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Abstract 

The emphasis of this review is particularly on multivariate statistical methods currently used in quantitative structure-

activity relationship  (QSAR)studies.The mathematical methods for constructing QSAR include linear and non-linear 

methods that solve regression and classification problems in data structure. The most widely used methods for the 

classification or pattern recognition; are principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the 

exploratory data analysis methods. The regression analysis tools are artificial neural network (ANN), principal component 

regression (PCR), partial least squares (PLS) and classification and regression tree (CART). Also some pattern recognition 

approaches of k nearest neighbor (kNN), the soft independent modelling of class analogy (SIMCA) and support vector 

machines (SVM) have been described .Furthermore, different applications wererepresented for further characterization of 

these techniques. 
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Introduction 

QSAR 1-4 attemptsto find a simple quantitative equation that 

can be applied to predict some property from the molecular 

structure of a compound. Results of measurements on a 

number of objects (descriptors and biological activity) are 

usually arranged in a matrix, which is called a two-way 

multivariate data table. Multivariate statistical methods are 

needed to understand of multidimensional data in its entirety. 

This equation relatesthe biological effects (i.e. the activity) and 

the chemistry (i.e. the structure) of each of the chemicals. A 

descriptor or molecular property is any number that describes 

the molecule. Each molecular descriptor is able to account a 

small part of the whole chemical information contained in the 

real molecule. Representing molecules in the space formed by 

these numbers (molecular descriptors or properties) result in 

the multivariate chemical space. There are a large number of 

molecular descriptors and structural fingerprints that have 

been widely used in substructure/similarity searching, 

clustering, classification, and other statistical learning 

approaches of toxicological and pharmacological properties of 

samples 5, 6. The aim of applying variable selection methods is 

to optimally selecting a subset of molecular features that 

include necessary information, decrease noise and remove 

redundant descriptors which are not relevant to the activity 

prediction 7, 8. Then, one would be able to develop more 

accurate and efficient computational tools and it can help 

clarifying the relationship between the structure of a 

compound and its biological activity. Statistical models 

attempts to find the equation parameters, which are weights 

of known descriptors. Molecular descriptors have a key role in 

chemistry, toxicology, risk assessment, ecotoxicology, 

pharmaceutical sciences, environmental protection policy, 

health research, and quality control. Any QSAR model 

development has an iterative nature, until enough information 

about a class of compounds has been achieved so as to either 

design compounds with the preferred activity profile, or to 

conclude that such a profile cannot be reached. The following 

steps can be regarded: First is to define the problem, i.e. 

selection of the biological activities of interest, choice of 

structural domain (structural class) and the choice of structural 

features to be varied. The second one is a quantitative 

description of the structural variation. The third is choosing the 

type of the model for the QSAR, i.e. a linear, quadratic 

polynomial, hyperbolic or exponential model, etc.  It follows 

the selection of compounds (series design), and further stage 

is synthesising and biological testing.  Data analysis, and 
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validation, can be the next that interpretation of results, and 

proposal of new compounds is situated at the end.  

Effectiveness of a QSAR modelling and compound classification 

tool depends on several, sometimes conflicting, requirements 

in modern drug discovery and development processes. The 

complexity of these necessities has been quickly growing in 

recent years. Some of them are able to handle a vast number 

and diverse types of descriptors, and molecular diversity (e.g., 

multiple mechanisms of action). Also, they have high accuracy 

of prediction,  model interpretability, and computational 

efficiency 9. The major objective of QSAR 10 analyses is to 

develop predictive models which have applications in 

computer-aided drug discovery and many other fields. A 

prerequisite of applying a model in external predictions is to 

establish and validate its predictive power. Model internal 

validation is usually performed using leave one out (LOO) 

cross-validation which yields an overoptimistic estimate of 

predictive ability 11. External validation is used now as a “must 

have” tool to evaluate the reliability of QSAR models 1. In this 

method, typically the total data set is randomly split into a 

training set and a test set. Training set is used to develop QSAR 

models and then are used to predict activity of the test set. 

This approach has two faces. The advantageous part is that the 

test set compounds are “new” to the models as were excluded 

from the model development procedure, especially from the 

variable selection. The disadvantageous part is that random 

dividing the overall set has not any rationale for selecting test 

set chemicals. So, the rational division algorithms such as 

Kohonen Self- Organizing Map method 12, the Kennard-Stone 

method 13, have been created which may be able to 

“intelligently” split data sets into training and test sets to 

produce more predictive models. The rational splitting of data 

into training and test sets is more important for smaller data 

sets than large ones.  Random selection works well for large 

data sets but causes significant instability for small data sets, 

especially if there are outliers. Previous studies have shown 

that the rational division algorithms does better to the simple 

random splitting and activity sorting methods 14, 15.Although it 

is not clear which rational division method is the most useful 

due to conflicting results 16, 17. Interpretation of created 

models gives a viewpoint of the chemical space in proximity of 

the hit compound. In the drug discovery pipeline, precise QSAR 

models built on the basis of the lead series can aid in 

optimizing the lead structures 18. 

In this review, we discuss several important and the most used 

methods of multivariate statistical analyses in QSAR. These 

approaches enclose linear and nonlinear regression methods, 

and supervised and unsupervised pattern recognition 

approaches in developing QSAR models together with 

presentation of useful practical applications.  

Background 

The appearance of QSAR is on the basis of the assumption 

expressed more than a century ago by Crum- Brown and 

Fraser (1868) that states that a substance acts as a function of 

its chemical structure. This resulted in the idea that similar 

structures show similar biological properties and a small 

change in a chemical structure is along with a proportionally 

small shift in biological activity 19.  

Within the following hundred years, attempts of researchers 

were to formalize some of those relationships. Richardson 

(1868) expressed that the toxicities of ethers and alcohols has 

an inverse relation to their water solubilities. Richet (1893) 

established a relationship between the narcotic effect of 

alcohols and their molecular weight.Overton (1897) and Meyer 

(1899) independently demonstrated that the narcotic action of 

a lot of compounds was dependent on their oil/water partition 

coefficients 20. 

In 1935, Louis Hammett tried to describe the relationship 

between structure and property. He proposed a correlation 

between reaction rates of para- and meta-substituted 

derivatives of benzoic acid in alkaline hydrolysis and the 

positive type of substituents (i.e. the changes in equilibrium 

constant by substitution) eq. 1.  

Log �
�� = �	(1) 

Equation (1) is the Hammett free-energy relationship, where k 

is the reaction rate constant, σ is substituent constant, and ρ is 

the reaction constant. The above relation is applied as a 

reference and ρ=1, so the σ values for a host of substituents 

can be determined and later on, used to different reactions 

whereby ρ can be computed.  

Later modifications and improvements to this approach were 

performed by Hansch, and Fujita et al. At the time of short 

collaboration of Hansch and Fujita in the early 1960s, they 

presented timeless guidelines as to how to translate 

differences in chemical structures into those features that 

relate to differences in their biological properties. In reality, 

the foundation of QSAR as a practical tool of drug design led 

by the pioneering works of Hansch and Fujita in the mid-1960s 
21, 22. Hansch, Fujita et al. 23 in 1962, published their study on 

the structure–activity relationships of plant growth regulators 

and their dependency on Hammett constants and 

hydrophobicity. The delineation of Hansch models resulted in 

explosive development in QSAR analysis and related methods. 

In the same years, Free and Wilson (Free & Wilson, 1964) 

developed a model of additive substituent contributions to 

biological activities, giving a further push to the development 

of QSAR strategies. At the end of 1960s, a lot of structure–

property relationships were proposed both on substituent 

effects and indices demonstrating the whole molecular 

structure. Derivation of these theoretical indices was from 
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topological representation of molecule, mostly applying the 

graph theory meanings, and then usually called 2D descriptors. 

Balaban 24, Randic 25, 26, and Kier et al. 27 did fundamental 

works led to further significant developments of the QSAR 

approaches based on topological indices (TIs). Since then, 

along with the increasing knowledge in chemistry and the 

power enhancement of computers, researchers are developing 

and applying more and more QSAR/QSPR models. QSAR/QSPR 

development is now an important division of chemometrics 

that is the science of the application of mathematical or 

statistical methods to chemical data. Linear multivariate 

methods such as principal components analysis (PCA) have 

now wide applications in medicinal chemistry and related 

fields for developing structure-activity relationships (SAR). In 

addition to linear methods, non-linear methods can provide 

useful information about the relationships in the data. Some of 

non-linear methods available for multivariate data analysis, are 

very beneficial for the reduction of dimensionality and 

visualization of multivariate data 28.The aim of developing a 

QSAR equation is to realize a correlation between biological 

and chemical data attained by multiple linear regression (MLR) 
29, sometimes also called ordinary least squares (OLS) 30. 

Techniques such as principal component regression (PCR) 31 

and partial least squares (PLS) 32 are called latent variable 

based techniques. MLR is considered as a “hard” model, while 

SIMCA (soft independent modelling of class analogy) and PLS 

are regarded so as to “soft” modelling techniques 33. 

Generally, QSAR modelling tools provided from statistics, 

machine learning, etc. has traditionally satisfied demands. 

Some of familiar examples comprise decision tree (DT, or 

recursive partitioning) 34, artificial neural network (ANN) 35, 

PLS, k-nearest neighbours (kNN) 36, linear discriminant analysis 

(LDA) 37, and support vector machines (SVM) 38. In general, 

linear methods such as PLS, MLR, and LDA may not be 

appropriate for dealing with multiple mechanisms of action. 

Following the text, two general categories have been selected 

for the methods: pattern recognition, and regression methods. 

Although, several approaches are able to modelling both 

clustering and regression problems like PLS and ANN. Herein, 

pattern recognition methods include HCA, PCA, LDA and 

SIMCA. The other approaches can solve regression alone or 

plus pattern recognition problems. 

Pattern recognition methods  

Hierarchical cluster analysis 

Depending on the existence of a training set, a pattern 

recognition technique can be either supervised or 

unsupervised. Exploratory data analysis (EDA) and 

unsupervised pattern recognition are methods commonly 

applied to make simpler and gain better overview of data 

structures. The major EDA technique is PCA. Other 

unsupervised pattern recognition approaches can be used for 

preliminary evaluation of the information contents in the data 

tables, such as cluster analysis (CA). Clustering or cluster 

analysis is used to natural grouping of samples in clusters that 

are not known beforehand, with a common property 

characterized by the values of a set of variables. It is therefore 

an alternative to PCA for describing the structure of a data 

table. In CA, samples are grouped based on similarities without 

regarding the information about the class membership.  In 

QSAR modelling, it can be used to check out the homogeneity 

of data, identify some unusual data points, detect patterns, 

and represent potentially interesting relationships in the data. 

Because of the effect of different scales of the variables, a pre-

processing of the data is required. CA groups objects 

consistent with a similarity metric, which can be distance, 

correlation or some hybrid of both. This method is on the basis 

of idea that the similarity has an inverse relation to the 

distance between samples. So, In CA, the distances (or 

correlation) between all samples are computed using a certain 

metric such as Euclidean distance, Manhattan distance, etc. 

Different clustering algorithms can be used to grouping of the 

samples, depending on the criteria considered to define the 

distance between two groups (linkage criterion): single 

(nearest neighbour), complete (furthest neighbour) or average 

linkages, centroid method, Ward’s method, etc. There are two 

methods of representing the data by clustering 39. First is 

depiction by the tree, in the form of a dendrogram, in a 

hierarchical clustering of objects, Figure 1. Its primary aim is to 

represent the data so as to emphasize its natural clusters and 

patterns. The calculated distances between samples are 

transformed into a similarity matrix which its elements are 

similarity indexes. The linkage rule specifies the distance 

between observations as a function of each two distances 

between samples. Cutting the tree is carried out at a level 

where a partitioning will result a clustering at a selected 

precision. The second approach of CA is to make a table 

including different clusterings. This table does not essentially 

yield a complete hierarchy thus, the indication is called non-

hierarchical. There are two types of hierarchical clustering. In 

the agglomerative manner or “bottom up” approach, each 

object begins in its own cluster, and pairs of clusters are 

merged as one goes up the hierarchy. In divisive way, or “top 

down” approach, beginning of all observations is in one 

cluster, and divisions are carried out recursively as one goes 

down the hierarchy. If a CA is applied on a data matrix, a set of 

clusters can always be obtained, even without existing any 

actual grouping of the objects. Thus, a validation step seems to 

be necessary. There is a huge literature on validity of clusters. 

One is based on the permutation testing to see if there isreally 

a non-random tendency for the objects to be grouped 

together. In QSAR modelling, when data samples are diverse, 

HCA can be performed to manifest the natural clustering in the 

data set to build separate models 40.Overall, the main feature 

of CA can be regarded as grouping pattern depends on the 
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distance measure and linkage rule, and the result should be 

handled with care. 

Principal Component Analysis 

PCA is a technique of identifying patterns in data, and 

expressing data in such a way as to emphasize their similarities 

and differences. It is also likely to be the oldest and the most 

popular method in multivariate analysis.  PCA is a useful data 

compression technique, by reducing the number of 

dimensions, without much loss of information that has found 

applications in fields such as outlier detection, regression and 

is a common technique for finding patterns in data of high 

dimension 41, 42. Its aim is to represent of multivariate data into 

a low-dimensional space spanned by new orthogonal variables 

called principal components, PCs, which are obtained as linear 

combinations of the initial variables by maximizing the 

description of data variance. The first principal component, 

PC1, is oriented in the direction of maximum variance of the 

original data set. PC2 is defined orthogonal to the first PC to 

describe the remained maximum variance. All subsequent 

components are calculated orthogonal to the previously 

chosen ones and contain the maximum of leftover variance. 

Most of the information gathered in the data set is described 

by only the first few components and noise and redundancy is 

removed. For PCA to work properly, it needs to subtract the 

mean from each of the data dimensions. There are three most 

often used numerical approaches for PCA decomposition, 

besides of different names are fully equivalent: PCA, singular-

value decomposition (SVD), and eigenvector–eigenvalue 

extraction. For any centred data matrix X (m, n), corresponding 

to m samples and n descriptors, the PCA decomposition can be 

presented as follows: 

XXXX = TPTPTPTPTTTT(2) 

Orthogonal projection onto a specific PC results in a ‘score’ for 

each object (Figure 2). The matrix T (m, r), is the matrix 

containing the data scores, represents the position of the 

compounds in the new coordinate system formed by PCs in 

the axes. P is known as loading matrix of dimension (n, r) that r 

is the mathematical rank of the data that is equal to min (m, 

n). Columns of P describe formation of PCs from original 

variables (old axes).  

The correlation between a component and a variable 

estimates the information they share and is called loading. The 

number of original variables, n, is usually much more than 

significant components, which represent degrees of data 

compression. With the higher degree of correlation among the 

original variables the compression of the studied data set will 

be better, which outcomes in a smaller number of significant 

principal components. Cross-validation procedure such as the 

bootstrap and the jackknife can be applied to define the 

number of significant PCs 42. Mathematically, PCA depends 

upon the eigen-decomposition of positive semi-definite 

matrices and upon the singular value decomposition (SVD) of 

rectangular matrices: 

X = USVX = USVX = USVX = USVTTTT(3) 

SVD decomposes X into three matrixes of U, S, and V, where U 

(m × r),and V (n × r) are orthogonal eigenvector square 

matrices and S (r × r) is a diagonal matrix containing the 

singular values (equal to the square root of the eigenvalues). T 

is generated by multiplying U and S, and V is the loading matrix 

P. Each eigenvalue represents the amount of variance in the 

initial data explained by the corresponding principle 

component. The total data variance is shown by total sum of 

eigenvalues. The eigenvector with the highest eigenvalue is 

the principle component of the data set. In QSAR studies, T 

matrix represents information about the objects, while the 

loading matrix, P, gives information about the original 

molecular descriptors. Outliers are observations that appear to 

depart from the bulk of the major part of data. Outliers can be 

accommodated or rejected in the modelling process. If 

accommodation is chosen, robust estimation methods are 

necessary for the model building. Robust estimation reduces 

the influence of outlying observations in the model. Least 

squares techniques are not robust against outliers. Most 

multivariate methods applied to chemical data are based on 

least squares (LS) techniques. PCA similar to any least square 

method is very sensitive to outliers. Outliers could change the 

direction of principal components and cause in the model 

inaccuracy (Figure 3). Outliers are observations that appear to 

depart from the bulk of the major part of data.  Usually they 

do not fit the model, or are weakly predicted by it 43. However, 

developing classic least squares models including outliers will 

likely produce instable models 44. Presence of outliers from a 

QSAR could be related to many reasons. Typically, however, 

the deviating behaviour of such compounds can be real, such 

as a different mechanism of action from other compounds 

which are well modelled by the model, or due to errors in 

structure representation or biological activity annotation 45. 

The robust PCA methods aim to obtain principal components 

that are not much affected by outliers. Many methods have 

been proposed to gain this goal. These methods are generally 

based on three different approaches: (i) techniques using a 

robust covariance matrix to take a set of robust eigenvectors 

and eigenvalues. (ii) methods generally based on projection 

pursuit that directly provide robust estimates of eigenvectors 

and eigenvalues and do not need to obtain the robust estimate 

of the covariance matrix, (iii) a hybrid of both.  

Many techniques have been proposed based on projection 

pursuit (PP), 46. The type of projection index used is the main 

difference among them. ROBPCA is a popular robust PCA 

technique that combines ideas of both projection pursuit and 

robust covariance estimation of data location and covariance 

in a low-dimensional space. This method is also very well 

suited for the analysis of high-dimensional data and has wide 
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applications to multivariate calibration and classification 

problems. (i) perform PCA for preliminary data dimensionality 

reduction; (ii) compute the being outlier measure (i.e., the 

projection index) for every object and construct the initial H-

subset (H0) containing h objects with the smallest being outlier 

measure (the choice of h determines the robustness of the 

method and its efficiency; the default value of h is set to 75% 

of the total number of objects in the data); (iii) perform a 

further data dimensionality reduction by projecting the data 

onto k-dimensional subspace spanned by the first k 

eigenvectors of the empirical covariance matrix obtained for 

objects in H0; (iv) compute the robust data centre and 

covariance in the k-dimensional subspace and apply the re-

weighted MCD estimator to the projected data. 

Kernel PCA as a non-linear extension of PCA (using the kernel 

trick) has proven influential as a preprocessing step for 

classification algorithms. It can also be considered as a non 

linear feature selection. Obviously, besides of abilities of linear 

PCA, it cannot always perceive all structure in a given data set. 

However, by the use of useful nonlinear features, it is possible 

to extract more information. Kernel PCA is very well suited to 

extract interesting nonlinear structures in the data 47.Kernel 

PCA first maps the data into some feature space F via a 

(usually nonlinear) function ɸ and then performs linear PCA on 

the mapped data. 

In a study a data set contains a set of 2548 compounds 

reported as P-glycoprotein (P-gp) inhibitors and non-inhibitors 

was gathered from two literature sources 48.Threshold values 

for inhibitors and non-inhibitors were set based on the IC50 

values and on the percentage of inhibition. Compounds with 

an IC50 ≤15 μM, or >25−30% of inhibi[on were regarded as 

inhibitors while, compounds bearing IC50 and % of inhibition 

values of ≥100 μM or <10−12% were categorized as non-

inhibitors. Also, the authors added 3D structures of 797 

inhibitors and 476 non-inhibitors from a published data set. 

They used MDRR (multidrug-resistance ratio) values measured 

in adriamycin-resistant P388 murine leukemia cells for 

classification. With MDRR values greater than 0.5 compounds 

were assigned inhibitors, whereas molecules with lower or 

equal to 0.4 MDRR values were categorized as non-inhibitors. 

After some preprocessing on compounds such as elimination 

of duplicated structures, a data set of 1608 compounds, 

comprising 1076 inhibitors and 532 non-inhibitors was 

remained. A binary variable (1 for inhibitor, 0 for non-inhibitor) 

was used to indicate the activity of the compounds. The data 

set was divided into training and test set using D-optimal onion 

design (DOOD) that resulted in 1201 training (841 inhibitors, 

360 non-inhibitors) and 407 test compounds (235 inhibitors, 

172 non-inhibitors) (internal test set). The calculated 

descriptors were 62 2D descriptors implemented in MOE. They 

comprised physicochemical properties, atom and bond counts, 

and pharmacophoric features. In addition, a set of 166 MACCS 

fingerprints and a set of 307 substructure fingerprints were 

generated. A PCA on the whole data set was carried out using 

the software SIMCA-p. A set of representative machine 

learning methods such as SVM, kNN, DT, RF, and BQSAR was 

used for ligand-based classification. PCA was conducted to 

examine potential clusters and the coverage of the chemical 

space of the P-gp ligands. The first two principal components 

explained71.7% of the variance in the data set. A scatter plot is 

presented, in Figure 4a that represents the distribution of the 

compounds according the first two principal components. A 

distinct cluster of inhibitors at the right top corner could be 

seen, which mainly included cyclopeptolide derivatives, which 

are chemically different from the rest of compounds. 

Furthermore, there was quite a fine separation between 

inhibitors and non-inhibitors, which motivated for the 

development of classification models. In order to figure out 

the effect of the descriptors on the first two PCs, the loading 

plot was analyzed (Figure 4b). Majority of the inhibitors are 

highly influenced by the descriptors that hold hydrophobic 

information, e.g. the number of aromatic bonds or the 

partition coefficient (logPo/w). Additionally, the high 

contribution of LogS to non-inhibitors demonstrates that non-

inhibitors have more hydrophilic properties than inhibitors. 

The hydrophobic requisite of P-gp inhibitors can be explained 

by the need of diffusing through the cell membrane in order to 

effectively bind to the hydrophobic active site of the protein. 

Applicability domain (AD) analysis was performed on the basis 

of the ED approach. Also an additional AD experiment was 

performed using a set of 986 FDA approved drugs extracted 

from DrugBank. The scoring plot of the first two principal 

components obtained by PCA of the FDA approved drugs, as 

well as the training and both test sets is provided in It had 

been observed that 973 compounds were in the domain of the 

training set and only a small amount (13 compounds) of the 

FDA drugs were situated outside. The scoring plot of the first 

two principal components obtained by PCA of the FDA 

approved drugs, as well as the training and both test sets is 

provided in Figure 5. 

There are also many other applications of PCA in different 

fields from drug design to toxicity assessments. PCA also can 

perform variable reduction by retaining the variables 

containing the largest loadings in the initial components and or 

deleting variables with the largest loadings in the last 

components 49, 50.  

Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA), initially proposed by Fisher 

in 1936 37, is a supervised pattern recognition method and one 

of the oldest and most studied ones. From a probabilistic point 

of view, it is a parametric method, because of its basic 

hypothesis that is in each category the data follow a 

multivariate normal distribution. An assumption in LDA is that 

the dispersion of the observations for all the classes is the 

Page 5 of 38 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

same, that is, the variance/covariance matrices of the different 

categories are equal. It mostly has applications in classification 

problems and also for dimensionality reduction. It works on 

data that has categorical target properties and molecular 

descriptors that are continuous variables. As a linear 

technique, its mission is to find the decision boundaries 

separating the classes of a target property in the 

multidimensional space of the variables with linear surfaces 

(hyperplanes). In LDA, while between-class variance is 

maximized the within-class variance is minimized. In the case 

of two classes where only two variables are measured, the 

best straight line in two dimensions separates the associated 

regions corresponding to each class. The best hyperplane is 

defined by a linear discriminant function which is a linear 

combination of molecular descriptors: 

� =  ∑ �������� (4) 

where L is the discriminant score (function) or canonical 

variate, xi,. . .,xk are the independent variables and their 

corresponding weights are wi,. . ., wk. As depicted in Figure 6, L 

represents the function where a set of data points is projected 

onto. This function is achieved by means of optimizing the 

weights, wi, to maximize the ratio of the between-class to the 

within-class variance to get the largest class divisions. Equation 

26evidences that there is a linear combination of the variables 

to define a latent vector, suchas in the case of PCA or PLS 

regression. However, while PCA selects directions with 

maximal structure among the data in a lower dimension, LDA 

recognizes directions which maximize the separation among 

the given classes. Determining the class of a test compound is 

performed by calculating the Mahalanobis distance of the 

chemical from the gravity center of each class 51, 52. The 

Mahalanobis distance between an independent variable (xi) 

and the data center (x̅) is defined as  

����� =  [��� − ��������� ���� − ���]".$(5) 

wherei is the index of a specific chemical and (XT
X)−1 is the 

covariance matrix. The center is determined by the arithmetic 

mean vector. When the test compound is located nearest to 

the gravity center of its actual class, then it is properly 

classified. Otherwis, it would be incorrectly assigned to the 

other class with the smallest Mahalanobis distance. 

Quadratic discriminant analysis (QDA) is similar to LDA and 

establishes parabolic boundaries in which for each class a 

different covariance matrix is possible. In QDA, distribution of 

objects in the space is less subjected to limitations compared 

to LDA. It is also possible to consider a method due to Jerry 

Friedman known as regularized discriminant analysis (RDA). 

RDA can be thought sort of a trade-off between LDA and QDA. 

RDA shrinks the separate covariances of QDA towards a 

common covariance as is in LDA. RDA can be considered as 

being the most general of the three methods.  

There are two concepts to examine the performance of a QSAR-

based classification model: sensitivity and specificity 53. The ability 

of the model to detect known active and non-active compounds are 

called sensitivity and specificity respectively. The sensitivity 

represents the percent of the chemicals tested positive that are 

identified correctly as positive by the QSAR model. Thus, a model 

showing a high sensitivity has consequently a high true positive rate 

and a low false negative rate. The percent of the chemicals tested 

negative and are correctly identified as negative by the QSAR model 

is specificity. A high specificity of a model shows a high true 

negative rate and also a low false positive rate. To investigate the 

classifier model performance, several statistical tests have been 

used by scientists. Such tests involve plotting of receiver operating 

characteristic (ROC) curve and computation of classification 

accuracy, F-measure and other indices 54. ROC curve is a tool that is 

used to compare the performance of different classification models. 

In this graph, the x-axis is false positive rate (specificity) and the Y-

axis is true positive rate (sensitivity). A model in its best possible 

condition namely a high true positive rate and a low false positive 

rate would yield a point in the upper left corner of the ROC. On the 

other hand, when the model is not discriminating a straight line at 

an angle of 45 degrees from the horizontal line, i. e. equal rates of 

true and false positives would obtain 55. F-measure mentions the 

harmonic mean of recall and precision. Recall assigns the accuracy 

of real prediction and precision refers to the accuracy of an 

obtained class. Recall and precision with higher values implicate 

higher F-measure value which consequently represents better 

classification ability of the model 56. 

Soft independent modelling of class analogy 

(SIMCA) 

This model, proposed by Wold et al. in 1976, was the first 

class-modelling method introduced in the literature 57. It is a 

supervised soft modelling method. This method runs a 

whole principal component analysis or PLS regression on the 

entire dataset so as to recognize groups of samples. A SIMCA 

model contains a set of PCA models, one for each class in the 

data set. Local models are then determined for each class. 

Only the significant components are retained. The number of 

components in each class is determined by cross-validation. 

There may be a different number of principal components for 

each class. The number depends on the data in the class. The 

model is completed by defining boundary regions for each PCA 

model. This is shown graphically in Figure 7. Each PCA sub-

model contains all the usual pieces of a PCA model: mean 

vector, scaling information, pre-processing such as smoothing 

and derivatizing, etc. In the construction of the SIMCA 

classification model, the standard deviation of residues is 

calculated for each class separately. In addition, variances of 

samples in each axis for the space described by the principal 

components are computed. These two measures are applied 

for the classification of new samples 58. An object is put in a 

class on the basis of the residual distance, rsd2, from the model 

which is representing the class itself: 
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%�&�' =  ��(�&� − ��&��'                         (6) 

%)*' =  ∑ +,-,./
�0 1/� 23∑ ��45 − �65�'05�� (7) 

where �(�&� is coordinates of the object’s projections on the 

inner space of the mathematical model for the class, xigi is 

object’s coordinates, p is the number of variables, and Mj is 

the number of PCs significant for the j class 59. The residuals 

from the model can be computed from the scores on the non-

retained eigenvectors.Each new sample is classified to one of 

the built class models based on the best fit to the related 

model. The classes present in the training set should consist of 

as many objects as representing the diversity of the class. Any 

new object can belong to one of the classes, or may be an 

outlier to all the classes. Outliers are defined as observations 

outside the class boundaries. Aliens are objects inside the 

boundaries that do not fit in to the class. An object may be a 

member of more than one class if the classes are overlapping. 

For a specified class, the model then represents a line (for one 

PC), plane (for two PCs) or hyper-plane (for more than two 

PCs). 

An attractive aspect of SIMCA is that a principal component 

mapping of the data has been done. Therefore, samples that 

may be described by many variables are mapped onto a much 

lower dimensional subspace to be classified. When an object is 

similar to the other objects in a class, it will locate near them in 

the PC map described by the samples forming that class. 

Another benefit of SIMCA is that a test sample is only belonged 

to the class for which, there is a high probability. While the 

residual variance of an observation exceeds the upper limit for 

any modelled class in the data set, the sample is not assigned 

to any of the classes owing to the fact that it is either an 

outlier or belongs to a class that is not represented in the data 

set. In addition, there would be a sensitivity for SIMCA to the 

quality of the data used to generate the PC models. So, there 

are recognitions to measure the quality of the data, for 

instance the modelling power and the discriminatory power. 

The modelling power delineates importance of a variable to 

incorporate the PCs to model variation, and discriminatory 

power describes how well the variable helps the PCs to classify 

the samples in the data set. If a variable contributes only noise 

to the PC models it would cause low modelling power and low 

discriminatory power then usually is deleted from the data. An 

important consideration in SIMCA is that the number of 

samples might be as few as 10 samples per class, and there is 

no limitation on the number of variables.As the number of 

variables may be more than the number of samples in 

chemical data sets. Many of the standard discrimination 

approaches would violate in these situations due to problems 

arising from the collinearity and chance classification. A main 

drawback of this algorithm is due to its sensitivity to data 

scaling and performance. 

There are some applications of SIMCA scheme which has been 

used e.g. for modelling of in vitro hepatotoxicity by QSAR 60. 

Also, in 3D-QSAR studies, SIMCA was used as a categorization 

tool 61, 62.  

Among different classification approaches, e.g., LDA, QDA, and 

kNN, etc., SIMCA can be regarded as unique, in that it gives 

models of the classes. The resulted score plots present better 

indication of the data homogeneity in each class. For instance, 

they can be used to recognizing strong clusters in any of the 

score plots, resulting to such class that should be further split 

into subclasses. 

 

Regression methods 

Multiple linear regression 

In a simple regression analysis, the relationship, called the 

regression function, is studied between a dependent variable, 

y and a single independent variable x, given a set of data that 

includes observations for both of these variables for a 

particular population. A regression function linear in the 

parameters (but not necessarily in the independent variables) 

will be referred to as a linear regression model. Otherwise, the 

model is called non-linear. Linear regression models with more 

than one independent variable are referred to as multiple 

linear models (MLRs). By fitting a straight line through the 

points, one can perform a simple linear regression analysis. 

The model is written in the following form; 

7� =  8" +  8��� +  :�        (8) 

Regression function also includes a set of unknown parameters 

bi, where b0is the intercept and b1is the slope of the line. Using 

the least squares criterion to estimate the equations, one can 

minimize the sum of squares of the differences between the 

actual and predicted values for each observation in the 

sample. That is, ∑ :�  ' will be minimized. In MLR, the 

relationship between the dependent variable and the 

explanatory variables is demonstrated by the following 

equation: 

7� =  8" +  8���� +  8'�'� + ⋯ +  80�0� + :� (9) 

whereb0is the constant term and b1to bpare the coefficients of 

the p predictor variables. The regression equation can be 

represented in matrix notation as follows: 

< = �= + >(10) 

where yyyy is an n × 1 vector of response values, XXXX is an n × (p + 1) 

matrix of independent variables, and bis a (p + 1) × 1 vector of 

regression coefficients 63.When XXXX is of full rank the regression 
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coefficients can be resolved by the least-squares solution 

represented as: 

= = ����� ���y(11) 

Once bis determined, by using equation 11one can be able to 

estimate the dependent variable for other compounds. 

MLR is a popular solution to regression problems in QSAR. 

There are at least three weaknesses in using MLR in the field of 

QSAR. Predictor variables, xxxx, is better to be mathematically 

independent (orthogonal), that is rank of XXXX    is equal to the 

number of XXXX-variables. Then MLR is sensitive to correlated 

variables. If MLR is performed to data sets containing 

significant correlations (collinearities) among XXXX-variables, the 

estimated regression coefficients get unstable. For instance, 

they may be much larger than expected, or may show wrong 

sign. So, there should be a minimal intercorrelation among the 

variables. A solution for this problem can be using long and 

lean data matrices so that the number of objects substantially 

is more than descriptors to decrease multicollinearity among 

variables. A minimum of 5 cases per predictor is usually 

recommended 14. The usual approach taken with MLR and 

correlated X variables is to choose a subset of variables that 

are not so well correlated. The quality of a MLR can also be 

judged by looking at the standard error of the regression 

coefficients 28. One should be aware of the pitfalls of using 

regression coefficients to argue the relative contribution of a 

descriptor to the measured activities which is just possible, 

after normalizing the equation 64. MLR is on the basis of the 

assumption that each variable is important in the model, in 

other words, the model dimensionality is known a priori. Then 

the mission is to find out the “best subset of variables”, giving 

the optimal model in MLR. But testing all possible variable 

combinations is not practical when the number of variables is 

too large. A possible remedy for this problem can be selecting 

several orthogonal variables either using some preliminary 

knowledge or using a variable selection system. Several 

approaches for variable subset selection have been proposed 

in QSAR. Among them,the most widely applied are 

evolutionary and genetic algorithms, stepwise regressions, 

forward selection, backward elimination, and simulated 

annealing 65. Consequently, three alternative procedures are 

commonly used, namely, forward selection, backward 

elimination and stepwise regression. These algorithms prevent 

all subset searches by following certain rules in conducting the 

search so are called “directed search” algorithms.  

Genetic and evolutionary methods 

Evolutionary algorithms have been used to relating structural 

information to activity or property information in both a 

quantitative 66, 67 and a qualitative manner especially in the 

QSAR model developments primarily as descriptor selection 

approaches. In these algorithms, a random process is usually 

used to generate an initial population of individual solutions. 

To investigate the fitness of each individual, a 'fitness function' 

is defined. It takes a candidate solution as input and yields a 

numeric score. Then, under application of selection criteria 

individuals are selected based on their fitness score for 

breeding. Lastly, breeding functions are used to return new 

solutions, which are replacements for the parent ones. The 

evaluation of the new solutions continues in a cycle that either 

a fixed number of cycles or a particular criterion is met 68. 

There are growing reports of successful applications of 

evolutionary methods to docking, conformational analysis, drug 

dosing strategies, similarity searching, pharmacophore 

identification, feature selection, QSAR model buildings, 

combinatorial library design, and de novo design that anticipates a 

bright future for evolutionary methods in drug discovery69, 70.  

Among evolutionary algorithms, genetic algorithm is a 

stochastic optimization method mimicking the selection 

phenomenon in nature. It means, species with higher fitness 

can prevail in the next generation. Two tools of crossover 

together with random mutations of chromosomes are 

determining in the selection of surviving species. GA is 

governed by biological evolution rules.  

As feature selection tools, GAs first applied in 199266. Rogers 

and Hopfinger used GAs in a similar manner to choose 

functions of one or more features in a method they named the 

genetic function approximation (GFA) 71.Tests on the Selwood 
72 and other datasets showed that GFA could produce multiple, 

high-quality QSAR models quickly. Some recent applications of 

GFA can be found here 73, 74. 

Ridge regression 

One of the various regression procedures which has been 

described for the highly correlated variables is ridge regression 

(RR). The regression coefficients in the RR procedure are 

obtained from equation 6;  

���� + kC�b = ��<   (12) 

Where XXXX is the n×p matrix of the standardized xxxx variables, k is 

a positive number (usually 0 < k < 1) and IIII is the p×p identity 

matrix. If compared with least square equation, it is revealed 

that a constant value (kC) is added to the diagonal elements of 

the ��� matrix of the normal equations. Note that biased 

estimates of the regression coefficients are obtained in RR as a 

constant k is added to the elements. In order to increase the 

stability of regression coefficients, it is needed to introduce 

some bias in RR. As k values increase, it results in an increase 

in bias estimates, but the variance decreases to a large degree. 

Also, as the residual sum of squares, SSRCS, with increasing of 

k value increases, R2 decreases. Hoerl and Kennard 75 

suggested an examination of a ridge trace which is a plot of 

the regression coefficients for different values of the bias 

parameter to determine k value. As the value of k is 
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determined, the regression coefficient should be stabilized and 

have the proper sign. Bear in mind that the reduction in R2 

should not be too large. This slight reduction can be evaluated 

from a plot of R2 against different k values.The ridge regression 

is a means of regularising the regression (which is an "Ill-

posed" problems (Tikhonov) into a "well posed" problem that 

is more stable.  It allows a balance to be found between model 

complexity (that can lead to overfitting) and bias (where to 

model is too simple to explain the relationships in the data). 

Ghasemi et al. 76 presented a QSPR studyfor estimating the 

incorporation of organic hazardous of 40 solutes 77 in cationic 

surfactant (CTAB) by application of the structural descriptors 

and MLR method. A total of 54 molecular descriptors were 

calculated to describe compound structural diversities. A 

genetic algorithm procedure was used for the variable 

selection and 27 molecular descriptors were selected. Then,a 

MLR analysis was performed by using stepwise method for 

model building between the selected molecular descriptors 

and micellar solubility (Ks). After regression analysis, the best 

equation wasselected on the basis of the highest multiple 

correlation coefficient (R2) and simplicity of the model. As a 

result, a total of five molecular descriptors were obtained 

which is presented as the correlation matrix in Table 1. It is 

clear that the appeared descriptors in the MLR model are not 

highly correlated. To further evaluate the probable collinearity 

between selected descriptors, ridge traces using different 

lambda values were sketched using ridge function of the 

Statistics Toolbox 3.0 of MATLAB. Toward an expected 

conclusion, the ridge traces using different values of the 

lambda was constructed. The optimum value of the lambda 

was 0.01967 and the RR coefficients for DPLL, HomoE, logP, 

MP and RepE were −0.1009, 0.0020, 0.5695, 0.0640 and 

0.0006, respectively. These results showed that the descriptors 

HomoE and RepE are collinear and have no considerable 

statistical impact on the final equation. The result obtained 

from the multivariate combinations is shown in eq. (13). 

 

logKsKsKsKs = −1.1522 �K0.2901� + 0.0070 �K0.0015�MP + 
0.8089 �K0.0897� log P − 0.1262 �K0.0454� DPLL        (13) 

 

Table 1. Correlation matrix for selected variables by GA  
 logKs DPLLa HomoE

b 
logPc MPd RepEe 

logKs 1      
DPLL -

0.19805 
1     

Homo
E 

-
0.10216 

0.222757 1    

logP 0.86098
9 

-0.23142 -
0.02406 

1   

MP 0.57720
7 

0.477531 0.00777
8 

0.355147 1  

RepE 0.76541 0.145376 -
0.29033 

0.650662 0.823401 1 

a Dipole length 

b Homo energy 

c Octanol/water partition coefficient 

d Melting point  

e Repulsion energy 

 

Tikhonov regularization  

In every multivariate calibration model, as mentioned 

previously we commonly use the following equation: 

< = �= + >             (14) 

Here the common approach for solving eq. 14for an estimation 

of b can be the least squares (LS) solution such as MLR, PLS, or 

PCR. This is normally delineated as a minimization problem in 

the 2-norm of 30, 78 

TUV�‖�= − <‖''�(15) 

Generally, in cases where biased methods are used, they result 

in an overfitted model. However, in order to circumvent this 

problem Tikhonov regularization can be used with;  

TUV�‖�= − <‖'' + X‖Y=‖''�       (16) 

whereL is the representative matrix of values usually 

approximating a derivative operator such as the first or second 

order to generate a smoothed regression vector and k shows a 

scalar that must be optimized.Ithelps to control the shape of 

the regression vector with L 
79, 80 

When minimizing the expression (16) with L = I, it is called 

Tikhonov regularization in standard form and is RR with ridge 

parameter λ. The point is that while eq. (16) represents RR 

when L = I, the standard approach in the chemistry literature 

for determining λ is not to use expression (10), but instead to 

use only a bias measure such as RMSEC, RMSECV, or RMSEV or 

using ridge trace plot 75.Ittries to show in two dimensions the 

effects of nonorthogonality and aims at portraying the 

information explicitly.Hence, it guides the user to a better 

estimate=Z ∗.  When L is not the identity matrix, then eq. (10) is 

said to represent Tikhonov regularization in general form. With 

QSAR data, it is expected that L ≠ I would not be beneficial 

because adjacent molecular descriptors (columns) in X are not 

related in a smoothed way as with spectroscopic data. Since, 

the eq.16minimizes the bias and variance, a harmonizedmodel 

is achieved, that is, the chance of obtaining an over or 

underfitted model is considerably reduced. Therefore, the 

appropriate model identified with eq. (10) forms an L- shaped 

curve by using a harmonious plot. The most desirable 

advantage obtained by RR models is that they are more 

harmonious and parsimonious than models obtained by PLS 

and principal component regression (PCR) when the data is 

mean-centered.  RR is said to have the best bias/variance 

tradeoff, shown by the smallest RMSEC, RMSEV, and 

regression vector norms and the largest calibration and 

validation R2 values 81. 
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J. Forrester and J.H. Kalivasanalyzed using leverages as a 

variance indicator. In all cases, the characteristic L-shaped 

curves were achieved and the same PCR, PLS, and RR models 

were identified as highly harmonious. For instance, points 

composing a PLS harmonious curve would correspond to PLS 

models formed with increasing number of PLS factors. 

Underfitted models which produce the curve parallel to the x-

axis (bias axis) have low variance and high bias values. On the 

other hand, overfitted models have aharmonious curve 

positioned parallel to the y-axis (variance axis) resulting in high 

variance and low bias models. Ideally, the best model occurs at 

the corner of the plotted L-shaped curve and shows the more 

harmonious model providing a good balance between the 

minimization of variance and bias. It is ultimately up to the 

user to select the final desirable model. 

John H. Kalivas et al. 81 carried out a QSAR study on a data set 

consisting of 142 inhibitors of carbonic anhydrase IV (CA IV) 82. 

They used 63 molecular descriptors for modelling. The 

multivariate methods used were PLS, PCR and RR and the 

purpose was to compare modelling methods and select the 

best model for a given data set of compounds and descriptors. 

As shown in Figure 8a, all 63 molecular descriptors have been 

used for the prediction of CA IV by the harmonious RMSEC 

plot. The curve has increased in variance with the slight change 

in the RMSEC bias measuredat 6 or 7 factor PLS models. This 

occurs for PCR in 7 to 10 factor ranges and for RR between 

ridge parameter values 800 and 400. As demonstrated in 

Figure 8b the corresponding RMSEV values are given and the 

optimal models for PLS and PCR, namely, the six factor PLS and 

eight factor PCR models are clearly discerned. Figure 8b 

reveals that while the number of factors increases by one 

resulting in a little improvement for RMSEV values, the 

variance indicator increases. The plot in Figure 8b shows that a 

narrow range for the best ridge parameter value is achievable. 

Itwas mentioned before thatbecause the ridge parameter is 

continuous to infinite decimal places, a range is expected. 

From Figure 8, it is concluded that the RR model with a ridge 

value of 750 provides a good balance of bias and variance. 

Figure 8 and corresponding criteria values listed in Table 2 

show that RR does the best and should be taken into account 

as the more harmonious model. As presented in the Tikhonov 

regularization, specification of the mostactual harmonious 

model needs to a more thorough variance expression for the 

predicted values. 

Table 2. Model values for CA IV. 

Modela No.of descriptors  \8]\' RMSEC RMSEV R2cal R2val ER 

RR(750) 63 0.0721 0.575 0.774 0.870 0.751 0.891 

PLS(6) 63 0.0855 0.585 0.791 0.855 0.747 1.051 

PCR(8) 63 0.0948 0.585 0.795 0.853 0.747 1.170 

RR(6) 8 0.460 0.536 0.671 0.880 0.816 1.036 

PLS(4) 8 0.463 0.546 0.676 0.875 0.813 1.034 

PCR(5) 8 0.464 0.551 0.677 0.879 0.814 1.045 

MLR 8 3.553 0.504 0.700 0.894 0.812 8 

aParentheses contain ridge values for RR and the number of factors for PLS and PCR. 

 

Principal Component Regression (PCR)  

In multivariate analysis, the ordinary least squares regression 

coefficient estimators are generally adopted in fitting a MLR 

model, but estimation of the least squares is sometimes far 

from being perfect. It is well known that the quality of 

prediction by multiple regression is negatively affected by 

correlation between the xvariables (multi collinearities). 

Therefore, the resulted estimate of the vector of regression 

coefficients, bmay have low probability of being close to the 

true value. PCR is a PCA based regression method that is quite 

popular in chemometrics. A heavy use of PCR and related 

procedures for predicting a dependent variable from a large 

number of highly correlated predictors has been made in 

QSAR. In PCR, regression of response variable is carried out on 

the principal components(PCs) instead of initial variables. 

Moreover, only a subset of all principal components is used to 

model building and the important features of original variables 

are retained. These PCs are chosen based on the order of 

variance within the data: eigenvectors related to the higher 

eigenvalues of the samplevariance-covariance matrix of the 

original variables are selected as predictor. In general, a PCA is 

performed on X and only just a subset of all PCs is retained as 

significant. Then, a multiple regression analysis of the response 

variable against the reduced set of principal components is 

performed using ordinary least squares estimation. Thus, the 

main advantage of PCR compared with multiple regression is 

that the number of variables is reduced to only a few 

uncorrelated ones (feature reduction).  

A problem that one may encounter in PCR is discarding of 

minor X-components that probably have high correlation to y. 

One solution may be adding up PCs in the model until yis fitted 

well, if the resulted model also satisfies the (cross-) validation 

procedure. Another strategy is to enter PCs in a reverse order 

of common approach (PC1, PC2 ...). Another way is to calculate 

the correlation coefficient of each PC with y, and enter the PCs 

in descending order of correlation coefficient magnitude. 

There are reports of application of PCR in different fields of 

QSAR 83, 84. Xiao Li et al. correlated the toxicity of PAHs with 

physical and chemical properties QSAR descriptors by PCR 

Method 85. 

Compared to multiple regression analysis, the advantage of 

PCR is that existing collinearities between variables are not a 

disturbing factor, and that the number of variables present in 

the analysis, can be more than the number of observations. On 

the other hand, in PCR and similar methods, including too 

many variables in the PCA step may cause chemical 

interpretation increasingly difficult 28. 

Partial Least Squares (PLS) 
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PLS is a generalization of MLR, and has been developed by 

Wold et al. 86-90. It is occupying a middle ground between MLR 

and PCR, and all of them are special cases of continuum 

regression. Factors found by PCR capture the greatest amount 

of variance in the predictor (x) variables while MLR searches 

for a single factor that best correlates predictor (x) variables 

with predicted (Y) variables. In PLS regression, assumption is 

that both the independent matrix X and the dependent matrix 

Y can be projected onto a low-dimensional factor space and 

there is a linear relation between the scores of the two blocks. 

PLS tries to find factors which both include variance and 

achieve correlation. 3D-QSAR methods such as CoMFA, 

generate a large number of X variables often exceeding 10000, 

while the number of compounds is remained moderate, such 

as, between 10 and 100. So PLS is an appropriate tool for data 

analysis in this case. There are several algorithms for 

calculating the PLS regression model for different shapes of 

the data, such as Non-Iterative Partial Least Squares (NIPALS) 

as one of the most intuitive ways of computing PLS model 

parameters and SIMPLS 91. In PLS regression, the X block of 

independent variables is correlated with the y vector 

(dependent variable) in such a way that the projected 

coordinates, t, are good predictors of y. In other words, the 

dependent variables are included in the decomposition 

procedure. When there are multiple y-variables, scores U and 

loadings C matrices are also computed for the Y-block. Also a 

vector named “inner-relationship” coefficients, b, which 

establishes relation the X- and Y-block scores, must also be 

computed.  There are a number of methods to PLS 

development 30. In NIPALS, scores T and loadings P (similar to 

those used in PCR) are calculated. It computes an additional 

set of vectors identified as weights, w. This addition of weights 

in PLS is necessary to keep scores orthogonal. The aim of 

SIMPLS algorithm for PLS is to maximize the covariance. When 

there is more than one predicted variable (y), both of the two 

algorithms of NIPALS and SIMPLS also work. The original 

NIPALS algorithm below, works with the original data matrices, 

X and Y (scaled and centered). Alternatively, so-called kernel 

algorithms work with the variance- covariance matrices, X
T
X, 

Y
T
Y, and X

T
Y, or association matrices, XX

T and YY
T, which is 

beneficial when the number of observations differ much from 

the number of variables. The linear PLS model finds “new” 

variables, called latent variables, which are linear 

combinations of the original variables also called X scores and 

which are also denoted by ta (a = 1, 2… A).So, one supposes 

that both X and Y is modelled by the same LV’s, at least partly. 

The X-scores are orthogonal, with the numbers equal to A.  

The ability of the regression model for future predictions is 

validated usually through an internal leave-one-out cross-

validation procedure. To choose the optimal number of PLS 

factors, PRESS (predicted residual error sum of squares) value 

is monitored as the function of latent variables. The number of 

components related to the minimum PRESS is chosen.  

^_`aa =  ∑ �7(� − 7��'b��� (17) 

where n is the number of compounds used in the cross 

validation procedure. The standard error of prediction (SEP; 

equation 20) can also be applied to measure the prediction 

ability of the model: 

a`^ =  [cdeff
b ]� 'g (18) 

The performance of PLS has been enhanced by combination 

with other methods to give better results in QSAR/QSPR 

analyses. Some of these approaches are genetic partial least 

squares (G/PLS) 92, 93, factor analysis partial least squares (FA-

PLS) and orthogonal signal correction partial least squares 

(OSC-PLS) 94, 95. 

PLS is more realistic than MLR to construct models of the often 

complicated relationships between chemical structure and 

biological activity. PLS provides diagnostics such as cross-

validation and score plots with the corresponding loading 

plots, which inform about model complexity and the structure 

of X data that is not attainable with ordinary MLR. Moreover, a 

shortcoming of MLR is lacking the diagnostic tools for pointing 

out inhomogcncities in the data. In addition, PLS is able to 

address many collinear structure descriptor variables which 

make it easier to clarify the variation of compound structures 
28. 

Y-Randomization is commonly used as a tool in validation of 

QSPR/QSAR models. The goodness of the initial model in data 

description (R2) is compared to that of models built using randomly 

shuffled response, based on the original feature pool and the 

original model building technique. Rucker and et al compared the 

original y-randomization approach and several variants thereof, by 

means of original response, permuted response, or random number 

pseudoresponse and original descriptors or random number 

pseudodescriptors, based on an original MLR model with descriptor 

selection 96. Their investigations have been applied to several 

published MLR QSAR equations, and cases of failure have been 

recognized. Some progress also is shown toward the goal of getting 

the mean highest R2of random pseudomodels by computation 

instead of tedious multiple simulations on random number 

variables. In the case of PLS models, two validation methods are 

widely used namely cross-validation and response randomization. 

However, for data sets that contain redundant observations 

bothmethods may be overly optimistic. Progressive scrambling 97 is 

a nonparametric method to perturbing models in the response 

space with not disturbing the underlying covariance structure of the 

data. After reordering the observations from largest to smallest 

response, they are then blocked following several rules. The 

responses within each block are then shuffled, and the modified 

pairings are submitted to PLS analysis to get relevant statistics. 

These statistics were shown to be robust for stable PLS models, in 

terms of the stochasticcomponent of their determination and of 
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their variation because of sampling effects available in training set 

selection. 

Other extensions of PLSR 

Several extensions of PLSR can be found in various directions, 

too such as non-linear modelling, hierarchical modelling when 

the variables are very numerous, multi-way data, PLS time 

series, and with many and collinear X-variables, a PLS version 

of LDA (PLS-DA) is helpful 98. When dealing with biology, one 

should be aware of non-linear behaviour of the systems. 

Therefore the modelling of biology is fundamentally a non-

linear event 45. So, we cannot expect to model all biology with 

linear relationships, if so they will not to be predictable. There 

are, for example, QSARs for acute aquatic toxicity. To cure this 

situation, it might bepossible to model nonlinear data relations 

by means of PLS. The first group of approaches is to use a 

nonlinear model between the score vectors t and u based on 

reformulating the considered linear relation 99.  

h = i�j� +  : = i�k, �� +  :      (19) 

where g(.) indicates a continuous function modelling the 

existing nonlinear relation. e denotes a residual vector. 

Polynomial functions, smoothing splines, artificial neural 

networks or radial basis function networks have been applied 

to model g(.) 100, 101. The assumption that the score vectors t 

and u are linear projections of the original variables is 

reserved. This results to the requirement of a linearization of 

the nonlinear mapping g(.) through Taylor series expansions 

and to the successive iterative update of the weight vectors w 
102. The second approach of considering nonlinear PLS is on the 

basis of a mapping of the original data through a nonlinear 

function to a new data space where linear PLS is performed. 

The theory of kernel-based learning has been also applied to 

PLS. The application of nonlinear kernel PLS (KPLS) 

methodology was to model relations between sets of observed 

variables, regression and classification problems 103, 104. In 

kernel PLS, the original m-space data is mapped into a high-

dimensional feature space n corresponding to a reproducing 

kernel Hilbert space 105, 106.  

kom → q�k�on       (20) 

when the kernel trick is applied, the estimation of PLS in a 

feature space n would be reduced to the use of linear algebra 

as simple as in linear PLS . KPLS method has also been shown 

to be competitive with the other state-of-the-art kernel-based 

approaches in regression and classification problems. The 

detailed description of kernel-based learning can be found 

elsewhere 103. There are some examples in applications of KPLS 

method in QSAR/QSPR 107-109.  

In a generalization of the PLS approach to multi-way data, a 

multilinear PLS algorithm (N-PLS) which is an extension of the 

traditional bilinear PLS has been developed. In the three-way 

mode of PLS, a trilinear model is obtained from decomposition 

of the three-way array of independent variables similar to the 

PARAFAC model. However, for N-PLS, least squares do not 

apply to fit the model, but in line with the philosophy of PLS, it 

searches to describe the covariance of the dependent and the 

independent variables. This is achieved by simultaneously 

fitting a multilinear model of the dependent variables, a (bi-) 

linear model of the independent variables, and a regression 

model relating the two decomposition models. The advantage 

is that the multiway (or higher order) structure of the data is 

retained. An application of this method in drug design was in 

the case of 3D-QSAR problems 110. In a study on a series of 

azidothymidine (AZT) analogues, two methods of bilinear 

(traditional) PLS, applied to the unfolded dataset, and 

multilinear PLS (N-PLS), applied to the three-way array has 

been compared. The predictive abilities of the PLS- and N-PLS-

based models were found to be nearly equivalent 111. 

To represent one of the applications of PLS in the field of drug 

discovery, a work from Bacilieri et al. has been chosen 112. In 

this paper, the SAR of hA2A AR antagonists through an 

integrated structure- and ligand-based strategy has been 

investigated. A database of 751 hA2A AR antagonists which can 

be grouped into 22 different scaffolds together with their pKi 

values (all showing Ki< 1 μM) has been used. In each analysis, 

the compounds have been split into a training and test 

database randomly: 80% has been selected as the training set 

and 20% as the test set. Furthermore, a new small antagonist 

library has also been synthesized and pharmacologically 

characterized which comprises 29 pyrazolo-triazolo-

pyrimidines (PTP) compounds. The complex with the high 

affinity antagonist ZM241385 (PDB code: 3EML) has provided 

from PDB site for docking simulations. Docking of all of the 

compounds into the TM binding site of the hA2A AR crystal 

structure was carried out by using the docking tool of the 

GOLD suite. For each ligand, the best obtained docking pose as 

evaluated by the GoldScore scoring function was selected to 

form a first data set (named as best pose database). Moreover, 

the pose that best fits the crystallographic binding mode of 

ZM241385 was selected visually to form a second data set 

(referred to as selected pose database). Both two data sets 

were then regarded in the following QSAR studies. Ligands 

conformations needed to build pharmacophore models were 

generated by the docking simulations, and pharmacophore 

sites for each molecule were created with PHASE 113. 

Consequently, to derive a common pharmacophore hypothesis 

consistent with all scaffolds, the crystal structure of ZM241385 

and its docked conformation as an active subset was used, 

because at least two compounds are required to search for a 

common hypothesis. After definition of a consistent 

pharmacophore hypothesis, both pharmacophore-based and 

atom-based 3D-QSAR models, available in PHASE were built. In 

the atom-based model, representation of the ligands is done 

by a set of overlapping van der Waals spheres (one for each 
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atom in the ligand) classified as D, H, N, P, and W (where W 

refers to electron-withdrawing), while in the pharmacophore-

based model representation of the ligands is by spheres of 

specified radius, to which a category reflecting their 

pharmacophore features is assigned. PLS analysis as the 

modelling tool is then used to correlate the above mentioned 

descriptors with the activities. The pharmacophore-based 3D-

QSAR analysis has been derived considering a final training set 

of 599 molecules and a test set of 149 molecules. PLS 

statistical results for pharmacophore-based 3D-QSAR analysis 

are reported in Table 3. The authors also generated atom-

based 3D-QSAR models for both the best pose and the 

selected pose data sets. The training set consisted of 601 

molecules and the test set, 150 molecules, and the correlation 

coefficients of both models are about 0.8. The ability of the 

models to predict the Ki values of the 29 PTP compounds 

(external validation) is checked, and the correlation 

coefficients obtained are 0.6/0.5 with six and five PCs for the 

best pose and the selected pose database, respectively. The 

results show that the statistical quality of atom-based 3D-

QSAR models enables to quantitative discrimination of active 

from inactive compounds, while pharmacophore-based 3D-

QSAR models have ability to a qualitative prediction of the 

activity. As a consequence, in this specific case under study, 

the best approach to predict hA2A AR antagonists activity is to 

apply molecular docking and to use the best pose 

conformations for the atom-based 3D-QSAR analysis. Bearing 

in mind that the applicability domain of pharmacophore based 

screening methods is more focused on the new hits 

identification rather than hit to lead optimization; the best 

pose-atom based 3D-QSAR model can be used as a query to 

screen large chemical databases.  

Table 3. Pharmacophore based 3D-QSAR model resultsa. 

Pharmacophore 

based 3D-QSAR model 

Best pose 

database 

Selected pose 

database 

Training set 599 599 

Test set 149 149 

PCs 6 7 

r2 0.49 0.55 

q2 0.42 0.44 

RMSE 0.78 0.75 

F 92.3 102 
aPCs, principal components; r2, squared correlation coefficient 

of calibration (training set); q2, squared correlation coefficient 

of validation (test set); RMSE, root mean squared error; F, 

variance ratio (largest values correspond to better statistical 

significance). 

 

 

Projection Pursuit Regression 

The projection pursuit regression is a nonparametric statistical 

technique which applied to build anonlinear model. PPR seeks 

the ‘‘interesting’’ projections of data from a higher-

dimensional to lower-dimensional space to attempt to find the 

intrinsic structure information hidden in the high dimensional 

data 114. It can effectively overcome the curse of 

dimensionality. With the obtained interesting projection 

direction, it can be used for further study of visual pattern 

recognition and regression. For this reason, the PPR technique 

has fascinated more attention and gained extensive 

application in high dimensional data like the QSAR studies. 

Using of lower dimensional linear projection of the data, it is 

possible to visualize the data practically. Furthermore, PPR 

does not require specification of a metric in the predictor 

space. It does not split the sample, thereby allowing, when 

necessary, more complex models. In addition, interactions of 

predictors are directly considered. The PPR technique is based 

on an iterative two-stage process of projection and smoothing. 

Projection causesthe reduction of parameter space and 

smoothing causes establishing a non-linear relation. For 

application of smoothing, the reduction of the parameter 

space is essential; smoothing in high-dimensional spaces 

quickly becomes impossible because of data sparsity.  More 

precisely, X1, …,Xn, X∈Rp are p-dimensional data, then a k-

dimensional (k < p) linear projection is Z1, …, Zn, Z∈Rk where 

Zm=αTXm for some p × k matrix α such that αTα=Ik, the k-

dimensional identity matrix. Such a matrix α is often 

orthonormal. There are a lot of infinite projections from a 

higher dimension to a lower dimension. So, to achieve the 

most interesting data structures, having an efficient technique 

to pursue a finite sequence of projections is required. 

Friedman and Stuetzle 115 successfully applied the projection 

pursuit (PP) which was combining projection and pursuit.  

In a typical regression, several parameters should be given 

first: X, matrix of explanatory variables (n×p); n, the number of 

objects under investigation (Chemical structures); p, number 

of explanatory variables (Molecular descriptors); y, vector of 

response (n×1) (activity or property or). The projection process 

can be defined as zm=X αm. Where αm is the mth projection 

vector (length p); and zm is the vector of scores after 

projection of X on αm (length n). After the projection, the 

smooth functions (ridge functions) are used, which are as 

follows: 

7 = 7� + ∑ ∅tt�t�� �ut� + vw"             (21) 

Where M0 is the number of incorporated smooths; εM0 is the 

residual error after fitting M0smooths. Then it can produce a 

non-linear regression model by the summation of a number of 

ridge functions. 

PPR as an upgraded method applied in drug design. As it has 

been mentioned before, PPR was used to visual pattern 

recognition and regression. Du et al. 116 developed QSAR 

models for the data set of 39 ligands of derivatives of 

naphthalene, benzofuraneand indole with respect to their 

affinities to MT3/quinone reductase 2 (QR2) melatonin binding 
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site. They compared QSAR models based on linear regression 

and non-linear regression methods grid search-support vector 

machine (GS-SVM) and PPR. The physiological significance of 

the MT3/QR2 site is still unidentified and it is mostly 

interesting to design and synthesize new selective ligands, 

which will supply pharmacological tools to assess and better 

describe the role of this melatonin binding site. Therefore, 

finding an efficient way to get the affinity of the new 

compounds for melatoninergic binding sites MT3 in early 

ligand discovery is one of the major challenges facing the field. 

The optimized structures by AM1 method in MOPAC, were 

transferred into the CODESSA software to calculate the 

descriptors. Descriptors of CODESSA includeconstitutional, 

topological, geometrical, electrostatic, and quantum chemical; 

which can represent a variety of aspects in the compounds. 

Both the linear and non-linear models constructed. 

Compression of the results of three regression methods 

showed that PPR was proved to be a very useful tool in the 

prediction of the MT3/QR2 melatonin binding site, and it 

showed that to be a very promising machine learning method 

and would yield more extensive applications. Since the PPR 

analysis considers both linearity and nonlinearity in the model 

development, consequently it yielded more predictive models 

than linear regression. Also, the PPR method performs a 

flexible regression in a low-dimensional variable space, 

contrarily to the SVM regression which uses a fixed transfer 

function.In addition, it should provide facilities to the design 

and development of new selective MT3/QR2 ligands. 

Furthermore, Yuan et al. 117 developed a PPR approachto 

predict binding affinity of a series of CCR5 receptor inhibitors. 

Results showed that PPR method is simple, practical and 

effective to predict the affinity of human CCR5 chemokine 

receptor inhibitors. 

k-nearestneighbour method (kNN) 

In supervised pattern recognition, (or discriminate analysis, or 

supervised learning) using the learning or training objects with 

known origin, one tries to derive a classification rule which 

allows classifying new objects with unknown origin in one of 

the known classes. This derivation is based on the values of the 

variables of the new object. In the first step of doing a 

supervised learning, training or learning set is selected. These 

are objects of known classification for which a certain number 

of features have been measured. In the second step, variables 

that are meaningful for the classification are chosen and those 

that have no discriminating (or, for certain approaches, no 

modelling power) are removed. Then, a classification rule 

using training set is derived. Finally, using an independent test 

set, validation of the classification rule is carried out. All the 

clustering methods can be applied in variable selection by 

using the transposed matrix of the original data, where 

descriptors can be located in rows and molecules in columns. 

Then, one or more representative descriptors are selected 

from each cluster. Nearest neighbours have very simple 

machine learning algorithm. In these methods, classifier is the 

distance between each object of the training set, and the 

function is only approximated locally based on neighbours 118. 

Euclidean distance is commonly used but other distance 

measures can also be used. However, for strongly correlated 

variables, correlation based measures are favoured. For the 

training set of n objects, n distances related to a test sample 

are calculated and the lowest of them is chosen for the 

assignment of class membership. The k-nearest neighbour 

method (kNN) is a non-parametric unbiased approach with 

applications in classification and regression 15, 119-121. In 

nonparametric modeling methods in general, derivation of the 

relationship between the descriptors and the activities is carried 

out directly from the data, instead of applying a functional form on 

the data a priori. A number of nonparametric methods applied to 

QSAR comprise gaussianprocess regression 122, 123, Nadaraya–

Watson regression 124, 125, kernel discrimination classifiers 126, 127, 

and Kriging 128. Typically, in these approaches a kernel is used to 

weight the effect of the training set molecules in such a way that 

similar compounds have the highest influence in the prediction. 

In kNN classification, class membership is assigned while in the 

regression the average property value for the sample is 

calculated from the activity values of its kNNs in the training 

set, Figure 9. The k value giving the lowest classification error 

in cross-validation is chosen as the optimal one. In this 

procedure, each sample in the training set is removed and 

then classified using the remaining training set compounds. 

Formally, the upper level of k is the total number of 

compounds in the training dataset; though, the best values is 

determined by the class of its single nearest neighbour (k = 1) 

or by a vote of a small (generally odd) number of its nearest 

neighbours (k = 3, 5, …). This is repeated for different values of 

k. Each of the k nearest samples “votes” once for its class. The 

class with the highest number of votes is assigned to that 

sample. The kNN-QSAR methodology is implemented simply. 

First, distances between an unknown object (u), and all the 

objects in the training set is calculated. Then, the most similar 

(the least distances) k objects from the training set to object u 

are selected and the activity value of u is calculated as a 

weighted average of the activities of its kNNs. While a single 

observation is excluded from the training set, its activity value 

is predicted as a weighted average of the activity values of its 

nearest neighbours: 

7(� =  ∑ x, yz{ �|,�}~~�∑ yz{ � |,�}~~� (22) 

wheredi is the Euclidean distance of the compound from its 

kNNs and exp(di) is regarded as weight. The predicted power 

of the model can be conveniently estimated by an external Q2 

calculated as follows: 

����' = 1 − ∑ �x, x�,�.���,�,�-,��
∑ �x, x��� �.���,�,�-,��

(23) 
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whereyi are the observed and 7(�are the predicted values of the 

compounds in the training set and 7�6+is the mean of the 

experimental activity of the compounds in the training set. The 

advantages of this method are as follows: (i) beside 

mathematical simplicity, it achieves classification results as 

fine as (or even better than) other more complex pattern 

recognition approaches (ii) as a non-parametric approach, it 

does not need statistical assumptions, such as the normal 

distribution of the variables and (iii) its efficiency does not 

depend on the space distribution of the classes 129. On the 

other hand, this technique is subject to some problems. kNN 

cannot work properly, if there are large differences in the 

number of samples in each class. A solution is that instead of a 

simple majority criterion an alternative criterion used then. For 

instance, another choice of criterion in kNN consists of 

weighting the importance as a neighbour of a known object to 

an unknown sample (inverse distance or inverse square 

distance). So, the nearest neighbours influence more the 

classification than the farther ones. Furthermore, in the case 

of large number of samples, the computation cost can become 

excessively much. Moreover, the information provided about 

the structure of the classes and the relative importance of 

each variable in the classification is not sufficient. It means 

that there is no information in the kNN model concerning what 

variables are useful in separating classes from each other while 

a for example a simple PCA model contains much of this 

information in the loadings. In addition, kNNs are not efficient 

in dealing with high dimensional data without dimension 

reduction or preselection of descriptors 9. 

There are some applications of kNN scheme which has been 

used e.g. for prediction ofCOX-2 inhibition 130, modelling of 

anticonvulsant activity, dopamine D1 antagonists and aquatic 

toxicity 131. In a study on P-glycoprotein transport activity 121, 

the result of kNN was comparable to decision tree, but it was 

worse than neural network and SVM. In an ecotoxicity QSAR 

study 59, k-NN showed better in comparison to some linear 

methods, but had a poorer operation to discriminate analysis 

and decision trees. In a recent study by Khashan et al. 132kNN 

was applied as a variable selection approach to select among 

recently developed frequent subgraph (FSG) descriptors for 

QSAR models. 

kNN and HCA in practice 

As an example of how these two methods work, an article of 

work of Martin et al. about rational selection of training and 

test sets has been selected 17. In this study, the authors 

examined the important problem of the QSAR model 

validation that is among rational or random division of a data 

set into training and test sets that which method is better. To 

approach this aim, four data sets were selected: a P. promelas 

LC50 data set consisting of 809 chemicals, a T. Pyriformis 

IGC50data set consisting of 1085 chemicals, an oral rat LD50 

data set of 7286 chemicals, and a bioaccumulation factor (BCF) 

data set of 643 chemicals. Each data set was randomly 

separated into a modelling and external evaluation set that 

incorporated 80% and 20% of the whole data set, respectively. 

The modelling sets were then split into training and test sets 

by rational and random orientations where training and test 

sets included 80% and 20% of the modelling sets, respectively. 

Calculations were performed separately by different 

researcher groups with abbreviate names drawn from US 

Environmental Protection Agency (USEPA), University of North 

Carolina (UNC), and UNC team in collaboration with A.V. 

Bogatsky Physical Chemical Institute NASU (UNC2). Each group 

carried out calculations for four different toxicity end points. 

The two research groups used different rational design 

approaches and QSAR methodologies with the purpose of 

fairly assess whether rational design methods accurately get 

better the external predictive ability of QSAR models. The 

USEPA group used the Kennard-Stone rational design method 

and the hierarchical clustering QSAR methodology. The UNC 

group used the sphere exclusion rational design method 15 and 

the random forest and kNN QSAR methods. Additionally, the 

minimal test set dissimilarity 133 and random forest were used 

by UNC2. Among them, rational division methods were 

Kennard-Stone algorithm, sphere exclusion algorithm, and 

minimal test set dissimilarity method. The QSAR approaches 

were hierarchical clustering, two implementations of random 

forest, and kNN QSAR. When using hierarchical clustering, the 

Kennard-Stone algorithm was applied to rationally divide a 

modelling set into training and test sets. For one of the 

random forest implementations, the sphere exclusion 

algorithm was selected to produce one couple of training and 

test sets. The minimal test set dissimilarity method was used 

for another random forest implementation. USEPA used 790 

descriptors came from different classes, UNC calculated them 

using Dragon version 5.4 and also 2D Simplex descriptors 

generated by HiT QSAR Software 134 were used by the UNC 

team. As examples, the statistical results for the USEPAgroup 

(Kennard-Stone and hierarchical clustering methods) are 

shown in Tables 4 and 5.  

Table 4. Splitting results in terms of the R2 squared correlation 

coefficient (USEPA – Kennard-Stone  and hierarchical 

clustering) 

R2 test set 
R2 external 

evaluation set 

R2 external 

evaluation set 

(noapplicability 

domain, i.e. 

100% 

coverage) 

end 

point 

rational rand

om 

ratio

nal 
rando

m 

ratio

nal 

rando

m 

LC50 0.81 0.66 0.67 0.60 0.67 0.58 
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IGC50 0.86 0.84 0.85 0.85 0.80 0.83 

LD50 0.76 0.53 0.55 0.53 0.47 0.47 

BCF 0.89 0.80 0.73 0.81 0.71 0.68 

 

Table 5. Splitting results on terms of the prediction coverage 

(USEPA – Kennard-Stone  and hierarchical clustering) 

Coverage test set 

 

Coverage external 

evaluation set 

end 

point 

rational random rational random 

LC50 100% 95% 99% 99% 

IGC50 100% 99% 98% 98% 

LD50 98% 82% 84% 83% 

BCF 100% 96% 95% 94% 

 

The three approaches to divide the modelling set into training 

and test sets did show no influence on model predictivity or 

coverage for the external evaluation sets for the QSAR 

methods that were used. The reason could be that both test 

and external evaluation sets were applied in a “blind 

prediction”way, as it is apparent from comparing their 

prediction performance. It was clear that the rational selection 

methods gained better prediction statistics for the test set but 

not for the external evaluation set. In the rational division 

methods and their corresponding QSAR methodologies, 

random selection provided a more accurate estimate of 

prediction ability as the statistics for the test set and external 

evaluation set are in essence equivalent. For kNN QSAR 

studies, division of a data set into training, test, and external 

evaluation sets is a common practice. In summary, it was 

found that roughly twice as many predictive models were 

obtained by the sphere exclusion algorithm than by using 

random division. The additional models may regard for the 5% 

(on average) boost in the prediction coverage for the external 

set. The R2 values for the test and external sets showed 

comparable results, so the use of the sphere exclusion 

algorithm does not gain an unrealistic estimate of model 

performance. These results concern that in kNN QSAR studies 

sphere exclusion rather than random division should be used. 

 

Artificial Neural Network 

Artificial neural systems (NNs) have gained acceptance in 

various regions of chemistry, as delineated by the number of 

applications bring by Zupan and Gasteiger in their review 35. 

The potential applications of ANN as modelling tools in 

multivariate calibration are broad. There are a lot of reports 

from ANNs methodology that successfully employed in QSAR. 

The ANN is an appropriate technique that can be viewed as a 

general nonlinear modelling approach. Artificial neurons are 

simple computational devices that are highly interconnected 

and the connections between neurons determine the transfer 

function of the network 135. Therefore, it is important for the 

user to have a good understanding of the science behind the 

underlying system to provide the appropriate input and, 

consequently, to support the identified relationship; however, 

ANNs are not interpretable. An artificial neural network 

determines an empirical relationship between the input 

variables called independent variables or descriptors (X) and 

output variables called dependent variables or responses(Y) 

without any prior knowledge in principle 136. It can show the 

model of the form: Y = F(X) + e. Tasks of a neuron as a 

processing element are included to receive stimuli from other 

neurons through its dendrites and send stimuli to other 

neurons through its axon. Strength of connection between the 

neurons is stored as a weight-value which for the specific 

connection is called synapse. Information in an NN is 

distributed among multiple cells (nodes) and connections 

between the cells or synapse (weights). The activation signal is 

passed through a transform function to produce the output of 

the neuron, given by: y=f(a). The transform function can be 

linear, or non-linear, such as a threshold or sigmoid function. 

The process of determining the values for W on the basis of 

the data is called learning or training 137. Learning used to 

change the connection weights solves a problem. In a 

biological system, learning involves adjustments to the 

synaptic connections between neurons the same for artificial 

neural networks (ANNs). Learning as a fundamental 

characteristic of ANNs has two basics types: supervised and 

unsupervised 138, 139. In supervised method, there is a teacher 

but unsupervised is autonomous. Training of supervised 

networks is carried out by giving sets of input patterns and 

associated target patterns. During an iterative process, the 

internal representation of the data is tailored until the 

predicted results being closer as desired to the targets. In 

some applications, the target patterns are the same as input 

patterns and the network is in essence performing an 

identified mapping. Such networks are called self-supervised 

networks. It ought to be mentioned here that the supervised 

and unsupervised terms mean differently in the field of ANN 

from that is available in statistical pattern recognition 

approaches. In the former, supervised means any training 

which entails a priori targets, for instance, training a network is 

to map a data onto itself. In statistical pattern recognition 

terminology, supervised is used to mean training which 

involves a dependent variable which is used to derive a 

prediction rule e.g. a regression equation. On the contrary, 

when unsupervised learning is performed, a priori targets 

areabsent. Networks of this type may be applied to provide 

information on clusters of compounds which is just on the 

basis of the coordinates of the compounds located in the 

measurement space of its variables. 
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Many types of neural networks have been designed. The 

perceptron was first introduced by F. Rosenblatt in 1958 140 

with two layers including input and output layers. One of the 

most popular supervised networks is the multi-layer feed-

forward type (also called multi-layer perceptron, MLP) with 

the error back-propagation learning rule that was introduced 

by M. Minsky and S. Papert in 1969 141, 142. Figure 10 shows an 

example of MLP with four descriptors and a single response y. 

The four descriptors are displayedx1, x2, x3, x4 at the input 

layer, the variables ��5"  and fh are the weight and transfer 

function between the input and hidden layer, w"
j and foare the 

weight between the hidden and output layer, b΄ and b" are the 

bias vectors, respectively. In this kind of neural networks, 

neurons are ordered in input, hidden, and output layers. Input 

layer neurons get descriptor matrix, which have different 

weights and are passed to the hidden layer neurons (figure 

10a). Aneuron activation function is then applied at each 

neuron to the sumof weighted inputs, and the results are 

obtained by output layer neurons, which compute activity 

values of compounds. During training process, adjusting of 

parameters of neuron functions and weights is carried out so 

that the overall error of predictions is minimized.There are 

network architectures with hidden layers (figure 10b). The 

output is the estimated response 7(  that can be expressed as 

follow:  

7( = ���8" + ∑ ��5" ��b�5�� �∑ ��5΄ ��b|��� + 8΄��(24) 

wherend and nh are the number of input variables and hidden 

nodes.  

Self-organizing map (SOM) with unsupervised learning 

algorithm ANN is exposed to large amounts of data and tends 

to discover patterns and relationships in that data. Teuvo 

Kohonen introduced one of this NNs namely Kohonen network 
143, 144.   

In the beginning, the Euclidian distance *e(7� ,7�) and 

topological distance *�(7�,7�) between output nodes7�  and 7�  

will not be related (Figure 11). 

*e�7� , 7�� = �∑ ���� − ����'b���             (25) 

But during the course of training, they will become positively 

correlated:  Neighbour nodes in the topology will have similar 

weight vectors, and topologically distant nodes will have very 

different weight vectors. 

In SOM, the network is provided with inputs but not with 

desired outputs. Making decision about what features it will 

use to group the input data is done by system itself. This is 

often called self-organization or adaptation. Training and 

topology adjustments are made iteratively until a sufficiently 

accurate map is obtained 145. The self-organizing treatment 

may include competition between neurons, co-operation or 

both. Neurons are arranged into groups of layers. In 

competitive learning, neurons are grouped in such a way that 

when one neuron replies more powerfully to a particular input 

it represses or inhibits the output of the other neurons in the 

group. In cooperative training, the neurons within each group 

work together to strengthen their output. The learning mission 

is to make groups between patterns that are similar in some 

way, extract features of the independent variables and come 

up with its own classifications for inputs. ANNs consider the 

received data, find out some of the properties of the data and 

learn to display these properties in their output. The aim is to 

construct feature variables from which the variables, both 

input and output ones, can be predicted. 

As far as the architecture (layout) and the learning strategy 

areconcerned, the CP-ANNs 12, 146 are very similar to the 

Kohonen ANNs 35, 147. In fact, each CP-ANN is composed of one 

Kohonen layer of neurons and also an additional layer with 

exactly the same number and layout of neurons as the 

Kohonen. The two layers of neurons are located precisely 

above each other. Therefore, the Kohonen and output neurons 

are in one-to-one correspondence. The CP-ANN isthus an up-

grade of the Kohonen ANN. The major purpose of the CP ANNs 

set up is to enable the Kohonen type of ANN to solve the 

supervised type of problems. In this additional (output) layer 

of neurons, with exactly the same layout of neurons, the target 

vectors, i.e. the responses Ys associated with each object, are 

processed. Thus, the counter-propagation network consists of 

two layers with the same number and the same layout of 

neurons. The only difference between both layers is the 

number of weights in the corresponding neurons. The first 

layer of neurons processes the objects Xs, therefore the 

neurons in this layer have as many weights as there are in 

input variables. During the learning period, the target vectors 

ys, are placed into the second layer of neurons where they are 

processed in exactly the same manner as the objects Xs in the 

Kohonen layer. Evidently, the neurons of the output layer have 

as many weights as there in the YS vector as responses. 

However, after the learning process is completed and in the 

prediction process, the second layer becomes the output from 

which the resulting predictions are output. The learning 

procedure, i.e. the correction of weights is carried out in such 

a way that for each input object only the weights of two 

groups of neurons are corrected, one in the Kohonen and the 

other in the output layer. Both groups of neurons are identical 

in size and positionexactly one above the other concentrically 

around the central neuron excited by a given input vector Xs. 

The diameter or size of both groups on which the correction 

has to be performed, depends on the time of training.  

Whereas, the groups at the end of the training shrink to the 

size of one, i.e. of the selected neuron, both groups expand 

over the entire corresponding layer at the beginning of the 

training process. The criteria for the selection of the most 

excited or the central neuron is either the maximal response or 

Page 17 of 38 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

18 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

the minimal difference between the weights and the input 

variables 148, 149. The later criterion is the most widely used, 

thus: 

central neuron c = min ∑ ��� − �5��'t��� ¡          (26) 

for all j belonging to the network, m being the number of input 

variables and 

∆�5�� = £�j�¤�¥, ¦t§¨ , ¦���� − �5�� ��|�                 (27) 

∆�5�' = £�j�¤�¥, ¦t§¨ , ¦���� − �5�' ��|�                 (28) 

where ∆�5��  is the correction in the ith weight on the jth 

neuron from the ith layer (i = 1 and 2 stands for Kohonen and 

output layer, respectively); £�j� is the learning rate which 

monotonically decreases during the training; a( ) is a correction 

depending on the topology and the position of the group of 

neurons to be corrected; c is the position of the neuron 

selected by Eq. (30); ¦t§¨  is the size of the group of neurons to 

be corrected at a given training time; j is the neuron on which 

the weights are corrected; ��  is the ith input variable (i = 1, . . . 

, m); and y is a single target variable (EMA in our case). If there 

would be more responses in the target vector, ys, the target 

variable, y, would have an index. 

In recent years, radial basis function (RBF) 150 neural networks 

have many applications due to the ability to perform nonlinear 

mapping of the physicochemical descriptors to the 

corresponding biological activity in the field of QSAR.  

RBF networks (RBFNs) have some features: Learning in RBFN is 

supervised. The training is fast. The RBFNs are good for 

interpolation. The output nodes implement linear summation 

function as in an MLP. The hidden nodes implement a set of 

radial base functions (e.g. Gaussian functions). The RBFNs have 

three layers including input layer, hidden layer and output 

layer. The input layer only distributes the input signals to the 

hidden layer. The hidden layer includes RBF function that often 

uses a Gaussian function that is illustrated by a center (cj) and 

width (rj). The RBF acts by determining the Euclidean distance 

between input vector (x) and the radial basis function center 

(cj) and performs the nonlinear transformation with RBF in the 

hidden layer according to below: 

©5��� = :�ª «− ¬\¨ ­/\
+/ ®'¯(29) 

In which, ©5 is the output of the jth RBF hidden unit. For the 

jthRBF, ¥5  and %5  are the center and width, respectively. The 

operation of the output layer is linear: 

7���� = ∑ ��5ℎ5b�5�� ��� + 8�(30) 

where7�  is the kth output unit for the input vector x, ��5  is 

the weight connection between the ±th output unit and the 

jth hidden layer unit and 8�  is the bias. 

There is a growing interest in the application of artificial neural 

networks in molecular modelling and QSAR. Neural network 

can apply to redundant descriptors well and to approximate 

any target function, but it is not worth using NN for linear 

functions. Also, it can handle partial lack of system 

understanding. Moreover, ANN has other advantages, such as 

creating adaptive models (models that can learn), adapting to 

unknown situations and it has powerful hybrid systems which 

are robust, flexible and easy to use. RBFs and BP neural 

network have been successfully applied in QSAR studies for 

prediction of different properties. For example, toxic effect on 

fathead minnows 151, 152, calcium channel antagonist activity 
153, alpha adrenoreceptors agonists 154, air to water 

partitioning for organic pesticides 155, aldose reductase 

inhibitors 156, anti-nociceptive activity 157, and anti-HIV activity 
158.  

Here, we discuss how to apply SOM neural networks in virtual 

screening and diversity selection. 

In 2006 145, Paul Selzer and Peter Ertl, stated applications of 

Self-Organizing Neural Networks in virtual screening and 

diversity selection. A potent procedure for the analysis and 

modelling nonlinear relationships between molecular 

structures and biological activity are artificial neural networks 

(ANN) with the aim of recognizing which structural features 

are of pharmacological significance. In this study combination 

of neural networks and radial distribution function molecular 

descriptors helped to industrial pharmaceutical research. 

These applications contain the prediction of biological activity, 

compound selection for screening, and the extraction of 

representative subsets from large compound collections. They 

focus on Kohonen and counter-propagation artificial neural 

networks (CP ANN) and their role in the pharmaceutical 

development. They used molecular descriptors, computed 

from intramolecular atomic distances in 3D space, to illustrate 

the 3D shape of structures. 3D structural information used as 

the input needed for calibration the neural networks. The 

neural network clustered the compounds in a 2D map 

according to the similarity or diversity of their descriptors. For 

showing the input and output calibration data, an ANN vector 

is needed. The pharmacological properties of the molecule are 

assigned by spatial arrangement of pharmacophore features of 

structure. They used Radial Distribution Function (RDF) 

molecular descriptors, which state pharmacophore features by 

coding the arrangement of atomic properties in 3D space as a 

vector of real numbers. The RDF code of a molecule is defined 

as a curved histogram of all of the intramolecular atom 

distances that take place and can be translated as the 

probability distribution of discovering atom pairs at an R 

distance.  
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i�_� = ∑ ∑ ¤�¤5� �5��b��' : ²�d +,/�.
(31) 

where n is the total number of atoms, ¤�  and ¤5  are atomic 

properties of atoms Uand ¦ and %�5  is the distance between 

atoms U and ¦. B is a smoothing factor which can be 

interpreted as a temperature parameter defining the fuzziness 

of atom positions because of thermal movement. B value 

equal to 100 gave rational results. The 3D atomic coordinates 

were measured using the 3D structure creator CORINA. As an 

extension of the initial RDF code idea where the code is 

computed between all occurring atom pairs, the RDF code is 

calculated 3 times: first, where both atoms have negative 

charges, for them, second, where1 atom possess a negative 

and the other one a positive charge, and third, where both 

atoms own negative charges. These three codes were bonded 

to form the last structure descriptor. In order to compute time 

during network training in the standard type, the RDF code in 

bins of 0.3 Å was computed. CP ANN consist of a 2D 

arrangement of x×y connected neurons. Each neuron contains 

z weights. The count of weights z related to the dimensionality 

of the structures, illustration involving an input part (structure 

representation) and an output part (biological activity). During 

calibration, the network learns inductively about the 

correlation between input and output by analyzing a so-called 

training set. The training set is give the network several times. 

In each round, for each molecule, the most common neuron, 

the winning neuron, is defined by determining the Euclidian 

distance between the structure descriptor and the input parts 

of the neurons. Then, the neuron weights are corrected to 

become more similar to the calibration data. The winning 

neuron is adjusted to the highest level. Once trained, the ANN 

has the capacity to predict the property for test set 

compounds which are excluded during training. The most 

similar neuron for each test structure is assigned by calculating 

the Euclidian distance between the neuron weights and the 

molecular descriptor in a test step. 

It permits the submission of a set of molecules as a SMILES or 

SD file, or as a generic set of descriptors in text format. After 

the training procedure, results are demonstrated as a colour 

coded map presenting the distribution of the molecules among 

the neurons. A significant benefit of this method is the ability 

to interactively analyze the results. The comparison of input 

and output layers permits an assessment of the importance of 

certain input variables with regard to the output.  

Clearly, neural networks must compete with other statistical 

techniques such as partial-least-squares analysis, support 

vector machines, and nearest neighbour methods, which 

might be quicker in performing equally well or, in some cases, 

even superior. But, the importance preference of Kohonen and 

CP- ANN is that they give fast and intuitive feedback about the 

results of the cheminformatics research. This visual opinion is 

a key aspect for the acceptance of this technique because it 

meets the requirements of the researcher, like chemical 

structures, in a graphical manner. Neural networks can do 

things which would be very difficult to be done using 

traditional computing techniques. 

Bayezian neural networks 

Most of the regression methods are prone to over training like 

artificial neural networks are. Bayesian criteria can overcome 

these disadvantages as they control model complexity by 

providing an objective criterion to signal for stopping the 

training. Controlling the complexity of the neural network is 

carried out by setting up a penalty on the greatness of the 

network weights. In these methods, namely Bayesian 

regularized artificial neural networks with a Gaussian prior 

(BRANNGP),a Gaussian prior ∑ ��'³´5��  is commonly applied to 

control the complexity of models 159-161.To achieving an 

optimum sparsity in these and linear models, they use an 

expectation maximization algorithm 162. There are some 

successful application of these methods in QSAR modeling of 

diverse data sets 163-166. Further improvement of these 

methods has been done by using a sparsity-inducing Laplacian 

prior∑ µ�5µ³´5��  denoted as Bayesian regularized artificial neural 

networks with a Laplacian prior, BRANNLP) 162, 167 which makes 

the irrelevant weights in descriptor space to be set to zero, 

and just the meaningful remainder defines the model. 

Therefore, both the less relevant descriptors and the number 

of effective weights in the neural network model are set to the 

optimal level.  

Support Vector Machine 

Support vector machine (SVM) is a machine-learning technique 

used for resolving the classification and regressionproblems. In 

recent years, SVM as a relatively novel approach and a 

powerful modelling tool, showed a good performance 

compared to the old methods including neural networks. The 

foundations of SVM have been set up by Vapnik and his team 
168, 169. A least squares version for support vector machine 

modified by Suykens 170, 171 that its main advantage is to learn 

faster and easier. In fact, support vector machine is a binary 

classifier, which separate two classes by linear boundary. The 

basic idea of SVM was to construct an optimal separating 

hyperplane as decision level for determination of threshold 

separating between different data points or components. 

Using an optimization algorithm, the samples that constitute 

the boundaries of classes are called support vectors. This 

method is based on the supervised learning models. Thus a 

number of training data that are the least distance from 

decision boundary conceding as subset for decision boundary 

and support vectors. This method can be applied for linear and 

nonlinear analysis. In figure 12 two classes and their support 

vectors were shown. To separate the two classes, or in other 

words, to calculate the decision boundaries between two 
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classes, the margin optimization is used. This margin is defined 

as the distance of the closest data point from the separating 

hyper plane. 

 

A linear decision boundary in general can be written as 

follows: 

�� + 8 = 0 (32) 

x is a point on the boundary decision, w is a n-dimensional 

vector the perpendicular to the boundary decision. 

In this method, the boundary line between the two classes is 

calculated with these conditions: 

1- All samples of class +1 are located on one side of the 

border, and all samples of class -1 are located on the 

other side of the border. 

2- Decision boundary in such a way that the distance 

between the nearest training data points in the 

direction perpendicular to the boundary between the 

two classes of decisions to be maximized. 

The first condition can be written as follows: 

¶��� + 8 ≤ −1  U�7� = −1 

¶��� + 8 ≥ 1  U�7� = +1 

7��¶��� + 8� ≥ 1 

 

The distance of separator line from the origin is: 

 

% = x��¹º¨�»¼�
‖¹‖ (33) 

 

So the distance between two margins is given by the 

following equation: 

	 = 2% = '
‖¹‖(34) 

The maximizing 
'

‖¹‖ is given by minimized 
�
' �6� 

So, the separator line is obtained by solving the 

following equation: 

Minimize         
�
' ¶6¶ 

Subject to         7��¶� �� + 8� ≥ 1 

 

Getting w and b from the solution of this equation require 

complex calculations.  

To simplify it, the optimization problem could transform using 

the method of Lagrange's undetermined multipliers the below 

form. α is Lagrange multipliers. 

Maximize: ½�¾� = − �
' ∑ ¾�¾57�75���5³�,5�� + ∑ ¾�³���  

Subject to: ∑ ¾�7�³��� = 0, ¾� ≥ 0, U = 1, … À 

After solving the optimization problem by Lagrange 

multipliers, w is calculated using the following equation: 

� = ∑ ¾�7���b��� (35) 

Due to existence of noise and error in measurement in real 

systems, the flexibility margin should be used so that the 

outlier would not cause wrong boundary. To this end, a 

parameter error is added to the equation: 

Minimize  
�
' ‖�‖' + Á ∑ :�³���  

Subject to 7���. �� + 8� ≥ 1 − Â� , �Ã%U = 1, … , À 

Â� ≥ 0,     �Ã%U = 1, … , À 

γ parameter is related to the effect of error on margin, that 

should be optimized by user. When the classes are overlap, 

spearing of classes by a linear boundary always give an error. 

To overcome this problem data can be mapped the input 

space into a high dimensional feature space by choosing a 

suitable choice of kernel function that is a non-linear mapping 

(Figure 13). In new space the data have a less interference 

with each other.  Nonlinear functions can be employed 

including polynomials, radial basis function and certain 

sigmoid function, that the most common of them is RBF 

function.  

Ä = exp [−�\¨, ¨/\
'Æ. �'](36) 

The advantage of the SVM is that, by use the kernel trick, the 

distance between a molecule and the hyperplane can be 

calculated in a transformed (nonlinear) feature space, but 

without requiring the explicit transformation of the original 

descriptors. A variety of kernels have been suggested, such as 

the polynomial and radial basis function (RBF). 

In the nonlinear case we can one employs the “kernel trick” to 

express the dot products and the mappings q into the Hilbert 

space: 

q:R d ⇛H                                                       (37) 

in terms of some kernel function of the form 

Ì��� , �5� = q����. q��5�                               (38) 

By this method, wherein the dot products are defined in the 

new space as a single function, it becomes unnecessary to 

determine q explicitly. This is especially useful in the case of 

the commonly-used radial basis function: 

Ì��� , �5� = : Í\¨, ¨/\.
                                     (39) 

(forÁ>0), which renders H infinite-dimensional. 
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The advantage of the SVM is that, by use the kernel trick, the 

distance between a molecule and the hyperplane can be 

calculated in a transformed (nonlinear) feature space, but 

without requiring the explicit transformation of the original 

descriptors. A variety of kernels have been suggested, such as 

the polynomial and radial basis function (RBF). 

Another application of SVMs is solving regression problems by 

introduction of an alternative loss function. Quadratic, Laplace, 

Huber and v-insensitive are employed as loss functions that 

must be modified to include a distance measure. SVR works 

effectively on both linear and non-linear problems. In the same 

manner as the non-linear SVC approach, a non-linear mapping 

can be used to map the data into a high dimensional feature 

space where linear regression is performed using various 

kernel functions.  

SVM regression relation is as follows: 

� = �
' Î�Î + �

' Á ∑ :�'                b��� (40) 

Subject to:   7� = Î�∅�� + 8 + :�U = 1, … , V 

7� is the dependent variable, the best relation is the one that 

minimizes the cost function (�) containing a penalized 

regression (:�) error term. 

Unlike excellent predictive power of SVMs, they are not 

interpreted simply, and little work has been carried out in this 

area in comparison to trees or neural networks. Performance 

of SVMs on various data sets is good so they are common in a 

variety of disciplines. The disadvantage of this approach is that 

the model builds time as a result of the quadratic 

programming step of the algorithm for creating a SVM. Their 

prediction ability is high due to natural avoiding local minima.  

Now, SVM is established in the drug design field. For example, 

Briem&Günther 172 , to predict the likeness of a molecular 

compound to be a kinase inhibitor, developed support vector 

machine (SVM) models. Jorissen& Gilson 173 described the 

application of SVM models for virtual screenings.  

Tomohiro Sato et al. 174 used support vector machine to 3D 

shape-based virtual screening using complete 3D molecular 

shape overlay with known inhibitors of 15 target proteins 

extracted from the ChEMBL database in order to progress the 

screening efficiency. The descriptor in this study was 3D 

similarity profile of a compound and was described as the 

array of 3D shape similarities with multiple known active 

compounds and was used as the explanatory variable of SVM. 

The prediction ability of the 3D shape similarity metrics 

presence in ROCS (rapid overlay of chemical structures), such 

as ShapeTanimoto and ScaledColor, were validated, using the 

inhibitors. The idea of empirical kernel map was used to 

calculate the descriptors, using reference structures which are 

known active compounds. In order to compute the input data 

for SVM, every compound in a database was overlaid on all 

known active compounds by ROCS and was exhibited by a 

vector involving of the resulting 3D shape similarities to the 

active ones. SVM models classify two classes of compounds 

nonlinearly, by mapping the data vectors to a high dimensional 

descriptor space and finding the hyperplane that decollated 

the two classes with the largest margin. “kernel trick” is the 

major variety between SVM and simple linear discrimination. 

In this study, a radial basis function (RBF) kernel was used to 

gain a complex nonlinear separating hyperplane. The gamma 

for the RBF kernel and the “C” value of the constant for the 

slacks variant were optimized by 5-fold cross-validation. 

For obtaining the descriptors, first, a compound from the 

target database was aligned on all of the active compounds, 

and the similarity metrics, such as ShapeTanimoto or 

ScaledColor, with the active compounds were computed by 

ROCS. Then, the 3D similarity profile was obtained, by arraying 

the measured 3D shape similarity data (Figure 14). To assess 

the efficiencies of screening, active and decoy compounds in 

the test set were superposed to the active molecules in the 

training set, and the obtained 3D similarity profiles of the test 

set were entered into the SVM models, for predictions. Among 

the 3D similarity metrics, ScaledColor showed the best 

screening efficiencies, for both the enrichment factor at 1% 

(EF1) value and receiver operation characteristic curves (ROC) 

score, on average for the 15 target proteins. Totally, the 

pharmacophore-based metrics, such as ScaledColor and 

ColorTanimoto, showed better results than the shape-based 

metrics. The SVM models using ScaledColor for the 3D 

similarity profiles, for both the SVM models and usual 

similarity approaches indicated the best results. In general, the 

findings show that the machine learning approaches for the 

efficiency of virtual screening could handle plural information 

sources correctly. 

Kinnings et al. 38 showed using support vector machines 

(SVMs) can improve predicted activities by the docking 

program eHiTS. They constructed two SVM models: Firstly, a 

regression support vector machine, which was derived using 

IC50 data from 80 Mycobacterium tuberculosis (M.tb) InhA 

inhibitors extracted from BindingDB 

(http://www.bindingdb.org/). Training the model was carried 

out using individual energy terms as features from the eHiTS 

docking software. The eHiTS give 20 energy terms contributed 

in the overall energy score. These scores were drawn from the 

output of the docking of 80 different InhA inhibitors into InhA. 

In order to resolve the optimal combination of energy terms 

(features) for regression modelling, different combinations 

were examined. Comparison of the relative accuracies of 

different combinations of features was done by Five-fold cross-

validation. The combination of energy terms that gave the 

highest mean Spearman's rank correlation coefficient was 
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selected for the model.  A classification model trained using 85 

active molecules and 3035 decoy molecules from Directory of 

Useful Decoys (DUD) which includes actives and decoys in a 

ratio of approximately 1:36 and there is a strong bias to 

negative examples in the training samples. To cure this 

situation, a multiple-planar classification model was created 

(Figure 15). In this procedure, set of decoys was randomly 

partitioned into an n subsets and were constructed n model of 

combination n different negative subsets and positive set. In 

order to find the optimal value of n, 5-fold cross-validation was 

performed for various values of n from 5 to 36. In each of five 

iteration F-score was computed, and the mean F-score was 

assigned to that particular value of n. number of partitions of 

decoy set with highest F-score was selected. Each of models 

predicted a score for each molecule in the test set, and a 

weighted voting method was used for sum of the n scores that 

was assigned to each molecule. If the sum of the n scores was 

greater than zero, the molecule was considered active, and if 

the sum of the n scores was less than zero, the molecule was 

considered decoy. Performance of both regression and 

classification SVM models were better than original eHiTS 

scoring function .then they employ SVM to train a new scoring 

function for direct inhibitors of Mycobacterium tuberculosis 

(M.tb) InhA. and were able to increase the accuracy of virtual 

screening of direct InhA. inhibitors by this new function , and 

proposed that posphodiesterase inhibitors can bind potentially 

to target. 

The Relevance Vector machine (RVM) proposed by Tipping175 

is a related but sparser classification and regression method, 

based on Bayesian statistics, which showed considerably 

better properties than SVM. Sparser models generated by such 

methods are able to make generalization to new data 

compared to models with less sparse properties. 

Some of disadvantages of SVM methods are as follows176:  

• SVMs are not optimally so while are relatively sparse. 

• Predictions are not probabilistic. SVM provides a single value 

in regression while in the classification renders a deterministic 

binary decision. Ideally, it would be beneficial to capture the 

uncertainty of predictions. 

• A cross validation procedure is necessarily used to estimate 

SVM parameters that is wasteful of time, data, and 

computation. 

The RVM theory identifies how the algorithm overcomes the 

disadvantages of SVM, it is shown that for relatively diverse 

data sets RVM models provides models usually sparser, more 

predictive, or both compared to SVM models of the same data 

using a same data set of descriptors. Although, RVM is an 

iterative method, training times are minimal for the data set 

sizes employed here, and the increased sparsity, which 

generates benefits in terms of predictive powerand, arguably, 

interpretability, makes the small increase in computational 

effort worthwhile. 

Classification and regression trees (CART) 

CART is a non-parametric unbiased statistical strategy, which 

solves classification and regression problems. Classification 

and regression trees are machine-learning approaches to build 

prediction models from data, where trees are oriented graphs 

starting with one node and branching to many. In models 

based on classification trees, the dependent variable is 

categorical, while in the regression ones it is continuous. 

Indeed, each classification tree can be translated into a 

collection of predictive rules in Boolean logic. 177, 178. CART is 

used to model the data space and fit a simple prediction model 

within each division. It is an alternative approach to nonlinear 

regression and sub-divide, or partition, the data space into 

smaller regions, where the feature interactions are more 

manageable. The sub-divisions then are partitioned again, this 

is recursive partitioning, until finally it would not possible to 

model the space. For classification and regression trees, the 

model in each region is just a constant estimate of Y. That is, if 

there are some points (x1; y1); (x2; y2) . . . (xc; yc) all belonging 

to a same leaf-node. Then the model for this is just the sample 

mean of the response variables in that cell. Classification or 

regression trees do not need to be binary, but most are. There 

are three type nodes in a decision tree: a root node, internal 

nodes, and terminal nodes. The root node in top holds the 

entire training samples and does not have any incoming 

branches. An internal node has one incoming branch 

containing a subset of the samples in the node directly above 

it and two or more outgoing branches. Furthermore, it 

includes the total of the samples in the nodes connected to 

and directly below it. Finally, the terminal or leaf nodes are, 

with one incoming branch and no outgoing branches. A node 

may assign to be a leaf if compounds directed to it fall into a 

single activity class or at least one class produces a clear 

majority. Typically, a single descriptor is applied as a condition 

to do a test in each node. Each leaf node would be assigned 

with a target property namely the activity class related to the 

leaf. However, assignment of each non leaf node (root or 

internal node) is done with a molecular descriptor. To select 

the most suitable descriptor for a split and its split value, an 

algorithm is used in which all descriptors and all split values 

are regarded. The split in which the best reduction in impurity 

between the mother group (tp) and the daughter groups (tL 

and tR) takes place is selected.  

∆U�), j0� =  U0�j0� − ^Ï��j�� − ^_��jd�(41) 

wherei is the impurity, s the candidate split value, and PL and 

PR are the portions of the objects in the left and the right 

daughter group, respectively. For regression trees, the 

impurity i is usually determined as the total sum of squares of 
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the deviations of the individual responses from the mean 

response of the group in which the considered molecule is 

assigned 179, 180.  

U�j� =  ∑ �7b − 7��j��'              bb�� (42) 

whereU�j� is the impurity of group t, yn is the value of the 

response variable for sample xn and 76���(t) is the mean value of 

the response variable in group t.  

Mathematically this is expressed as: The result of the test, 

determines the direction of the algorithm to one of the child 

nodes branching from the parent. By repeating the procedure, 

traversal of the tree towards the leaves is done. The training of 

the model is carried out by incremental addition of nodes. The 

CART procedure consists of three major steps. First is that in a 

forward stepwise procedure a complete decision tree is built 

from data. It means each parent node is divided into two child 

nodes by a best splitter. This is done by labelling the interior 

nodes with questions, and edges or branches by the answers 

(yes or no in classic versions) to determine the left and right 

regions: the split for continuous variables is defined by “xi<aj” 

where xiis the selected explanatory variable and ajits split 

value. Every recursive algorithm needs to have a stopping 

criterion. A more typical criterion may be that halt when each 

child would contain less than a predefined value (five) data 

points, or when addition of information by splitting would be 

less than some threshold. Picking the criterion is important to 

obtain a good tree. A case is that the tree will grow and 

splitting continues until sum of squared differences of all y 

values of objects in that node reaches to less than a 

predetermined threshold (fully grown tree).  

 

Tree-pruning 

Addition of more variables produces a chance of over fitting, 

resulting in poor predictions for unknown samples. Then, the 

second step consists of ‘pruning’ the tree that is via removing 

extra variables. Size of the tree is determined by counting the 

terminal nodes. A complexity value for instance the sum of 

squares of differences can be used for pruning the tree. Within 

the pruning procedure, terminal branches are cut successively 

to obtain a series of smaller subtrees from the maximal tree. 

Then a comparison is made between different subtrees to find 

the optimal one. This comparison is on the basis of a cost-

complexity measure, in which both tree accuracy and 

complexity are regarded. 

Selection of the optimal tree 

Now that the optimal tree has to be selected among the 

obtained sequence of sub trees, the final job is to make a 

balance between the performance of the tree (the right size) 

and its complexity. It is often based on the evaluation of the 

predictive error by performing the cross-validation algorithm 

or by using an external test set 39. In an n-fold cross-validation 

(CV), 1/n parts of the data from the training samples, one after 

another, are removed till all parts removed once and just only 

once. These are used as a test set to assess the predictive 

power of the tree, build with the left over data 181. Then the 

tree with the smallest mean CV error is accounted as the most 

accurate tree, defined by the RMSECV: 

_wa`ÐÑ = 3∑ �x, x�,��,�� b (43) 

whereyi is the response value of sample i, 7(� is the predicted 

response value for object i and n is the total number of 

objects. 

Decision Trees have been tested in some studies 182, 183. In 

several datasetsrelated to ecotoxicity, decision trees usually 

achieved lower error than LDA or kNN methods 59. There are 

also applications of decision trees, in anti-HIV activity 184, 

toxicity 185 and oral absorption 186. 

 

Ensemble learning based methods 

Random Forests 

There is usually relatively low prediction accuracy for decision 

tree (DT). This downside may hamper usefulness in 

applications such as virtual screening of compound libraries. 

Many efforts have been done by many research groups to 

improve its prediction accuracy. The outputs of these attempts 

led to a large number of various tree-based algorithms 187. 

Account for the fact that one of the best ways to improve the 

performance of DT based algorithms is to use ensembles of 

trees; RF was presented 9, 188. This perspective concerns that 

the performance of an ensemble of not-exactly-tuned diverse 

trees as regressor would be better than that of a well-tuned 

single tree. RF is a powerful tool which is able to present 

performance and is among the most accurate methods that 

grows many classification trees. Each tree gives a classification, 

and we say the tree "votes" for that class. The forest chooses 

the classification having the most votes (over all the trees in 

the forest). RF is an ensemble of B trees {T1(x), ..., TB(x)}, 

where x = {x1, ..., xp} is a p-dimensional vector of molecular 

features or properties related to a molecule. The ensemble 

produces B outputs {7(� = t1(X), ...,7(²=tB(X)} where7(¼ , b = 1, ..., 

B, is the prediction provided by the bth tree for a molecule. 

Outputs of all trees are aggregated to produce one final 

prediction,<(. For classification problems, Ò�is the class 

predicted by the majority of trees. In regression it is the 

average of the individual tree predictions. Some of recently 

applications of RF method in QSAR can be found here 189, 190. 

Training Procedure 

The tree growing algorithm used in RF is unpruned CART, 

although other alternatives could be considered as well. 

Suppose a data set with n molecules for training, in which D = 
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{(x1, y1), ..., (xn, yn)}, and xi, i = 1, ..., n, is a vector of descriptors 

and yican be either the corresponding class label (e.g., 

active/inactive) or activity value (e.g., -logIC50), the steps of 

training algorithm can be as follows: (1) A bootstrap set (i.e., 

randomly selected samples, with replacement, n molecules) is 

drawn from the training set of n molecules. (2) In each 

bootstrap sample, a tree with the following properties is 

grown: at each node, instead of testing the performance of all 

variables, the best division among a randomly selected subset 

of mtry descriptors is chosen. Here mtry is essentially the only 

tuning parameter in the algorithm. Each tree grows to reach 

the maximum size (i.e., until no further splits would be 

possible) and not pruned back. (3) Repetition of the above 

steps is carried out until (a sufficiently large number) B such 

trees are obtained. When mtry = p, i.e., the best split at each 

node is selected among all descriptors, the RF algorithm would 

be the same as Bagging 191. The RF algorithm can be very 

efficient, especially when the number of descriptors is very 

large. The reasons of this efficiency compared to that of 

growing a single decision tree, may be related to differences 

between the two algorithms. The first is that in a usual tree 

growing algorithm, splitting performance of all descriptors is 

tested at each node, while in RF only mtry of the descriptors is 

tested. Since mtry has typically a very small value (the default in 

the software is the square root of the number of descriptors 

for classification), the search would be very fast. Second, to 

attain the optimal prediction strength in a right model 

complexity some pruning is usually required for a single DT. 

Cross validation does the job which can consume a major 

portion of the computations. RF, on the other hand, does not 

perform any pruning at all. It is found that when there are an 

excessively large number of variables; training of RF can be 

done in less time other than a single decision tree.  

Estimation of performance of RF by out-of-Bag  

An ideal way of doing assessment of performance for a 

prediction algorithm is via using a large independent test data 

set. In practice, when the number of samples is limited, some 

type of cross-validation 192 is usually used, which, in some 

cases, would be computationally cumbersome. Cross-

validation in RF is performed in parallel with the training step 

by using the so-called Out-Of-Bag (OOB) samples 193. 

Specifically, in the process of training, each tree is grown using 

a particular bootstrap sample. Because bootstrapping is part of 

sampling with replacement from the training data, some of the 

objects will be “left out” of the sample, while some others will 

be repeated in the set. So, the training samples are 

bootstrapped randomly with replacement to about two thirds 

of the original training set as the in-bag set and the remaining 

one third of the samples, the “left out” molecules (DOOB), as 

the OOB samples 194. Because of not using OOB molecules in 

the tree construction, there can be a possibility to use them to 

estimate the ensemble prediction performance in the 

following method. If �¼��² is the OOB part of the data for the 

bth tree, it will then be possible to use the bth tree to 

predict�¼��² . As each training molecule, xi, is in an OOB object, 

in average, about 1/3 of the time, it would be possible to 

calculate an ensemble prediction <(��²²����by aggregating 

only its OOB predictions. An estimation of the error rate for 

classification or mean square error (MSE) for regression is 

carried out by  

Error rate ≈ �`%%Ã%%¤j:���² =  V � ∑ Õ�Ö×��²�k��� ≠b���
7��(44) 

wa` ≈ wa`��² =  V � ∑ {<(��²���� − 7�}b��� 2(45) 

where I(.) is the indicator function. In reality, OOB 

performance compared with n-fold cross-validation shows that 

they are in reasonably good agreement, so that the 

assessment of RF performance indeed does not necessitate 

additional cross-validation. 

Other ensemble learning based methods 

There are some other well-known ensemble learning methods 

in addition to RF, namely bagging 191 and boosting 194, 195. Both 

these two methods have also been proven to significantly get 

better performance over that of a single tree. Bagging can be 

regarded as a RF when mtry = p. In boosting, there is a 

sequence of trees. While all the data have been used to train 

each of them, data points have been reweighted in each tree 

consistent with whether they were misclassified by the 

previous tree in the sequence, for classification. On the other 

hand in regression, growing of each tree is based on the 

residuals of the previous trees. For prediction, weighted vote 

(in classification) or weighted average (in regression) of the 

ensemble outputs is carried out. Moreover, there has been 

proposed actually several implementations of boosting, such 

as Freund and Schapire’s Friedman’s stochastic gradient 

boosting (SGB) 196, and many others 197, 198. There are several 

evidences that boosting and RF usually do better than bagging 
199. It ought to be mentioned two other ensemble methods 

because of having been used in QSAR modelling: random FIRM 
200 and decision forest 187. In random FIRM, each ensemble of 

trees is built on all the training data, but at each split, a 

variable is randomly chosen consistent with probabilities 

related to the descriptor’s significance from an appropriate 

statistical test defining the split. While random FIRM surely has 

ability to be used for prediction, using one of the tree 

aggregation procedures, its application is basically for model 

interpretation. Decision forest is another ensemble based 

method built such that descriptors used by each tree arenot 

available to the other trees although such that the prediction 

accuracy of each tree does hold above a specified threshold. In 

a comparison, made between decision forest and RF, it is 

shown that they have similar performance on one data set. In 

recursion forest 201, an ensemble of trees all is grown on the 

same training data, while the tree growing parameters are 
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systematically varied to produce different trees. A consensus 

selection procedure is then applied to calculate a boolean 

intersection of the outputs. Adaboost 202 is the first applicable 

approach of boosting, and it has been appointed as one of the 

top ten data mining algorithms 203. It is well known that it 

reduces bias (besides from variance) 204, and like to SVMs 

boosts the margins 205. AdaBoost uses the whole data-set to 

train each classifier serially, but after each round, it pays more 

attention to difficult cases, with the aim of correctly classifying 

examples in the next round that were incorrectly classified 

during the current iteration. Hence, the more focus is given to 

instances that are harder to classify. The quantity of focus is 

determined by a weight, which at first is equal for all samples. 

At the end of each round, the weights of misclassified 

instances are increased while the weights of correctly 

classified instances are decreased. In addition, another weight 

is assigned to each individual classifier depending on its overall 

accuracy which is then used in the test phase; more 

confidence is given to more accurate classifiers. Finally, when a 

new instance is submitted, each classifier gives a weighted 

vote, and the class label is chosen by majority. Lastly, there is a 

current work underway on building ensembles of trees grown 

using evolutionary programming rather than recursive 

partitioning 185. In QSAR, the boosting method has been found 

useful in modelling the COX-2 inhibition, estrogen and 

dopamine receptor binding, multidrug resistance reversal, 

CDK-2 antagonist activity, BBB permeability, logD and P-

glycoprotein transport activity 183. In comparison with RF, it 

showed better results for several datasets but worked worse 

for the others. Bagging and other similar ensembles were used 

in QSAR 206-208. In another case, the kNN and decision trees 

were used as base methods in bagging for prediction of drug 

likeness 209. 

 

CART and LDA in practice 

To illustrate how CART and LDA work, a study from Zang et al. 

has been selected 210. The ToxCast and Tox21 programs have 

tested ~8200 chemicals in a broad screening panel of in vitro 

high-throughput screening (HTS) assays for estrogen receptor 

(ER) agonist and antagonist activity. In this study, the authors 

exploited the HTS data got from ToxCast and Tox21 programs 

for 8000 environmental chemicals including pesticide active 

and inert ingredients; industrial chemicals such as solvents, 

surfactants, and plastics; cosmetics and personal care 

ingredients; food additives; and pharmaceuticals. They 

developed binary QSAR classification models that related 

chemical structures to estrogenic activity by the application of 

three machine learning methods, LDA, CART, and SVM. 

Training compounds from the ToxCast project were 

categorized as active or inactive (binding or nonbinding) 

classes based on a composite ER interaction score derived 

from a collection of 13 ER in vitro assays. A total of 1537 

chemicals from ToxCast were used to derive and optimize the 

binary classification models while 5073 additional chemicals 

from the Tox21 project, evaluated in 2 of the 13 in vitro assays, 

were used to externally validate the model performance. A 

total of 51 molecular descriptors were calculated using the 

QikProp software (Schrodinger version 3.2). All chemicals with 

available structures were also fingerprinted using publicly 

available SMARTS sets FP3, FP4, MACCS from OpenBabel, 

PADEL and PubChem. A total of 4328 bits of structural 

fingerprints were generated.  

Table 6. Data sets used for classification study 
Data set  Total 

chemicals 
Active 
chemicals 

Inactive 
chemicals 

Active/inactive 

Tox21 6610 435 6175 1:14.2 
ToxCast 1537 264 1273 1:4.82 
Training 
set (I) 

1025 176 849 1:4.82 

Internal 
test set 
(II) 

512 88 424 1:4.82 

External 
test set (III)

5073 171 4902 1:28.7 

 

It is well known that a common problem in machine learning 

(ML) model building occurs when the training HTS data are 

highly imbalanced with only a small number of active 

chemicals compared to the number of inactive chemicals. 

Therea new approach was proposed to tackle the problem of 

class imbalance using what they term a “target-independent” 

clustering method. The limitations of the model’s predictive 

capability outside the training set were also examined. Feature 

selection was applied by using random forest, which ranks the 

importance of each descriptor in the classification process, and 

was useful in eliminating the unrelated and redundant 

descriptors to ER activities and improved the model’s 

prediction performance. The molecular descriptors captured 

important information and were more discriminative than 

fingerprints in thebinary classification. The models employing 

descriptors presented significantly superior results than those 

employing fingerprints. To assess the performance of these 

machine learning methods, it is useful to examine whether 

their prediction ability is at a similar level in terms of overall 

accuracy, sensitivity, specificity, and G-mean. The best model 

was derived from SVM with the optimal settings of the RBF 

kernel function and the set of descriptors selected by RF 

method. When compared with LDA and CART, the SVM 

classification model presented better statistics and produced 

improved results, not only in cross validation, but also in the 

prediction of two independent test sets, giving the highest 

sensitivity of 76.1% and specificity of 82.8% for the internal 

validation set. Although, CART achieved lower classification 

accuracy than SVM and LDA, and it is the simplest model with 

the best interpretability. These models were developed by 

using ToxCast data set with about 1500 known active and 

inactive chemicals, thereby, covers a small portion of the 

chemical space of the Tox21. The reliability of the prediction 

model was strongly dependent on the structural similarity 
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between training compounds and test compounds. Although, 

satisfactory results were achieved in both cross validation and 

internal tests, and the predictive power of the built model for 

a test set that is beyond the training chemical space, such as 

the Tox21 data set, should not be anticipated without caution. 

Overall, this research work suggests that the binary QSAR 

classification models are useful for in silico prediction of the 

estrogenic activity and for characterizing the molecular 

features of environmental chemicals. Also, highly accurate 

predictive models can be built based on chemical descriptors. 

These models can be applied in virtual screening of large 

databases for identifying compounds with potential risk at a 

reduced cost. 

Nd-QSAR methods 

With introduction of comparative   molecular   field   analysis 

(CoMFA) 211 in  1988  for the first time, structure–activity 

relationships were presented based on the three-dimensional 

structure of the molecules (3D-QSAR) 212, 213. In this way, a series of 

compounds superimposed in 3D space are placed onto a surface or 

grid which mimics the binding site of the true biological receptor. 

Ligands’ interaction with chemical probes is then gathered as 

descriptors. However, in traditional 2D-QSAR models descriptors 

are derived from a two dimensional graph representation of a 

molecule. The determining factor to the quality of a 3D-QSAR 

model is the correct alignment of the ligands, the identification of 

which is almost impossible in the absence of structural information 

for the target protein. Though, some 3D-QSAR methods are 

alignment independent such as a method that uses GRid-

INdependent Descriptors (GRIND). GRIND are among field based 

features that are obtained starting from a set of molecular 

interaction fields 213, 214. Many other 3D-QSAR methods have been 

developed thereof that a comprehensive explanation of them can 

be found in literature 215, 216. While the alignment problem has long 

been recognized, 4D-QSAR approaches would seem to provide 

decent solutions 217, 218. This concept approaches the alignment 

problem by incorporating molecular and spatial variety by 

representing each compound in differentconformations, 

orientations, tautomers, stereoisomers or protonation states. The 

true binding mode (or the bioactive conformation) is then identified 

by the algorithm underlying the QSAR concept. Furthermore,  it  can  

have  fundamental  biological  relevance,  in the case of  multi-mode  

binding  targets 219. While this method profoundly reduces the bias 

with choosing a bioactive conformation, orientation, or protonation 

state, it still needs to a “sophisticated guess” about appearance and 

importance of the associated local induced fits, the adaptation of 

the receptor binding pocket to the individual molecule topology. 

The fifth dimensions allowing for a multiple representation of the 

topology of the quasi-atomistic receptor surrogate is considered in 

5D-QSAR approach 220, 221. Extension of dimensions to six in 6D-

QSAR allowed researchers to simultaneously consider different 

solvation models. This can be obtained explicitly by mapping parts 

of the surface area with solvent features which genetic algorithm 

was used to optimize the position and size, or implicitly. 6D-QSAR 

has been applied on  106  diverse  molecules  binding  to  the  

estrogen receptor and the results suggested that this approach is 

appropriate  for  the  identification  of  an  endocrine-disrupting 

potential related to drugs and chemicals 222. 

Conclusion 

QSAR has been applied successfully over several decades to 

find predictive models to solve problems in the fields of drug 

design, toxicity, risk assessment and etc. The scientific 

community is displaying more and more notice in the QSAR 

field. QSAR models should be seen together with their 

components not alone. One part is to choosinga right model 

developing method. Hereby, we have discussed several 

multivariate analyses methods to establish regression models 

from linear to nonlinear and supervised to unsupervised 

regression methods. Nowadays, the need to deal with systems 

biology and complex systems pushes further toward 

creatingnew borders where mathematics, and statistics is 

applied to produce new effective useful knowledge in the field 

of multivariate methods. Meanwhile, we observed very 

efficient tools and methods for generating molecular 

descriptors and different validation methods.These are two of 

the most remained challenging parts of QSAR modelling by 

multivariate methods. Then, it is mandatory to generate 

suitable chemical descriptors to account useful and focused 

chemical information corresponds to an understudy problem 

and to develop statistical tools to approve the accuracy and 

reliability of the obtained QSAR models. 
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Figure captions  

Figure 1. Hierarchical clustering depicted in a dendrogram, with two selected clusters. 

Figure 2. A line of best fit to the cantered objects in space is the first principal component. The distance to the line 

from each point is minimized in a least-squares fashion. 

Figure 3. A projection of simulated data onto the two-dimensional space spanned by original variables a) without 

outliers b) with outliers 

Figure 4. (A) Score plot of first two principal components analysis shown. Inhibitors are displayed in green circles and 

non-inhibitors are demonstrated in red dots. (B) Loading plot of descriptors used for PCA analysis based on PC1 and 

PC2. 

Figure 5. Applicability domain experiment using “Euclidean distances (ED)”, approach Compounds shown as follows: 

Training compounds: Gray dots, FDA compounds: red square, Test compounds: Black cross 

Figure 6. Distribution of the samples in two classes on a transformed axis, L. 

Figure 7. Class modeling by using SIMCA approach. 

Figure 8. CA IV harmonious plots using 63 descriptors. (a) ����
�
	against RMSEC for PCR (□), PLS (○), and RR (∆). Filled 

symbols denote optimal models with a ridge value of 750 and 6 and 8 PLS and PCR factors, respectively. Ridge values 

vary from 45 in the upper left corner to 7050 in the lower right corner. PLS and PCR models varying from 9 and 16 

factors in the upper left corner, respectively, to 5 and 6 factors in the lower right corner, respectively. (b) ����
�
	against 

RMSEV for PCR (□), PLS (○), and RR (∆). Filled symbols denote optimal models as in (a). Ridge values and PLS models 

vary as in (a). PCR models varying from 15 factors in the upper centre to 6 factors in the lower right corner. 

Figure9. Classification rule provided by kNN approach with different k values. Here the unknown sample is the star. 

Figure 10. Feed-forward NN training: a, forward pass; b, error 

Figure 11. A self-organization map network  

Figure 12. Support vectors and decision boundary 

Figure 13. Non-linear classification using kernel function  

Figure 14. Scheme of SVM learning based on 3D similarity profiles. 

Figure 15. Transformation of a linear classifier into a nonlinear classifier using a multiple-planar classifier. 
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