeling results for the 7 volunteer groups 

Volunteer 
group 

γ σ RMSEPm RMSEPrsd RP,m RP,rsd 

G1 120 8 0.283 0.197 0.900 0.159 

G2 110 6 0.261 0.187 0.916 0.154 

G3 100 7 0.258 0.190 0.923 0.148 

G4 110 7 0.247 0.185 0.937 0.147 

G5 130 8 0.254 0.205 0.932 0.155 

G6 120 10 0.269 0.214 0.909 0.161 

G7 100 9 0.285 0.217 0.885 0.175 

For LS-SVR modeling, it is worth noting that the two 
parameters of γ and σ represent the regularization extension and 40 

the kernel width when using the RBF kernel. Particularly, we 
discussed the interactive grid searching of parameters based on 
the optimal volunteer group (G4), with the projective insight of 
the influence from each separate tuning of γ and σ. The model 
predictive results corresponding to each value of γ were showed 45 

in Fig 3 (Fig 3(a) distributes RMSEPm and RMSEPrsd, and Fig 
3(b) distributes RP,m and RP,rsd). Similarly, the model predictive 
results corresponding to each value of σ were showed in Fig 4 
(Fig 4(a) distributes RMSEPm and RMSEPrsd, and Fig 4(b) 
distributes RP,m and RP,rsd).  50 

It was seen from Fig 3 that the RMSEPrsd and RP,rsd values 
varied on behave of γ, but most of them were smaller than 0.2, 
which demonstrated the modeling frustration was small enough 
and the models were taken as stable. The minimum RMSEPm was 
obtained when γ equals to 110, with a correspondingly highest 55 

RP,m. And Fig 4 showed that most RMSEPrsd and RP,rsd derived 
from every value of σ were also smaller than 0.2, which in 
another aspect revealed the modeling stability and robustness. 
And the minimum RMSEPm was obtained when σ equals to 7, 
with the correspondingly highest RP,m. In summary, we have the 60 

optimal LS-SVR parameters (γ, σ) were (110, 7), and the optimal 
RMSEPm and RP,m were 0.247% and 0.937, respectively. This 
optimal modeling result was obtained by the nonlinear LS-SVR 
algorithm based on the calibration-prediction sample partitioning 
with different ratio. We concluded that the optimal model with (γ, 65 

σ) equaling to (110, 7) were presented stable and robust for 
calibrations in NIR analysis of SOC. 

 

 
Fig 3 sub-figure (a) 70 

 
Fig 3 sub-figure (b) 

Fig 3 The model predictive results corresponding to each value of γ in 
LS-SVR modeling (sub-figure(a) distributes RMSEPm and RMSEPrsd, 

and sub-figure(b) distributes RP,m and RP, rsd) 75 
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Fig 4 sub-figure (a) 

 
Fig 4 sub-figure (b) 

Fig 4 The model predictive results corresponding to each value of σ in 5 

LS-SVR modeling (sub-figure(a) distributes RMSEPm and RMSEPrsd, and 
sub-figure(b) distributes RP,m and RP, rsd) 

 

4.3 Validation of the optimal LS-SVR model 

The randomly selected 35 independent validation samples were 10 

used to evaluate the LS-SVR models respectively on the 7 
volunteer groups, using the corresponding optimal parameters. 
The LS-SVR models were established by using the spectral data 
and actual SOC contents (measured by potassium dichromate 
oxidation). We found out the optimal parameters and determined 15 

the model regressive coefficients in the calibration-prediction 
process. Further the NIR predicted values for the 35 validation 
samples can be estimated by fitting the NIR data into the model 
and using the coefficients. The NIR predicted values of SOC in 
each volunteer group were obtained and the RMSEV and RV for 20 

the 35 validation samples were showed in Table 4. The 
validation process owns the objectiveness and representiveness as 
the validation samples were totally excluded in the modeling 
optimization process. We observed in Table 4 that the optimal 
modeling volunteer group G4 output the optimal validation results, 25 

The predicted values were close to the actual contents, with the 
minimum RMSEV of 0.302 (%) and the corresponding high RV 
of 0.907. The correlation relationship between the predicted 
values and actual contents was showed in Fig 5. The results 
showed that the predicted values and the actual contents were 30 

highly correlated for SOC. The validation effect was much 
satisfactory for the random validation samples because we have 
achieved the modeling stability and robustness in the process of 
model optimization, with a prospective choice of the volunteer 
group for calibration-prediction partition. 35 

Table 4 The LS-SVR modeling results for validation samples based on 
the optimal parameters in each volunteer group 

Volunteer group RMSEVm RMSEVrsd RV,m RV,rsd 

G1 0.361 0.256 0.857 0.180 

G2 0.332 0.244 0.872 0.183 

G3 0.335 0.244 0.888 0.187 

G4 0.302 0.239 0.907 0.180 

G5 0.330 0.252 0.899 0.181 

G6 0.342 0.277 0.870 0.184 

G7 0.351 0.282 0.855 0.190 

 

 
Fig 5 The correlation relationship between the NIR predicted values and 40 

actual contents of SOC 
 

4 Conclusions 
NIR analysis requires a modeling-validation division for real 

samples. Differences in the partitioning and changes of the 45 

numbers of real samples in calibration set and in the prediction 
set lead to fluctuations and influence the stability and robustness 
in modeling parameters and thus yielding unstable results. A 
representative calibration set must be extracted from the sample 
pool with the considerations referring to not only the samples but 50 

also the partitioning ratio. In our work, the strategy of modeling 
optimization is proposed based on a calibration-prediction sample 
partitioning. A framework for sample partitioning is built up with 
the consideration of the tunable ratio of numbers of calibration 
and prediction samples, aiming to confirm the modeling stability 55 

and robustness. We addressed this issue in the multivariate 
calibration involving NIR spectrometric analysis of SOC.  

We created 7 volunteer groups (Gk, k=1, 2… 7) for different 
ratio of calibration-prediction partitioning. For each Gk, the 
calibration-prediction sample partition was randomly carried out 60 

for 30 times. The LS-SVR models were established and the 
optimal parameters were selected for each single partition. By 
considering the stability and robustness, we calculated the 
RMSEPm(Gk) and RP,m(Gk), as well as the RMSEPrsd(Gk) and 
RP,rsd(Gk) based on the 30 different calibration-prediction 65 

partitions in the specific Gk. Moreover, we optimized the LS-SVR 
modeling parameters of γ and σ in an interactive grid search way, 
and successively we found out the optimal volunteer group as G4 

by comparing all the 7 values of RMSEPm. The optimal LS-SVR 
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parameters (γ, σ) were (110, 7), and the optimal RMSEPm and 
RP,m were 0.247% and 0.937, respectively. The values of 
RMSEPrsd and RP,rsd were small enough to confirm that the 
models were stable and robust. 

Further, the optimized calibration model was evaluated by the 5 

independent validation samples, respectively for each of the 7 
volunteer groups. The out-of-modeling validation effects were 
much satisfactory for the random validation samples, and the 
validation optimal volunteer group was also selected as G4. We 
conclude that we have achieved the modeling stability and 10 

robustness in the process of model optimization base on the 
discussion of the tunable ratio of numbers of calibration and 
prediction samples. 
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