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ABSTRACT 

Easily fabricated, directly transferred thin nanoporous gold was first used as back 

electrode for hole-transport-material-free perovskite solar cells. In order to infiltrate 

CH3NH3PbI3 into the pores of mesoporous layers and nanoporous gold back electrode, 

three ways, namely one-step spin-coating deposition, sequential deposition, and 

two-step spin-coating deposition were introduced to fabricate CH3NH3PbI3. The 

devices contain well infiltrated CH3NH3PbI3 show the highest power conversion 

efficiency of 7.99%. 

 

Introduction 

Metal-organic halide perovskite CH3NH3PbI3 was first introduced to photovoltaic 

field by Kojima and his co-workers in 2009.1 But solar cells with perovskite 

CH3NH3PbI3 as light harvester did not attract worldwide attention until 2012, when 

their power conversion efficiency reached around 10% due to the introduction of 

Spiro-OMeTAD as hole-transport-material (HTM).2, 3 In the past years, highly 

efficient perovskite solar cells fabricated by different ways such as sequential 

deposition,4 vapor deposition,5 vapor assisted solution process6 have been reported, 

and the highest reported efficiency reached 20.1% in year of 2015.7 The rapid 

evolution of perovskite solar cells is benefited by the intrinsic properties of 

CH3NH3PbI3 such as direct band gap, large absorption coefficient,8 high carrier 

mobility,9 long carrier diffuse length,10, 11 ambipolar charge transport.3, 12 

Despite the rapid development in device efficiency, many problems still hinder 

perovskite solar cells from practical application, such as expensive HTM and complex 

thermal vapor deposit process. Most of the highly efficient perovskite solar cells 

contain expensive HTM, which largely increase the fabrication costs. HTM-free 
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perovskite solar cell is a promising candidate for avoiding the above problem. 

Fortunately, the hole-transport property of perovskite CH3NH3PbI3 makes it possible. 

Etgar and his co-workers first reported CH3NH3PbI3/TiO2 solar cell with the 

efficiency of 5.5% without using HTM.12 Meng and his co-workers reported 

HTM-free perovskite solar cells and confirmed that TiO2/ CH3NH3PbI3/Au cell is a 

typical heterojunction solar cell.13 Due to the work function of gold is well matched to 

perovskite CH3NH3PbI3, most HTM-free perovskite solar cells use gold as back 

electrode. But the gold back electrode often fabricated by high vacuum thermal vapor 

deposition, which makes the fabrication process complex. Mhaisalkar et al reported 

directly transferred carbon nanotube network instead of gold back electrode for 

perovskite solar cell, but the carbon nanotube network was synthesized by chemical 

vapor deposition at a high temperature of 1150 oC which made the process complex 

and expensive.14 Han and his co-workers reported porous carbon as back electrode 

instead of thermal deposited gold electrode.15, 16 But the conductivity of carbon 

electrode is far lower than gold electrode thus the devices made by Han et al with a 

thick porous carbon layer of about 10 μm which may limit the practical use. To date, 

gold is still the best candidate material for the back electrode of HTM-free perovskite 

solar cells because of its high electrical conductivity and well matched work function 

with the perovskite CH3NH3PbI3. Thus a special shaped gold contains the following 

features can be a good candidate for the back electrode of HTM-free perovskite solar 

cells: easily fabricated, directly transferred, porous structured. 

Nanoporous gold (NPG) is a material with 3-dimensional porous structure and the 

size of the pores is in the nanoscale. In the past ten years, NPG has gradually attracted 

widespread attention in chemical/biological sensors,17 and also for electronic 

devices18 due to its unique properties of high electrical conductivity and high specific 

surface area combined with chemical stability.19 De-alloying method was used to 

fabricate NPG, which made the fabrication process simple. Easily fabricated, porous 

structured, high electrical conductivity and well matched work function make it a 

good candidate for the application in HTM-free perovskite solar cells.  
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Herein, we report HTM-free perovskite solar cells using easily fabricated, directly 

transferred thin NPG as back electrode. NPG film was directly transferred onto the 

device, exempting the energy consumption of thermal vapor deposition process. The 

thickness of the NPG electrode was much thinner than porous carbon electrode. In 

order to get efficient devices, three deposition ways were introduced to fabricate 

CH3NH3PbI3. The infiltration and crystallinity of CH3NH3PbI3 by different fabricate 

ways and the influence on the devices performance were investigated.  

 

Results and discussion 

Figure 1a shows the schematic structure of the HTM-free perovskite solar cell with 

NPG back electrode. Similar to porous carbon electrode based HTM-free perovskite 

solar cells, the NPG electrode was porous structured and the structure of our device is 

similar to that of Han et al.15, 16 A compact TiO2 layer was deposited on the etched 

FTO glass. Mesoporous TiO2 and Al2O3 layers were deposited successively on the 

compact TiO2 layer. After that the NPG back electrode was direct transferred onto the 

mesoporous substrates, then the perovskite CH3NH3PbI3 was infiltrated into the pores 

of mesoporous layers and NPG by different methods. Figure 1b shows the 

energy-level alignment of the devices. Under the radiation of the sunlight, 

CH3NH3PbI3 absorbs the sunlight then electron-hole pairs generate. The electron-hole 

pairs separate with the electrons inject from the conduction band of CH3NH3PbI3 into 

the conduction band of TiO2 than transport to FTO and the holes inject from 

CH3NH3PbI3 into NPG electrode.  

De-alloying, a facile way to selectively dissolve one or more components from a 

metallic solid solution, was used to prepare NPG. The raw material (Ag/Au alloy leaf) 

was etched in HNO3, thus Ag was dissolved by HNO3 and the remained Au formed a 

3-deminsional disordered porous structure which was showed in Figure 1c. The size 

of the pores is about 30-40 nm. The thickness of the NPG we obtained is about 

100-200 nm which was the same as that of the raw alloy films, which is much thinner 

than thick porous carbon electrode. This porous structured NPG back electrode can 

provide large contact area between CH3NH3PbI3 and the electrode. The 3-dimensional 
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Figure 2 XRD patterns of the porous structure substrate and CH3NH3PbI3 fabricated by three 

different ways: one-step spin-coating deposition, sequential deposition, two-step spin-coating 

deposition. 

Figure 2 shows the X-ray diffraction (XRD) patterns of the porous structured 

substrate and CH3NH3PbI3 deposited on the substrate by different ways. The XRD 

patterns show that the diffraction peaks at 26.4o, 38.2o, 44.3o and 51.5o can be 

attributed to the substrate. The diffraction peak at 12.59o was attributed to PbI2.
7 

Intense diffraction peaks at 14.08o, 28.40o, 31.86o can be assigned to (110), (220), 

(310) diffractions of CH3NH3PbI3 respectively.20 All the samples fabricated by 

different ways show the characteristic peaks of CH3NH3PbI3. The characteristic peaks 

of PbI2 appeared in the XRD pattern of the sample fabricated by two-step spin-coating 

deposition. The intensity of the characteristic peaks of CH3NH3PbI3 fabricated by 

two-step spin-coating deposition is weaker than that of CH3NH3PbI3 fabricated by the 

rest two ways. Thus we conclude that the crystallinity of CH3NH3PbI3 fabricated by 

one-step spin-coating deposition and sequential-deposition were better, while the 

crystallinity of CH3NH3PbI3 fabricated by two-step spin-coating deposition was 

relatively poor.  
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In order to confirm that CH3NH3PbI3 can infiltrate into mesoporous layers, cross 

section images of the devices were photographed. Figure 4 shows cross section 

images of CH3NH3PbI3 fabricated by three different ways: one-step spin-coating 

deposition (Figure 4a), sequential deposition (Figure 4b), and two-step spin-coating 

deposition (Figure 4c). The images show that CH3NH3PbI3 were infiltrated into the 

mesoporous layer by all fabrication ways. Simultaneously, the images show that 

CH3NH3PbI3 were infiltrated in the pores of NPG, although the top surface images 

show little CH3NH3PbI3 were infiltrated in the pores in some area. But in the area 

where covered with CH3NH3PbI3, the pores of NPG were filled with CH3NH3PbI3, 

which showed in the cross section images.  

The SEM images show that CH3NH3PbI3 fabricated by two-step spin-coating 

deposition infiltrated better into NPG than one-step spin-coating deposition and 

sequential deposition, but the XRD pattern shows poor crystallinity with the presence 

of PbI2 impurity phase. To investigate the performance of devices fabricated by 

different ways, we measure the efficiency of all devices. Figure 5 shows the J-V 

curves of NPG electrode based HTM-free perovskite solar cells. J-V curves of devices 

fabricated by one-step spin-coating deposition, sequential deposition, and two-step 

spin-coating deposition were showed in Figure 5 a, b, c, respectively. The best 

efficient devices were fabricated by two-step spin-coating deposition, which shows 

the efficiency of 7.99%, with the JSC =15.0 mA, the VOC=0.86 V and the FF=61.8%. 

The devices fabricated by one-step spin-coating deposition and sequential deposition 

show the efficiency of 3.5% and 5.8% respectively, although the CH3NH3PbI3 filled in 

the pores of NPG were not enough. Thus we consider that the amount of CH3NH3PbI3 

filled in the pores and the effective contact area between CH3NH3PbI3 and NPG 

impact the device performance largely. Of course, the crystallinity of CH3NH3PbI3 

will impact the performance in some degree, but we confirm the contact between 

CH3NH3PbI3 and pores plays more important role to the performance. 

Both devices with and without mesoporous Al2O3 layer were fabricated, and their 

J-V curves were also show in figure 5. In all the three ways fabricated devices, both 

the JSC and VOC of the devices with mesoporous Al2O3 are higher than that of devices 
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without mesoporous Al2O3. The efficiency of the devices with mesoporous Al2O3 is 

higher than that without mesoporous Al2O3. This phenomenon can be explained as 

follows. When the devices contain no mesoporous Al2O3, TiO2 will contact with NPG, 

which will lead to electron-hole recombination. The recombination will promote the 

decrease of JSC and VOC, thus the efficiency will be decrease. Al2O3 is a type of 

insulator with large band gap of about 7-9 eV, in which charge cannot transport. 

Fabricate a mesoporous Al2O3 layer between TiO2 and NPG can avoid the direct 

contact of TiO2 and NPG, then the probability of electron-hole recombination can be 

reduce. Thus the efficiency can be improved with the use of mesoporous Al2O3. 
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Figure 5 J-V curves of HTM-free perovskite solar cells with and without mesoporous Al2O3 for 

three different deposition methods: (a) one-step spin-coating deposition, (b) sequential deposition, 

(c) two-step spin-coating deposition.  

In perovskite solar cells, an anomalous hysteresis in the J-V curves were widely 

observed.23, 24 To investigate the J-V curves hysteresis of our devices, we measured 
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the J-V curves at different scan directions which were showed in figure 6. Figure 6a 

and figure 6b show the J-V hysteresis of the devices fabricated by two-step 

spin-coating deposition with and without mesoporous Al2O3, respectively. Figure 6c 

and figured 6d show the J-V hysteresis of the devices fabricated by sequential 

deposition and one-step spin-coating deposition, respectively. It shows that the 

devices fabricated by different ways all present almost negligible hysteresis. The 

devices without mesoporous Al2O3 show slight larger hysteresis than which with 

mesoporous Al2O3. The same phenomenon of hysteresis has been observed by Han et 

al.16, 25 So we consider that the slight hysteresis in our devices may attribute to the 

special structure of the devices, which is similar to that of the devices made by Han et 

al. 
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Figure 6 J-V curves measured at forward scan (FS, from short-circuit to open-circuit under the 

forward bias voltage) and reverse scan (RS, from open-circuit to short-circuit under the forward 

bias voltage) for the devices fabricated by (a) two-step spin-coating deposition (with Al2O3), (b) 

two-step spin-coating deposition (without mesoporous Al2O3), (c) sequential deposition (with 

Al2O3) and (d) one-step spin-coating deposition (with Al2O3). 
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To investigate the reproducibility of the devices fabrication, we present the 

parameter statistic of 20 devices fabricated by two-step spin-coating deposition in 

figure 7. The statistical method was the same as the previous work.26 The 20 devices 

were fabricated from one batch. The best devices show the efficiency of 7.99%, with 

JSC=15.0 mA/cm2, VOC=0.86 V, FF=61.8%. The average JSC, VOC, FF and Eff are 

15.10 1.30 mA/cm2, 0.86 0.06 V, 56.9 6.0%, 7.44 0.54%, respectively. 

6.8 7.0 7.2 7.4 7.6 7.8 8.0
0

1

2

3

4

5

6

 

 

C
o

u
n

ts

PCE(%)

13.5 14.0 14.5 15.0 15.5 16.0 16.5
0

1

2

3

4

5

6

 

 

C
o

u
n

ts

J
SC

(mA/cm2)
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
0

1

2

3

4

5

 

 

C
o

u
n

ts

V
OC

(V)

50 52 54 56 58 60 62 64
0

1

2

3

4

5

6

 

 

C
o

u
n

ts

FF(%)

 

Figure 7 Solar cells photovoltaic parameters statistics based on 20 devices fabricated by two-step 

spin-coating deposition in one batch. 

 

Conclusion 

In summary, we have fabricated HTM-free perovskite solar cells based on easily 

fabricated, directly transferred thinner NPG back electrode. The HTM-free perovskite 

solar cells based on NPG electrode show the highest power conversion efficiency of 

7.99% with reliable reproducibility. The effects of infiltration and crystallization of 

CH3NH3PbI3 fabricated by different deposition ways on the performance of the 

devices were investigated. The infiltration of CH3NH3PbI3 into the porous structure is 

a critical factor of the device. Two-step spin-coating deposition fabricated devices 
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shows better infiltrated CH3NH3PbI3 and the best performance but poor crystallinity. 

With the use of mesoporous Al2O3, the performance can improved largely. The 

hysteresis of J-V curves in our devices is not obvious which may attribute to the 

special structure of the devices. To further optimize the deposition process to get a 

well infiltrated and crystallization perovskite CH3NH3PbI3, the power conversion 

efficiency especially the JSC and VOC would be improve. Thus the NPG can be a good 

candidate for back electrode of HTM-free perovskite solar cells. 
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