

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Self-assembly of alkyldithiols on a novel dendritic silver nanostructure
2	electrodeposited on a stainless steel wire as a fiber coating for solid-
3	phase microextraction
4	
5	Yaoxia Yang ^{a,c} , Mei Guo ^a , Yida Zhang ^a , Wenlan Song ^a , Yi Li ^a , Xuemei Wang ^{a,b} ,
6	Xinzhen Du ^{a,b*}
7	^a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou
8	730070, China
9	^b Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou
10	730070, China
11	^c Key Laboratory of Polymer Materials of Gansu Province, Lanzhou 730070, China
12	
13	Abstract:
14	A facile and efficient electrodeposition approach for the controllable preparation of dendritic
15	silver nanostructure was developed on an etched stainless steel (ESS) wire. Subsequently,
16	self-assembled of alkyldithiols (HS- C_x -SH, x=2, 3, 6, 8) was performed on the dendritic Ag
17	coating via Ag-S bonding. The octanedithiol modified Ag nanodendrites (AgNDs) coated
18	ESS fiber (HS-C ₈ -S-AgNDs/ESS) was then assessed for SPME of polycyclic aromatic

^{*} Corresponding author. Tel.: +86 931 7970796; fax: +86 931 7970796 *E-mail address:* duxz@nwnu.edu.cn (X.-Z. Du).

19	hydrocarbons (PAHs), ultraviolet (UV) filters, polychlorinated biphenyls (PCBs),
20	chlorophenols (CPs), phthalate esters (PAEs) and substituted anilines coupled to high-
21	performance liquid chromatography with UV detection (HPLC-UV). This fiber exhibits
22	higher extraction capability and good selectivity for PAHs, UV filters, PCBs and Triclosan
23	compared to CPs, PAEs and substituted anilines. In particular, the microextraction conditions
24	were investigated and optimized for SPME performance of UV filters. Under the optimized
25	conditions, the developed method showed good linearity between 0.30 and 400 $\mu g \ L^{\text{-1}}$ with
26	corresponding correlation coefficients in the range of 0.9973-0.9986. The limits of detection
27	ranged from 0.05 to 0.12 μ g L ⁻¹ . The relative standard deviation for fiber-to-fiber
28	reproducibility of five fabricated fibers in the same batch was less than 8.2%. The expanded
29	uncertainties were below 6.9 % (coverage factor k=2). The developed method was practically
30	applied to the preconcentration and determination of trace UV filters from real environmental
31	water samples.
32	Keywords: Silver nanodendrites; Self-assembly; Solid-phase microextraction; High-
33	performance liquid chromatography; Ultraviolet filters
34	
35	1. Introduction
36	Nowadays nanotechnology is one of the most important trends in material science. Due to

37 ultra-small size, nanomaterials possess unique physical and chemical properties.¹ Therefore

55

RSC Advances

00	
of nanomaterials	
ble separation and	
nt roles in many	pt
ed with different	cri
hich tailors their	Snu
as environmental	Mar
lvent-free sample	pte
nd has gained its	CC
ological ⁸ samples.	× S
analytes between	CO
l on a fused silica	/an
roving the SPME	Adv
bricated as fiber	U C
thiol group (-SH)	a B B B B B B B B B B B B B B B B B B B
mbled monolayer	

38	their design, synthesis, characterization and applications are critical aspects for the emerging
39	field of nanomaterials. It was expected that the large specific surface area of nanomaterials
40	can improve the detection sensitivity and miniaturize the devices. Thus sample separation and
41	preconcentration techniques based on nanomaterials have played important roles in many
42	analytical procedures. Moreover nanomaterials can also be functionalized with different
43	chemical groups to enhance their affinity toward specified analytes, which tailors their
44	selectivity for the extraction of target analytes in complex matrices such as environmental
45	and biological samples. ²
46	Solid-phase microextraction (SPME) is a universal, convenient and solvent-free sample
47	preparation technique. It was firstly introduced by Pawliszyn in 1990s ³ and has gained its
48	popularity in the analyses of environmental, ⁴ food, ^{5,6} pharmaceutical ⁷ and biological ⁸ samples.
49	SPME is an extraction technique based on the partitioning of the organic analytes between
50	the sample matrix and the extraction coating, which is typically immobilized on a fused silica
51	fiber or metal wire. Therefore the fiber coating material is critical in improving the SPME
52	performance. Recently, gold (Au) or silver (Ag) nanoparticles were fabricated as fiber
53	coatings for SPME of specified analytes. ^{9,10} Organic molecules containing thiol group (-SH)
54	can be chemically bonded onto the surface of Au or Ag to form a self-assembled monolayer

and modify Au nanoparticles coatings,^{15,16} which were successfully applied in SPME.

(SAM).¹¹ This approach has been employed to develop novel Au and Ag supported fibers¹²⁻¹⁴

57	Nanodendrites are a promising class of materials that are highly attractive due to their high
58	surface area-to-volume ratio, high porosity, high degree of connectivity and a large number
59	of edges and corner atoms. ¹⁷ These characteristics make the nanodendrites highly useful for a
60	variety of applications including catalysis, ¹⁸ chemical sensing ¹⁹⁻²¹ and surface enhanced
61	Raman scattering. ²²⁻²⁵ In particular, considerable efforts have been focused on the design,
62	synthesis and application of Au nanodendrites based on different advanced strategies. ²⁶⁻³³
63	Less attention has been paid to Ag nanodendrites (AgNDs) and subsequent surface
64	modification and application in SPME.
65	In this work, we described a new approach to rapid and controllable electrodeposition of
66	Ag nanodendritic coating on the surface of the etched stainless steel (ESS) wire using cyclic
67	voltammetry (CV) followed by self-assembly of alkyldithiols (HS- C_x -SH, x=2, 3, 6, 8)
68	occurring uniquely on Ag coating. The silver layer greatly increases the surface area of
69	stainless steel (SS) wire and serves as a supporting substrate for subsequent organic
70	funtionalization via the Ag-S bond. Surface morphology and elemental composition of the
71	prepared HS-C8-S-AgNDs coated SPME fiber were investigated by scanning electron
72	microscope and energy dispersive X-ray spectroscopy. Their extraction performance was
73	evaluated for the concentration and separation of six organic compounds coupled to high-
74	performance liquid chromatography with UV detection (HPLC-UV). In particular, the
75	extraction conditions were investigated and optimized for the concentration and

76	determination of UV filters with 1,8-octanedithiol (HS-C ₈ -SH) modified AgNDs coated ESS
77	fiber (SH-C ₈ -S-AgNDs/ESS). Meanwhile, we also estimated the uncertainty and calculate
78	expanded uncertainty on account of uncertainty is always present at every step of a
79	procedure. ³⁴⁻³⁷ The SPME-HPLC-UV procedure was established to preconcentrate and
80	determine UV filters from real environmental water. Furthermore the SPME performance of
81	the HS-C ₈ -S-AgNDs/ESS fiber was compared with that of commercial polyacrylate (PA) and
82	polydimethylsiloxane (PDMS) fibers under the optimized conditions.
83	
84	2. Experimental
85	2.1. Materials and reagents
86	The stainless steel wire (80 mm, 0.25 mm O.D.) was supplied by Gaoge (Shanghai, China).
87	Hydrofluoric acid (40%) was purchased from Shuangshuang Chemicals Co., Ltd, (Yantai,
88	China). Silver nitrate (AgNO ₃) was purchased from Baiyin Chemical Reagents Company
89	(Baiyin, China). Sodium chloride (NaCl) was purchased from Sinopharm Chemical Reagent
90	Co., Ltd. (Shanghai, China). HPLC-grade methanol was purchased from Yuwang Chemical
91	Company (Yucheng, China). 1,2-Ethylenedithiol (HS-C ₂ -SH), 1,3-propanedithiol (HS-C ₃ -SH)
92	and 1,6-hexanedithiol (HS-C ₆ -SH) was purchased from Sahn Chemical technology Co., Ltd.
93	(Shanghai, China). 1,8-Octanedithiol (HS-C ₈ -SH) was purchased from Acros (Geel, Belglum,
94	NJ, USA). Certified of 2-hydroxy-4-methoxybenzophenone (BP-3), 2-ethylhexyl 4-(N,N-

95	dimethylamino) benzoate (OD-PABA), 2-ethylhexyl 4-methoxycinnamate (EHMC),
96	dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), di-n-octyl
97	phthalate (DOP), di-(2-ethylhexyl) phthalate (DEHP), 2-chlorophenol (2-CP), 2,4-
98	dichlorophenol (2,4-CP), 2-(2,4-dichlorophenoxy)-5-chlorophenol (Triclosan), 2,4',5-
99	trichlorobiphenyl (PCB 31), 2,4,4'-trichlorobiphenyl (PCB 28), 2,3',4,4',5-
100	pentachlorobiphenyl (PCB 118), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), aniline, 4-
101	nitroaniline and benzidine were purchased from AccuStandard (New Haven, CT, USA).
102	Certified 2-ethylhexyl salicylate (EHS) was purchased from Dr. Ehrenstorfer GmbH
103	(Augsburg, Germany). Certified naphthalene (Nap), phenanthrene (Phe), anthracene (Ant),
104	fluoranthene (Fla) and 4-methylaniline were purchased from Aldrich (St. Louis, MO, USA).
105	Individual standard stock solutions were prepared in methanol at a concentration of 1 g L^{-1}
106	for substituted anilines and CPs as well as 100 mg L ⁻¹ for PAHs, UV filters, PCBs and PAEs,
107	resectively, storing at 4 °C in the refrigerator. A polyacrylate (PA, 85µm thickness) and
108	polydimethylsiloxane (PDMS, 100 μ m thickness) fibers were obtained from Supelco
109	(Bellefonte, PA, USA). All chemicals were analytical reagents.
110	2.2. Apparatus

111 All chromatographic separation was performed with isocratic elution on a Waters 600E 112 multi-solvent delivery system (HPLC, Milford, MA, USA) equipped with a Waters 2487 dual 113 λ absorbance detector and a Zorbax Eclipse Plus C₁₈ column (150 mm×4.6 mm, 5 μ m,

114	Agilent, USA). Data was collected with a N2000 workstation (Zhejiang University, China). A
115	SPME device was modified from a commercially available 2-µL HPLC microsyringe (Gaoge
116	Shanghai, China). The desorption procedure was carried out in SPME-HPLC interface
117	(Supelco, PA, USA). The proposed fiber was characterized by an Ultra Plus scanning
118	electron microscope (SEM, Zeiss, Oberkochen, Germany) equipped with semi-quantitative
119	microanalysis by Aztec-X-80 energy dispersive X-ray spectroscopy (EDS, Oxford, UK). The
120	electrodeposition procedure was performed on a CHI832D electrochemical analyzer
121	(Chenhua, Shanghai, China). The extraction procedure was performed in a DF-101S
122	thermostated water bath with a magnetic stirrer (Zhengzhou, China). Ultrapure water was
123	obtained from a Sudreli SDLA-B-X water purification system (Chongqing, China).
124	2.3. Fabrication of HS-C _x -S-AgNDs/ESS fiber
125	One end of the stainless steel (SS) wire was firstly washed in acetone for 10 min in an
126	ultrasonic bath to remove the organic pollutants and then rinsed with ultrapure water for 10
127	min. Subsequently the SS wire was etched for 60 min at 40 in hydrofluoric acid (40%)
128	according to improved procedure. ³⁸ Afterwards the ESS fiber was washed with ultrapure

129 water thoroughly and dried at nitrogen atmosphere.

The electrodeposition of AgNDs coating onto the surface of ESS wire was performed by cyclic voltammetry (CV) in electrolytic solution of $AgNO_3$ (0.01 mol L⁻¹) with three electrode system using the ESS wire as a working electrode, a Pt rod as a counter electrode

RSC Advances Accepted Manuscript

anuscript
Accepted Ma
Advances
RSC

151	min to eliminate carry over between samples. All the experiments were performed in
152	triplicate, otherwise stated.
153	2.5. Real water samples
154	Real environment water samples include 4 river water, 1 wstewater and 1 snow water
155	samples. River water samples were freshly collected from different sites in the Lanzhou
156	section of the Yellow River. A wastewater sample was collected from local wastewater
157	treatment plant and the snow water sample was collected from Yantan area of Lanzhou. All
158	samples were filtered through 0.45 μm micropore membranes and then stored in amber glass
159	containers in fridge at $4\square$. Fig. 1 illustrates a flow diagram of the method used for the
160	concentration and determination of UV filters in water samples by SPME-HPLC-UV.
161	
162	Fig. 1
163	Fig. 1. Flow diagram of the procedure of UV-filters determination in water samples by
164	HPLC-UV method.
165	
166	3. Results and discussion
167	3.1. Electrochemical fabrication of AgNDs/ESS fiber
168	Pretreatment of the SS wire can ensure the firmness and uniformity of the fiber coatings
169	before chemical deposition, ⁹ hydrothermal growth ³⁹ or dipping coating. ⁴⁰ The etching step

offers very rough surface for the SS wire, enhances the binding strength between the fiber	
coating and the porous ESS substrate. CV allows to precisely control the uniformity and the	
deposition rate for subsequent electrochemical fabrication of nanostructured coatings for	
excellent extraction. As compared with that of bare SS wire shown in Fig. 2a, the ESS wire	
exhibits very rough and porous surface structure (Fig. 2b). The etching step provides an ideal	
supporting substrate for subsequent electrodeposition of AgNDs coating. It can be clearly	
seen from Fig. 2c that the AgNDs coating is immobilized onto the surface of the ESS wire.	
Fig. 2	
Fig. 2. SEM images of bare SS wire (a×10000), ESS wire (b×10000), AgNDs coating	
(c×20000) and SH-C ₈ -S-AgNDs/ESS (d×20000) fibers. Conditions: applied voltage, -0.3 V	
to 0.3 V; scan rate, 20 mV s ⁻¹ ; CV cycles, 20; SAM,12 h; 25 \Box .	
3.2. Self-assembly of alkyldithiols on AgNDs coating	
Self-assembly of different alkyldithiols 0.1%(w/w) was performed on the AgNDs coating	
in 5 mL ethanol solution containing via Ag-S bonding. Fig. S1 shows the surface morphology	
of different alkyldithiols modified AgNDs/ESS fibers (HS-C _x -S-AgNDs/ESS, x=2, 3, 6, 8).	
More compact surface structures were achieved compared to that of AgNDs coating (Fig. 2d).	
Fig. 2d shows the SEM image of the US C. A sNDs/ESS fiber Moreover larger A granticles	

178

170

171

172

173

174

175

176

179 Fig. 2. SEM images of 180 (c×20000) and SH-C8-S-

182

181

183 3.2. Self-assembly of all

184 Self-assembly of diffe 185 in 5 mL ethanol solution 186 of different alkyldithiols 187 More compact surface str 188 Fig. 2d shows the SEM image of the HS-C8-AgNDs/ESS fiber. Moreover larger Ag particles

189	were observed after self-assembly for a longer time (Fig. S2). Such surface morphology
190	implies that self-assembly of alkyldithiol molecules was formed on the AgNDs coating.
191	Meanwhile corresponding extraction performance of different HS-C _x -S-AgNDs/ESS fibers in
192	the same batch was compared in Fig. 3 using UV filters as model compounds. The HS-C $_8$ -
193	AgNDs/ESS fiber gives the best extraction efficiency for UV filters (OD-PABA, EHMC and
194	EHS). This result suggests that self-assembly of different alkyldithiols on the AgNDs coating
195	result in the formation of the organic-inorganic hybrid coating and greatly modifies surface
196	properties of the AgNDs/ESS fiber. In the following experiment, the HS-C ₈ -S-AgNDs/ESS
197	fiber was employed for further study.
198	
199	Fig. 3
200	Fig. 3. Chromatograms of UV filters by SPME-HPLC with the SH-C ₂ -S-AgNDs/ESS (a),
201	SH-C ₃ -S-AgNDs/ESS (b), SH-C ₆ -S-AgNDs/ESS (c) and SH-C ₈ -S-AgNDs/ESS (d) fibers.
202	Conditions: UV filters, 100 μ g L ⁻¹ ; extraction, 30 min; desorption, 4 min; temperature, 35 °C;

203 stirring, 500 r min⁻¹.

204

205 3.3. Surface analysis of the HS-C₈-S-AgNDs/ESS fiber

Surface composition of the HS-C₈-S-AgNDs/ESS fiber was also comparatively investigated by EDS. As compared with the bare SS wire (Fig. 4a), the ESS wire exhibits

urface	
After	
ved at	
of the	pt
onded	Cri
n and	Snu
time.	Jar
d after	D
t more	pte
gNDs	CCe
roups.	Ā
S	Advances
-3-	RSC

208	very similar EDS spectra (Fig. 4b), indicating that the etching step can not change the surface
209	composition of the SS wire but greatly modify the surface morphology of the SS wire. After
210	electrodeposition of AgNDs, a strong characteristic signal for Ag was simply observed a
211	2.98 keV (Fig. 4c). Therefore full coverage of AgNDs was achieved on the surface of the
212	ESS substrate via electrochemical deposition. When 1,8-octanedithiol is chemically bonde
213	onto the surface of AgNDs coating, an enhanced characteristic signal for carbon an
214	corresponding characteristic signal for sulfur also appear in Fig. 4d at the same time
215	Moreover stronger carbon and sulfur signals as well as weaker Ag signal were observed after
216	self-assembly of 1,8-octanedithiol molecules for a longer time (Fig. S3), indicating that more
217	HS-C ₈ -S- groups were anchored on the surface of AgNDs coating via Ag-S bonding. AgND
218	as novel supporting substrate acted as a template for the self-assembly of HS-C8-S- group
219	These phenomena provide additional evidence for the results obtained by SEM.
220	
221	Fig. 4
222	Fig. 4. EDS spectra of bare SS wire (a), ESS wire (b), AgNDs/ESS fiber (c) and SH-C ₈ -S-
223	AgNDs/ESS fiber (d).
224	

225 **3.4. Extraction efficiency and selectivity**

226	The extraction performance of the prepared fibers was further examined. As compared
227	with the bare SS fiber (Fig. S4b), the ESS fiber exhibits improved extraction efficiency for
228	OD-PABA, EHMC and EHS (Fig. S4c) because the etching step greatly increases the surface
229	area of the SS wire. As shown in Fig. S4d, the AgNDs/ESS fiber shows better extraction
230	efficiency for OD-PABA, EHMC and EHS due to the hydrophobic interaction between the
231	AgNDs coating and UV filters. ¹⁰ After self-assembly, the HS-C ₈ -S-AgNDs/ESS fiber
232	exhibits the best extraction efficiency for above UV filters. This result suggests that the self-
233	assembly of HS-C8-S- groups remarkably modify the surface properties of the AgNDs/ESS
234	fiber and enhance the affinity for studied UV filters.
235	Extraction selectivity of the HS-C8-S-AgNDs/ESS fiber was investigated using PAHs, UV
236	filters, PCBs, CPs, PAEs and substituted anilines as model analytes. As shown in Fig. 5, the
237	HS-C ₈ -S-AgNDs/ESS fiber exhibits better extraction selectivity for PAHs, UV filters (OD-
238	PABA, EHMC and EHS), PCBs and Triclosan. By contrast, this fiber only shows very low
239	extraction capability for BP-3. In the case of CPs (2-CP and 2,4-DCP), PAEs and substituted
240	anilines (not shown), negligible extraction appears. These results clearly demonstrate that the
241	HS-C ₈ -S-AgNDs/ESS fiber has strong interaction toward PAHs, UV filters (with lower
242	solubility), PCBs and Triclosan. Therefore, the fabricated fiber is a good candidate for the
243	preconcentration and separation of trace PAHs, UV filters, PCBs, and Triclosan from water
244	samples. In particular, the HS-C ₈ -S-AgNDs/ESS fiber offers a weakly polar coating surface

RSC Advances Accepted Manuscript

245	due to the presence of C_8 chains with thiol groups and exhibits efficient extraction for OD-
246	PABA, EHMC and EHS. Thus this fiber was employed to optimize its extraction
247	performance for OD-PABA, EHMC and EHS in subsequent study.
248	
249	Fig. 5
250	Fig. 5. Typical chromatograms of direct HPLC for PAEs (a), CPs (c), PCBs (e), UV filters (g)
251	and PAHs (i) as well as corresponding SPME-HPLC with SH-C8-S-AgNDs/ESS fiber for
252	PAEs (b), CPs (d), PCBs (f), UV filters (h) and PAHs (j) for water spiked with 100 μ g L ⁻¹
253	each analyte.
254	
255	3.5. Optimization of SPME
256	To improve extraction efficiency, the extraction conditions such as extraction time,
257	desorption time, extraction temperature, stirring rate, ionic strength and pH were optimized.
258	The peak areas were used to examine the extraction performance of the proposed HS-C ₈ -S-
259	AgNDs/ESS fiber for OD-PABA, EHMC and EHS in aqueous samples.
260	3.5.1. Dependence of extraction efficiency on extraction and desorption time
261	The extraction time is depends strongly on equilibrium time, which is associated with
262	distribution properties of analytes between the fiber coating and sample solution. The
263	extraction efficiency increases with extraction time and reaches a plateau at constant

264	temperature. Fig. 6a shows that the extraction equilibrium was reached at about 40 min.
265	Subsequently static solvent desorption of the extracted UV filters was examined in mobile
266	phase, the equilibrium of desorption was achieved within 4 min (Fig. 6b). No carry-over of
267	target UV filters was detected for the second desorption. In the following experiments, 40
268	min and 4 min were employed for extraction and desorption, respectively.
269	
270	Fig. 6
271	Fig. 6. Dependence of extraction efficiency on extraction time (a), desorption time (b),
272	temperature (c) and stirring rate (d). Error bars are corrected standard deviation of peak areas
273	for three replicates at the 95% confidence level.
274	
275	3.5.2. Dependence of extraction efficiency on temperature
276	Temperature plays a very important role in SPME based on adsorption mechanism. It not
277	only influences the diffusion coefficients but also affects the distribution constants. Fig. 6c
278	shows the dependence of extraction efficiency of UV filters on temperature from 15 $^{\circ}$ C to 65
279	°C. Heating facilitates the diffusion of analytes in aqueous solution at lower temperature than
280	35 $^{\rm o}{\rm C}$ and thereby improves extraction efficiency. However, higher temperature than 35 $^{\rm o}{\rm C}$

281 results in poor extraction of analytes because the surface adsorption is generally an

exothermic process. Moreover higher temperature also increases the solubility of analytes in

283 aqueous phase. Thus 35 $^{\rm o}{\rm C}$ was used in subsequent study.

284 **3.5.3.** Dependence of extraction efficiency on stirring

- 285 Generally stirring is frequently employed to accelerate the mass transfer of analytes from
- the sample matrix into the fiber coating, allowing for the extraction equilibrium in a shorter
- time. As a result, the stirring rate was studied from 300 rmin^{-1} to 800 rmin^{-1} . The maximum
- extraction efficiency was achieved at the stirring rate of 500 r min⁻¹ shown in Fig. 6d.
- 289 Therefore, the stirring rate was fixed at 500 r min⁻¹ for SPME.

290 **3.5.4.** Dependence of extraction efficiency on ionic strength

291 Addition of inorganic salt is usually used to lower the solubility of organic analytes in the 292 sample matrix due to the salting-out effect and improve their extraction efficiency. 293 Consequently ionic strength was adjusted with different NaCl contents from 0 to 30% (w/w). 294 In the presence of NaCl less than 3%, the extraction efficiency of UV filters was slightly 295 decreased. Thereafter the extraction efficiency was obviously decreased with the increasing 296 concentration of NaCl. In the case of about 5% NaCl, chloride ions may destroy the hydrogen bonding interaction between the thiol groups and UV filters to some extent. In addition, the 297 298 viscosity of aqueous phase increases in the case of higher NaCl content, which decreases the diffusion coefficients of the analytes in aqueous phase.⁴¹ More negative effect of NaCl on the 299 300 extraction occurs. As a result, salt was not added in the following study.

Page 17 of 39

RSC Advances

RSC Advances Accepted Manuscript

301 **3.5.5.** Dependence of extraction efficiency on pH

302 The pH value of sample solution plays a crucial role in the extraction of acidic or basic 303 analytes. Therefore, the dependence of extraction efficiency on pH was studied between 3.0 304 and 9.0. The extraction efficiency decreased at lower pH due to the protonation of target 305 analytes. Also the protonation of thiol groups could have a negative effect on extraction 306 efficiency to some extent. The best extraction efficiencies were observed at pH 7.0 because the neutral forms of UV filters are favorable for their adsorption onto the HS-C₈-S-307 308 AgNDs/ESS fiber. At higher pH, however, the extraction efficiency gradually decreased. 309 Therefore, the pH value was fixed at 7.0 for SPME.

310 **3.6. Method validation**

311 Under the optimized conditions, the proposed analytical method was investigated by extracting a series of standard water samples ranging from 0.1 to 400 µg·L⁻¹. Analytical 312 parameters are listed in Table 1. The linearity ranged from 0.30 to 400 μ L⁻¹ for OD-PABA 313 and EHMC and from 0.50 to 400 μ g·L⁻¹ for EHS, with all the correlation coefficients being 314 315 larger than 0.9973. Limits of detection (LOD) and limits of quantification(LOQ) were 316 obtained based on the signal to-noise ratio of 3 and 10, respectively. LODs were in the range 0.05-0.12 μ g L⁻¹ and LOQs in the range 0.17-0.40 μ g L⁻¹. The precision of the method was 317 318 tested by performing five consecutive extractions. The single fiber repeatability for five extraction runs of working solution spiked at 100 μ g L⁻¹ varied from 4.2% to 6.6% for intra-319

320 day determination and from 5.7% to 7.1% for inter-day determination. The fiber-to-fiber 321 reproducibility was also investigated with five fabricated fibers in the same batch and varied 322 from 6.3% to 8.2%. The expanded uncertainties were below 6.9 % (coverage factor k=2) and 323 the expanded uncertainties of each analyte determined were estimated according the previous 324 study.³⁵ 325

326

Table 1

327 **Table 1** Analytical parameters of the proposed method (n=5)

Parameter	Value				
Analyte	OD-PABA	EHMC	EHS		
Linear ranges ($\mu g \cdot L^{-1}$)	0.30-400	0.30-400	0.50-400		
r^2	0.9986	0.9979	0.9973		
Recovery (%)	99.5±6.8	97.6±7.3			
Expanded uncertainty (%)	6.2	5.8	6.9		
Single fiber Intra-day (%)	4.2	6.4	6.6		
repeatability Inter-day (%)	5.7	7.5	7.1		
Fiber-to-fiber reproducibility (%)	6.3	8.2	7.4		
LOD ($\mu g \cdot L^{-1}$)	0.05	0.07	0.12		
$LOQ (\mu g \cdot L^{-1})$	0.17	0.23	0.40		

Page 19 of 39

RSC Advances

RSC Advances Accepted Manuscript

329	3.7. Stability and durability
-----	-------------------------------

330 Stability and durability of the SPME fiber strongly depend on the physicochemical 331 properties and preparation strategy of the coating material, and are important for its practical 332 applications. Generally, the commercially available SPME fibers suffer from swelling in organic solvents.⁴² For this reason, the solvent resistance of the HS-C₈-S-AgNDs/ESS fibers 333 334 investigated after exposure to methanol, chloroform, tetrahydrofuran was and 335 dimethylsulfoxide for 36 h, respectively. The fabricated fibers can withstand these organic 336 solvents based on its SEM images. This advantage resulted from the chemical stability of 337 silver and the strong Ag-S bond, and made this fiber suitable for SPME hyphenated with 338 HPLC. Even after 150 extraction (in aqueous phase) and desorption (in mobile phase) cycles, 339 the HS-C₈-S-AgNDs/ESS fiber still presented good recovery from 96.3% to 103.0% spiked with 100 μ g·L⁻¹, and three replicates were performed to analyze OD-PABA, EHMC and EHS. 340 341 Such physical and chemical stability allows the application of this novel fiber for a long time 342 without a significant loss of extraction efficiency. However this fiber has low thermal 343 stability due to its surface functionalization and thereby is used to hyphenate with HPLC in 344 this study.

345 **3.8. Analysis of real samples**

346 UV filters are a family of organic compounds with single or multiple aromatic structures,
 347 and frequently used in a variety of sunscreens to filter the solar deleterious UV-light that may

348	cause damage on human skin.43 These synthetic chemicals has been detected in urban
349	wastewater, e.g. BP-3 and OD-PABA.44 A critical survey on UV filters determination
350	demonstrated that some UV filters in the aquatic environment possess multiple hormonal
351	activities in vitro.45 However their concentration is too low to be detected in real water
352	samples with conventional methods. Therefore, the proposed method was employed to
353	preconcentrate and determine UV filters from various environmental water samples. To
354	evaluate the accuracy and precision of the proposed method, recoveries were performed by
355	spiking standard UV filters into the real water samples at concentration levels of 10 $\mu g \; L^{\text{-1}}$
356	and 50 μ g L ⁻¹ , respectively. The analytical data were listed in Table 2. The relative standard
357	deviation (RSD) was between 5.7% and 8.7% and the mean recoveries ranged from 85.5% to
358	105.5%.

- 359
- 360

Table 2

361	Table 2 Analytical r	esults of UV filters in	n different environmental	water samples (n=3)
	2			

		Original	Spiked with 10 μ g L ⁻¹			Spiked with 50 μ g L ⁻¹		
Samples	UV filters	(μg L ⁻¹)	Detected	Recovery	RSD	Detected	Recovery	RSD
			$(\mu g L^{-1})$	(%)	(%)	$(\mu g L^{-1})$	(%)	(%)
River water	OD-	2.01	11.8	85.5	7.1	50.9	97.9	6.5
under	PABA							
Bapanxia	EHMC	1.82	10.9	85.7	8.3	51.2	98.8	8.6

Bridge	EHS	ND ^a	10.2	102.0	7.6	50.5	105.5	7.9	
River water	OD- PABA	1.22	10.7	95.3	5.8	51.0	99.6	6.4	
under Yintan	EHMC	0.98	10.4	94.7	7.6	50.6	99.3	8.2	
Bridge	EHS	ND	9.8	98.0	7.2	49.2	98.4	7.4	
River water	OD- PABA	2.89	13.1	101.6	5.7	53.0	100.2	6.2	
Donggang	EHMC	2.20	12.3	100.8	8.2	52.4	100.4	8.4	
Bridge	EHS	ND	10.2	102.0	7.2	51.1	102.2	7.6	
River water	OD- PABA	2.01	11.5	95.8	6.5	51.9	99.8	6.6	
Shichuan	EHMC	1.87	11.2	94.4	8.4	50.7	97.7	8.5	
Bridge	EHS	ND	9.7	97.0	7.3	49.8	99.6	7.4	
	OD- PABA	3.12	13.4	102.1	6.9	53.5	100.7	6.8	
Wastewater	EHMC	2.88	13.0	100.9	8.7	52.9	100.0	8.4	
	EHS	ND	10.4	104.0	7.8	50.8	101.6	7.5	
Snow water	OD- PABA	1.02	10.7	97.1	6.4	50.9	99.7	6.7	
	EHMC	0.96	10.3	94.0	8.2	50.4	98.9	8.0	

		EHS	ND	9.6	96.0	7.4	48.8	97.6	7.6
362 363	a), Not deter	cted or lowe	er than limi	ts of detect	ion.				
364									
365	Fig. 7 s	shows typic	al chromato	ograms of d	irect HPLC	(Fig. 7a)	and SPME	-HPLC with	the
366	HS-C ₈ -S-Ag	g/ESS fiber	for raw (F	ig. 7b) and	spiked was	stewater (Fig. 7e). T	he matrix ef	ffect
367	was negligil	ble. As con	npared with	commerci	ally availab	le 85 μm	PA (Fig. '	7c) and 100	μm
368	PDMS (Fig	g. 7d) fibe	rs, the HS	-C ₈ -S-AgN	Ds/ESS fit	per (Fig.	7e) exhib	its the grea	atest
369	extraction c	apability fo	or target UV	/ filters fro	m spiking v	wastewate	er at 50 µg	L ⁻¹ . These	data
370	demonstrate	that the ne	w HS-C ₈ -S	-AgNDs/ES	SS fiber is e	ffective f	or the prece	oncentration	and
371	determinatio	on of trace t	arget UV fi	lters in real	environme	ntal water	samples.		
372									
373				F	ig. 7				
374	Fig. 7. Typ	oical chrom	atograms o	of direct H	PLC (a), S	PME-HP	LC with S	H-C ₈ -S-Ag/I	ESS
375	fiber for rav	v wastewate	er (b) and S	PME-HPL	C with 85 μ	m PA fib	er (c), 100	µm PDMS f	iber
376	(d) and SH-	C ₈ -S-AgNE	Ds/ESS fibe	r (e) for spi	king wastev	vater at 50	0 μg L ⁻¹ .		
377									
378	3.9. Compa	rison of th	e proposed	method w	ith previou	sly repor	ted metho	ds	
379	Up to :	now, variou	us pretreatn	nent techni	ques have t	been used	for the co	ncentration	and
380	determinatio	on of UV fi	lters from v	water samp	les, such as	SPME-G	C, ⁴⁴ solid j	phase extrac	tion

0.01

(CDD) 46

RSC Advances

47

381	(SPE), single-drop microextraction (SDME), nollow fiber supported liquid phase
382	microextraction (HF-LPME) ⁴⁸ and dispersive liquid-liquid microextraction (DLLME), ⁴⁹
383	SPME-HPLC-DAD, ⁵⁰ SPME-HPLC-UV. ^{14,51-52} Comparison of the proposed method with
384	previously reported ones was summarized in Table 3 with regard to extraction time (t), linear
385	ranges, RSD, LOD and recovery. The ideal LOD values were obtained. Moreover the $\mathrm{HS}\text{-}\mathrm{C}_8\text{-}$
386	S-AgNDs coating permits fast mass transfer from bulky phase to the fiber. The fabricated
387	fiber can be handled with great convenience compared with commercially available
388	polymeric fibers. The operation procedure of SPME-HPLC is a simple and rapid. This novel
389	fiber can selectively preconcnetrate and sensitively determinate target analytes in real
390	environmental water samples. The experimental results for the proposed method are better
391	than those reported in the literatures ^{14,44,48} and comparable with those reported in the
392	literatures ^{46-47,49-52} .
393	

394

Table 3

Table 3 Comparison of the current method with previously reported methods for extraction

396 and determination of UV filters.

Instrumentation ^a	Linear T	Linear	LOD	RSD	Recovery	D.C
	(min)	ranges $(\mu g \cdot L^{-1})$	$(\mu g \cdot L^{-1})$	(%)	(%)	Ref.

PDMS-SPME- GC-FID	45	10-500	0.87-2.47 ^b	4.5-7.9	82-98	44
C ₁₈ -SPE-LC-DAD	~30	0.02-0.2	0.014 ^b	2.77	95-97	46
IL-SDME-LC-UV	37	1-150	0.07-0.19	2.8-7.9	96-110	47
IL-HF-LPME- HPLC-UV	50	5-1000	0.2-0.5	1.1-8.4	95.2-104.9	48
IL-DLLME- HPLC-UV	10	0.5-500	0.06-0.16	2.8-7.6	92.8-114	49
PDMS-SPME- HPLC-DAD	30	0.25-100	0.06-0.21 0.12-0.73	3.34-10.21 4.23-9.16	84.62-100.80 81.54-102.32	50
C ₁₂ -SPME- HPLC-UV	60	5-200	0.69-1.37	0.58-1.86	69.7-102.4	14
Ti–TiO ₂ –ZrO ₂ - SPME-HPLC-UV	30	0.5-400	0.038-0.082	4.3-12	82.2-106.6	51
ph-TiO ₂ -Ti-SPME- HPLC-UV	30	0.005-25	0.0001-0.05	4.6-9.1	86.2-105.5	52
SH-C ₈ -S-Ag-SPME- HPLC-UV	40	0.3-400	0.05-0.12	5.8-8.7	85.5-105.5	This method

^a C₁₂, dodecyl; C₁₈ disks; DAD, diode array detection; FID, flame ionization detection; IL,

398 ionic liquid.

399 ^b Limit of quantification.

400

401 **4. Conclusions**

402 Novel HS-C_x-S-AgNDs/ESS fibers were prepared by electrodeposition of AgNDs coating 403 on the ESS wire and subsequent self-assembly of different alkyldithiols. Among the HS-C_x-404 S-AgNDs/ESS fibers, the HS-C₈-S-AgNDs/ESS fiber permits best extraction capability and

405	selectivity for PAHs, UV filters, PCBs and Triclosan. It was more effective than the
406	commercially available PA and PDMS fibers for SPME of target UV filters and employed to
407	extract several UV filters in aqueous solution. Moreover the fabrication of the HS-C8-S-
408	AgNDs coating was easily performed in a highly reproducible manner. This novel fiber
409	integrates the inherent chemical stability of the Ag coating and the mechanical durability of
410	the SS substrate, and can be used over 150 times. Furthermore the Ag coating can react with
411	functional groups like -SH, -NH ₂ . This approach can control the surface property of the fiber
412	and obtain the better extraction performance fiber in the future.
413	
414	Acknowledgements
415	The authors gratefully acknowledge financial support from the National Natural Science
416	Foundation of China (Grant no. 21265019).
417	
418	References
419	1 J. Y. Tian, J. Q. Xu, F. Zhu, T. B. Lu, C. Y. Su and G. F. Ouyang, J. Chromatogr. A, 2013,
420	1300, 2.
421	2 F. K. Liu, J. Chromatogr. A, 2009, 1216, 9034.
422	3 C. L. Arthur and J. Pawliszyn, Anal. Chem., 1990, 62, 2145.
423	4 D. X. Zhang, L. K. Xue, Q. Zhu and X. Z. Du, Anal. Lett., 2013, 46, 2290.

- 424 5 X. Mo, Y. Xu and W. Fan, J. Agri. Food Chem., 2010, 58, 2462.
- 425 6 Q. L. Ma, N. Hamid, A. E. D. Bekhit, J. Robertson and T. F. Law, Microchem. J., 2012,
- 426 **111**, 16.
- 427 7 X. Zhou, X. Li and Z. Zeng, J. Chromatogr. A, 2006, **1104**, 359.
- 428 8 W. Liu, L. Zhang, S. Chen, H. Duan, X. Chen, Z. Wei and G. Chen, Anal. Chim. Acta,
 429 2009, 631, 47.
- 430 9 H. X. Liu, L. Liu, Y. Li, X. M. Wang and X. Z. Du, Anal. Lett., 2014, 47, 1759.
- 431 10 J. J. Feng, M. Sun, H. M. Liu, J. B. Li, X. Liu and S.X. Jiang, Anal. Chim. Acta, 2011 701,
 432 174.
- 433 11 J. H. Fendler, Chem. Mater., 2001, **13**, 3196.
- 434 12 H. Bagheri, Z. Ayazi and H. Sistani, Microchim. Acta, 2011, **174**, 295.
- 435 13 B. B. Prasad, M. P. Tiwari, R. Madhuri and P. S. Sharma, J. Chromatogr. A, 2010, 1217,
 436 4255.
- 437 14 J. Li, L. Y. Ma, M. Q. Tang and L. Xu, J. Chromatogr. A, 2013, 1298, 1.
- 438 15 J. J. Feng, M. Sun, H. M. Liu, J. B. Li, X. Liu and S. X Jiang, J. Chromatogr. A, 2010,
- 439 **1217**, 8079.
- 440 16 Y. X. Yang, Y. Li, H. X. Liu, X. M. Wang and X. Z. Du, J. Chromatogr. A, 2014, 1372,
- 441 25.

- 442 17 Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y. M. Kang and S. X.
- 443 Dou, J. Am. Chem. Soc., 2011, **133**, 19314.
- 444 18 A. Mohanty, N. Garg and R. C. Jin, Angew. Chem. Int. Edit., 2010, 49, 4962.
- 445 19 S. Tong, Y. Xu, Z. Zhang and W. Song, J. Phys. Chem. C, 2010, 114, 20925.
- 446 20 T. N. Huan, T. Ganesh, K. S. Kim, S. Kim, S. H. Han and H. Chung, Biosens. Bioelectron,
- 447 **2011**, **27**, 183.
- 448 21 L. Wang, W. Mao, D. Ni, J. Di, Y. Wu and Y. Tu, Electrochem. Commun., 2008, 10, 673.
- 449 22 G. W. Lu, C. Li and G. Q. Shi, Chem. Mater., 2007, 19, 3433.
- 450 23 X. L. Tang, P. Jiang, G. L. Ge, M. Tsuji, S. S. Xie and Y. J. Guo, Langmuir, 2008, 24,
 451 1763.
- 452 24 D. Huang, X. Bai and L. Zheng. J. Phys. Chem. C, 2011, 115, 14641.
- 453 25 X. Han, D. Wang, J. Huang, D. Liu and T. You, J. Colloid Interf. Sci., 2011, 354, 577.
- 454 26 Y. Qin, Y. Song, N. J. Sun, N. Zhao, M. X. Li and L. M. Qi, Chem. Mater., 2008, 20,
 455 3965.
- 456 27 J. C. Zhang, L. J. Meng, D. B. Zhao, Z. F. Fei, Q. H. Lu and P. J. Dyson, Langmuir, 2008,
- 457 **24**, 2699.
- 458 28 X. L. Xu, J.B. Jia, X. R. Yang and S. J. Dong, Langmuir, 2010, 26, 7627.
- 459 29 T. Huang, F. Meng and L. Qi, Langmuir, 2010, 26, 7582.

- 460 30 T. H. Lin, C. W. Lin, H. H. Liu, J. T. Sheu and W.H. Hung, Chem. Commun., 2011, 47,
 461 2044.
- 462 31 J. J. Feng, A. Q. Li, Z. Lei and A. J. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 2570.
- 463 32 Z. Y. Lv, A. Q. Li, Y. Fei, Z. Li, J. R. Chen, A. J. Wang and J. J. Feng, Electrochim. Acta,
- 464 **2013**, **109**, 136.
- 465 33 A. K. Das, J. Samdani, H. Y. Kim and J. H. Lee, Electrochim. Acta, 2015, 158, 129.
- 466 34 Guide to the Expression of Uncertainty in Measurement, International Organization of
- 467 Standardization (ISO), Geneva, 1993.
- 468 35 P. Konieczka and J. Namie'snik, J. Chromatogr. A, 2010, 1217, 882.
- 469 36 L. E. Vanatta and D.E. Coleman, J. Chromatogr. A, 2007, 1158, 47.
- 470 37 V. J. Barwick, S. L. R. Ellison, C. L. Lucking and M. J. Burn, J. Chromatogr. A, 2001,
- **918**, 267.
- 472 38 H. L. Xu, Y. Li, D. Q. Jiang and X.P. Yan, Anal. Chem., 2009, 81, 4971.
- 473 39 X. Y. Cui, Z. Y. Gu, D. Q. Jiang, Y. Li, H. F. Wang and X. P. Yan, Anal. Chem., 2009, 81,
- **474 9771**.
- 475 40 N. Chang, Z. Y. Gu, H. F. Wang and X. P. Yan, Anal. Chem., 2011, 83, 7094.
- 476 41 S. Endo, A. Pfennigsdorff and K. Goss, Environ. Sci. Technol., 2012, 46, 1496.
- 477 42 M. D. F. Alpendurada, J. Chromatogr. A, 2000, 889, 3.
- 478 43 A. Salvador and A. Chisvert, Anal. Chim. Acta, 2005, **537**, 1.

- 479 44 D. A. Lambropoulou, D. L. Giokas, V. A. Sakkas, T. A. Albanis and M. I. Karayannis, J.
- 480 Chromatogr. A, 2002, **967**, 243.
- 481 45 P. Y. Kunz and K. Fent, Aquat. Toxicol., 2006, **79**, 305.
- 482 46 D. L. Giokas, V. A. Sakkas and T. A. Albanis, J. Chromatogr. A, 2004, 1026, 289.
- 483 47 L. Vidal, A. Chisvert, A. Canals and A. Salvador, Talanta, 2010, 81, 549.
- 484 48 D. D. Ge and H. K. Lee, J. Chromatogr. A, 2012, 1229, 1.
- 485 49 L. K. Xue, W. W. Ma, D. X. Zhang and X. Z. Du, Anal. Methods, 2013, 5, 4213.
- 486 50 J. Y. Shen, M. S. Chang, S. H. Yang and G. J. Wu, J. Liq. Chromatogr. Relat. Technol.,
 487 2012, 35, 2280.
- 488 51 Y. Li, Y. X. Yang, H. X. Liu, X. M. Wang and X. Z. Du, Anal. Methods, 2014, 6, 8519.
- 489 52 L. Li, R. B. Guo, Y. Li, M. Guo, X. M. Wang and X. Z. Du, Anal. Chim. Acta, 2015, 867,
- 490 38.

69x139mm (300 x 300 DPI)

110x83mm (300 x 300 DPI)

146x121mm (300 x 300 DPI)

177x126mm (300 x 300 DPI)

297x209mm (300 x 300 DPI)

Figure captions

Fig. 1. Flow diagram of the procedure of UV-filters determination in water samples by HPLC-UV method.

Fig. 2. SEM images of bare SS wire (a×10000), ESS wire (b×10000), AgNDs coating (c×20000) and SH-C₈-S-AgNDs/ESS (d×20000) fibers. Conditions: applied voltage, -0.3 V to 0.3 V; scan rate, 20 mV s⁻¹; CV cycles, 20; SAM,12 h; 25 .

Fig. 3. Chromatograms of UV filters by SPME-HPLC with the SH-C₂-S-AgNDs/ESS (a),

SH-C₃-S-AgNDs/ESS (b), SH-C₆-S-AgNDs/ESS (c) and SH-C₈-S-AgNDs/ESS (d) fibers.

Conditions: UV filters, 100 μ g L⁻¹; extraction, 30 min; desorption, 4 min; temperature, 35 °C; stirring, 500 r min⁻¹.

Fig. 4. EDS spectra of bare SS wire (a), ESS wire (b), AgNDs/ESS fiber (c) and

SH-C₈-S-AgNDs/ESS fiber (d).

Fig. 5. Typical chromatograms of direct HPLC for PAEs (a), CPs (c), PCBs (e), UV filters (g) and PAHs (i) as well as corresponding SPME-HPLC with SH-C₈-S-AgNDs/ESS fiber for PAEs (b), CPs (d), PCBs (f), UV filters (h) and PAHs (j) for water spiked with 100 μ g L⁻¹ each analyte.

Fig. 6. Dependence of extraction efficiency on extraction time (a), desorption time (b), temperature (c) and stirring rate (d). Error bars are corrected standard deviation of peak areas for three replicates at the 95% confidence level.

Fig. 7. Typical chromatograms of direct HPLC (a), SPME-HPLC with SH-C₈-S-Ag/ESS fiber for raw wastewater (b) and SPME-HPLC with 85 μ m PA fiber (c), 100 μ m PDMS fiber

(d) and SH-C₈-S-AgNDs/ESS fiber (e) for spiking wastewater at 50 μ g L⁻¹.

Graphical Abstract

