

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

A COMPREHENSIVE REVIEW ON BIODIESEL COLD FLOW PROPERTIES AND OXIDATION STABILITY ALONG WITH THEIR IMPROVEMENT PROCESS I.M. Monirul¹, H.H. Masjuki², M.A. Kalam, NWM. Zulkifli, H.K.Rashedul, M.M. Rashed, H.K. Imdadul, M.H. Mosarof

5 Center for Energy Sciences, Department of Mechanical Engineering, Faculty of Engineering,
6 University of Malaya, 50603, Kuala Lumpur, Malaysia

7 Abstract

Biodiesel, which comprises fatty acid esters, is derived from different sources, such as vegetable 8 9 oils from palm, sunflower, soybean, canola, jatropha, and cottonseed, animal fats, and waste cooking oil. Biodiesel is considered as an alternative fuel for diesel engine. However, biodiesel 10 has poor cold flow behavior (i.e., high cloud point & pour point) and oxidation stability 11 compared with petroleum diesel because of the presence of saturated and unsaturated fatty acid 12 esters. Consequently, the performance of biodiesel during cold weather is affected. When 13 biodiesel is oxidized, the subsequent dregs can adversely affect the performance of the fuel 14 system as well as clog the fuel filter, fuel lines, and injector. This phenomenon results in start-up 15 and operability problems. Cold flow behavior is usually assessed through the pour point (PP), 16 cloud point (CP), and cold filter plugging point (CFPP). Earlier studies on cold flow focused on 17 reducing the devastating effect of poor cold flow problems, such as lowering the PP, CP, and 18 CFPP of biodiesel. This present paper provides an overview of the cold flow behavior and 19

¹ Corresponding author. I.M. Monirul, Center for Energy Sciences, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia. Tel.: 60379674448, Fax: +603 79675317, E-mail: monirulislam3103@gmail.com

² Corresponding author. H.H. Masjuki, Center for Energy Sciences, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia. Tel.: 60379674448, Fax: +603 79675317, E-mail: <u>masjuki@um.edu.my</u>

- 20 oxidation stability of biodiesel, as well as their effect on the engine operation system. The
- 21 improvements on the behavior of cold flow of biodiesel are also discussed.

22 Keywords: Biodiesel, Cold filter plugging point, Cloud point, Pour point, Additives, Oxidation

23 stability, Cold flow properties

24 Nomenclature

American standard test method
Acid value
Butyl Biodiesel
Croton biodiesel
Corn oil biodiesel
Biodiesel fuel
Butylated hydroxyanisole
3 5-di-tert-butyl-4-hydorxytoluene
Waste oil biodiesel
Castor biodiesel
Carbon monoxide
Cold flow improver
Cold filter plugging point
Cold flow properties
Canola methyl ester
Cottonseed oil methyl esters
Cloud point
Differential Scanning Calorimetry
Trade name
Ethylene vinyl acetate copolymer
Ethylene vinyl acetate copolymer
Ethyl Levulinate (ethyl 4-oxopentanoate)
Fatty acid methyl esters
Frying oil butyl esters
Hydro carbon
Poly maleic anhydride
Hydrotreated vegetable oil
Isobutyl ester
Isopropyl esters
Induction period
Iodine value
Jatropha biodiesel
Low temperature properties
Moringa biodiesel
Mouha methyl ester
Nitrogen oxides

OECP	Olefin-ester copolymers
OT	Oxidation temperature
OS	Oxidation stability
PAO	Poly-alpha-olefin
PB	Palm oil based biodiesel
PBD	Pongamia biodiesel
PFME	Poultry fat methyl esters
PG	Propyl gallate
PGE	Polyglycerol esters of fatty acids
PMA	Poly methyl acrylate
PP	Pour point
PY	Pyrogallol
RBE	Rapeseed butyl esters
RME	Rapeseed methyl esters
SFME	Sunflower oil methyl esters
SiB	Sacha inchi biodiesel
SME	Soybean oil methyl ester
SuBD	Sunflower based biodiesel
TBHQ)	tert-butylhydroxyquinone
VOBD	Vegetable oils biodiesel
α-Τ	α-tocopherol

²⁶

27 **1. Introduction**

Biodiesel is increasingly becoming an alternative fuel for diesel engine ¹ because biodiesel use 28 reduces the consumption of petroleum; thus, engine gas emissions are environmentally safer²⁻⁴. 29 Biodiesel is used as a renewable resource. It contains straightforward alkyl esters of fatty acids. 30 As a future sustainable fuel, biodiesel needs to contend monetarily with diesel fuel. The cost of 31 biodiesel generation, however, can be reduced using feedstock containing fatty acids, such as 32 animal fats, inedible oils, waste oils, and refined vegetable oils⁵⁻⁹. The use of feedstock varies 33 significantly with location because of climate and accessibility. For example, the well-known 34 feedstock of biodiesel in the USA is soybean oil (SBO), whereas those in Europe and Malaysia 35 are rapeseed oil and palm oil, respectively. However, no technical limitation exists for the use of 36 different vegetable oils ¹⁰. The disadvantages of biodiesel are its poor cold flow behavior [i.e., 37 high cloud point (CP) & pour point (PP)], high viscosity, low vitality content, and high nitrogen 38

39

and oxidation stability, which depend on the content of saturated and unsaturated fatty acid 40 methyl esters (FAME) in oil ¹²⁻¹⁵. These properties are generally relatively opposite, that is, a 41 biodiesel possesses good cold flow properties when it reveals poor oxidation stability ¹⁶ and vice 42 versa. The fatty acid compositions and properties of different biodiesel feedstock and biodiesel 43 vary ^{17, 18} Tables 1(a) and 2(a) show the fatty acid compositions of biodiesel feedstock and 44 biodiesel, respectively. Biodiesel fuels have saturated and unsaturated (for examples, 45 polyunsaturated & monounsaturated) fatty acid ester. ¹⁹⁻²³. The presence of high level 46 unsaturated fatty acid esters in biodiesel makes it prone to autoxidation²⁴, and the linoleic and 47 linolenic acids are the main factors that reduce biodiesel oxidation stability²⁵. When the 48 concentration of linoleic and linolenic acids are increased, the oxidation stability is reduced. 49 50 However, lowering the oxidation stability negatively affects acid value and kinematic viscosity. On the contrary, biodiesel containing high amount of unsaturated fatty acids has better flow 51 properties ²⁴. Jain and Sharma ²⁶ stated that biodiesel with long chain saturated (SFAE) or 52 unsaturated fatty acid esters (USFAE) produced from various feedstock, such as animal fats and 53 vegetable oils, is prone to autoxidation. Therefore, biodiesel can be degraded. Oxidation 54 instability can produce oxidative products, such as aldehydes, alcohols, shorter chain carboxylic 55 acids, insoluble gums, and sediments in the biodiesel. Teixeira et al.²⁷ reported that high 56 concentration of saturated fatty acid esters in tallow-based biodiesel causes unfavorable biodiesel 57 properties. They combined the biodiesel and petroleum diesel properties to improve the cold 58 flow properties of biodiesel. The cold flow behavior of biodiesel is generally assessed through its 59 PP, CP, and cold filter plugging point (CFPP)^{16, 20, 28}. These parameters are generally 60 characterized by the temperature in which biodiesel starts to change from fluid to solid state, 61

resulting in performance issues ¹⁶. Biodiesel has start-up and operability problems during cold 62 weather because of its poor cold flow behavior ^{25, 29, 30}. The temperature of biodiesel 63 crystallization is significantly higher compared with that of mineral diesel fuel; thus, crystal 64 formation at moderately high temperatures may clog fuel filters and fuel flow line, resulting in 65 fuel starvation and operability problems in cold weather ³¹⁻³³. Pour point occurs when the 66 surrounding temperature decreases and forms additional solids ^{25, 34}. Several researchers 67 reported that crystallization temperatures are enhanced by the presence of saturated FAME. Cold 68 flow is also affected by alcohol, which is used for trans-esterification ³⁵⁻³⁷. The cold flow 69 behavior is reduced by esters because of its long-chain alcohol^{35, 38, 39}. 70

Oxidation stability depicts the degradation propensity of biodiesel, which is significant in 71 addressing conceivable issues with engine parts. Biodiesel is oxidized by the presence of 72 unsaturated fatty acids, and subsequently the double bonds abnormally react with oxygen 40 . 73 When biodiesel is oxidized, the subsequent dregs can adversely affect the performance of the 74 fuel flow system, as well as plug the fuel filter and cause injector fouling, thus resulting in 75 engine start-up problem ⁴¹. One potential issue is maintaining the integrity of engine 76 components, such as injectors and fuel pump parts ⁴². Sometimes oxidation leads to conversion 77 of biodiesel compound structure into short chain fatty acids and aldehydes. Oxidation causes 78 biodiesel to be acidic, causing fuel framework erosion and formation of insoluble gums, as well 79 as dregs to clog fuel filters and damage formation on fuel framework segments. Oxidation 80 influences fuel properties, such as viscosity and cetane number. Utilizing oxidized fuel can be 81 harmful and thus contradicts the purpose of using biodiesel and the government's regulations for 82 emanation accreditation ⁴²⁻⁴⁵. Therefore, the development of higher atomic weight items and 83 84 viscosity increment can be prompted by the polymerization-sort reaction. Fuel filters, lines, and

pumps can be clogged with insoluble materials ⁴³⁻⁴⁶. Several studies were conducted to improve the cold flow properties of biodiesel ⁴⁷, such as the use of additives to reduce the intermolecular organization and decrease the crystallization temperature ⁴⁸⁻⁵⁰, and combining biodiesel with petroleum diesel ^{27, 51, 52}, as well as the use of thermal cracking process ⁵³, ozonation technique ⁵⁴, and winterization techniques to reduce the concentration of saturated fatty acid esters ⁵⁵⁻⁵⁸. However, specific method or additive that can improve cold flow behavior of all types of biodiesel is not available. Cold flow enhancers are used to improve the cold flow properties of biodiesel, and this method is more effective compared with other methods. To improve the oxidation stability of biodiesel, some studies investigated methods, such as using additives,

94 purifying biodiesel production, and modifying storage conditions 40 .

95 This review reports the cold flow behavior and oxidation stability of biodiesel, as well as their 96 effect on engine operating system. This review also presents the efforts conducted to improve the 97 cold flow behavior and oxidation stability of biodiesel.

98 2. Biodiesel and methods of production of biodiesel

85

86

87

88

89

90

91

92

93

Biodiesel is an alternative fuel for diesel engines ⁵⁹ generated from different sources, such as 99 vegetable oils from palm, soybean, and mahua, animal fats, and waste cooking oil ⁶⁰⁻⁶⁹. Table 1 100 shows the various feedstocks for biodiesel production ^{63, 70, 71}. Vegetable oil has a mixture of 101 various types of saturated and unsaturated fatty acids ⁷². Biodiesel consists of FAME formed 102 from the trans-esterification of vegetable oils with methanol, ethanol, and other alcohols. This 103 characteristic makes biodiesel a promising alternative for fossil diesel ⁷³. Biodiesel properties, 104 such as cold flow, oxidation stability, viscosity, cetane number, calorific value, and lubricity 105 (**Table 2b**), are controlled by alkyl ester structures $^{16, 20}$ in biodiesel synthesis. Biodiesel cold 106

- 107 flow behavior and oxidation stability have opposing characteristics because both depend on the
- 108 compositions of saturated and unsaturated fatty acids present in oil ^{16, 74-77}
- **Table 1** Name of feedstocks for biodiesel production ^{63, 70, 71}

Edible feedstocks	Non-edible feedstocks	Animal fats or waste	Waste or recycled oil
Sunflower	Jatropha	Tallow	-
Rice bran	Karanjaor	Yellow grease	-
Coconut	Pongamia	Chiken fat	-
Corn	Neem	Byproducts of the refining vegetables oils	-
Palm	Jojoba	-	-
Olive	Cottonseed	-	-
Pistachia Palestine	Mahua	-	-
Sesame seed	Tobacco seed oil	-	-
Peanut	Karanja or Honge	-	-
Tallow	Rubber seed	-	-
rice bran	Sea Mango	-	-
Tea (camellia)	milk bush	-	-
Safflower oil	Kusum	-	-
Wheat germ	Orange	-	-
Opium Poppy	Nagchampa	-	-
Amaranth	Rubber seed tree	-	-
Borneo tallow nut	Deccan hemp	-	-
Prune kernel	Algae	-	-
coriander seed	Linseed	-	-
Grape seed	Halophytes and Xylocarpus moluccensi	-	-
Table 1(a) Fatty acid (composition of various hindias	1 feedstock	
li Di	lum un ya oil sd oil		oking o il
i i i i i i i i i i i i i i i i i i i		a ji oi	ă ¹ 0 –
ac lid	hy ac ac yl hy	p , q	<u>ت</u> ق ت

C12:0	Lauri	-	45-51	-	-	-	-	-	2.1	-	-	-	-	-
	C		10 10						6		1 4			
C14:0	Myris	-	12-19	-	-	-	-	-	5.4	-	1.4	-	-	-
C16.0	UC Dolmit	72	0 1 1	146	22.1	r	20	5	0	0.0	15.6	12	12	12.6
C10.0	r annit ic	73. 0	0-11	14.0	23.1	2- 11	20	5	4	0.8- 1.5	13.0	12. 01	15. 1	-33
C16:1	Palmit oleic	-	1-3	2.5	-		-		-	-	-	-	-	-
C18:0	Steari	5.0	5-8	19.96	12.8	2-6	1	2	2	0.8- 2	9.7	3.1	3.9	9-24
C18:1	c Oleic	18. 0	1-3	37.57	21.5	22- 31	13	20	60	3.6	40.8	21.	52. 8	25- 62
C18:2	Linole ic	4.0	-	26.33	29.0	49- 53	58	18	20	3.5- 6.8	32.1	2 55. 2	30. 1	2.3- 17.9
C18:3	Linole nic	-	-	0.27	13.6	2- 11	-	55	10	-	-	5.9	-	-
C20:0	Arach idic	-	-	0.94	-	-	-	-		-	0.4	-	-	-
Ref.		78	19	79	79	19	22	22	22	80	79	81	22	82

```
115
```

116 **2.1 Methods of Production of biodiesel**

The developments in biodiesel technology are limited on certain properties of biodiesel, such as cold flow behavior ⁸³. Various methods are employed to produce biodiesel, including direct use and blending, thermal cracking (pyrolysis), esterification, trans-esterification, and micro emulsion ⁸⁴⁻⁸⁶. Among these methods, trans-esterification of animal fats and vegetable oils is the most common ⁸⁴.

122 **2.1.1 Trans-esterification process**

Given that vegetable oils have high acid values (more than 4 mg KOH/g oil), direct transesterification process is not applicable. Several steps are necessary prior to the process, such as pre-treatment and esterification, subsequently followed by trans-esterification and fine posttreatment process. Trans-esterification can be directly applied if the acid value of vegetable oil is less than 4 mg KOH/g oil ²⁴.

128 **2.1.1.1 Pre-treatment process**

In this process, crude oil is subjected to rotary evaporation and heated up to 95 °C within 1 h toeliminate its moisture content.

131 2.1.1.2 Esterification process

Esterification method is used to reduce the acid value of biodiesel feedstock prior to trans-132 esterification method. In this process, crude oil is subjected to esterification reaction shown in 133 Fig. 1. Crude oil with 50% (v/v oil) of alcohol (methanol or ethanol) and 1% (v/v oil) H₂SO₄ are 134 allowed to react in a flask for acid-catalyzed esterification. The reaction mixtures are maintained 135 at a minimum temperature of 60 °C for 3 h with stirring at a speed of 400 rpm. When the primary 136 phase of acid esterification is completed, the product is transferred to a separating funnel, and the 137 excess methanol together with contaminations progressed to upper layer are withdrawn. The 138 lower layer of the product is heated at 90 °C for 60 min to separate the methanol and water from 139 the esterified oils. Afterward, the product is used for the trans-esterification 24 . 140

141

⁸⁸. The trans-esterification reaction is shown in **Fig. 2**. The reaction rate is improved after using a

catalyst ⁸⁴. These catalysts may be homogenous, such as NaOH, KOH, and NaOCH₃, or
heterogeneous, such as MgO, CaO, Na, and K ⁸⁹⁻⁹¹. The last reaction mixture mainly contains
esters and glycerols, as well as mono-, di-, and triacyl-glycerols, catalysts, and soaps. The crude
biodiesel glycerol is separated after the trans-esterification reaction ⁸⁵.

	Glyceride	Alcohol	Esters	Glycerol
154				
155	Fig. 2 Tr	cans-esterification pro	ocess of biodiesel pro	duction ⁸⁴
156	2.1.1.4 Post-treatment pro	ocess		
157	The product of trans-esteri	fication is washed w	ith distilled water at	temperature higher than 65
158	°C to eliminate the glycero	l content and contam	inations. Subsequent	ly, the biodiesel is subjected
159	to rotary evaporation to el	iminate the water and	d methanol/ethanol c	ontents. Finally, moisture is
160	absorbed using Na ₂ SO ₄ , an	d the product is filter	ed and then collected	24
161	Advantages of this metho	d		
162	1. Properties of biodie	sel fuel almost same	to the conventional p	etroleum diesel fuel
163	2. Production cost of l	BDF is low		
164	3. For industrialized p	roduction this method	d is suitable	

- 165 4. Conversion efficiency is high.
- 166 Limitation of this method
- 167 1. Low free fatty acid and water content are required
- 168 2. BDF can neutralized and washed for reason of pollutant
- 169 3. Difficult to separate the reacted product
- 170 **2.1.2 Direct use and blending of oils**

Direct utilization of vegetable oils (VOs) for diesel engines has numerous intrinsic failures. This 171 method has been studied extensively in recent decades, but utilization of vegetable oils for other 172 purposes has been conducted for 100 years. Crude vegetable oils may be blended directly and 173 alternately, weakened with diesel fuel to address the viscosity issues attributed to the secondary 174 viscosities of vegetable oils in compression ignition engines ^{92, 93}. The energy consumption of 175 clean vegetable oils was observed to be the same as to diesel fuel. However, polymerization of 176 fatty acids, oxidation stability, and poor cold flow behavior of vegetable oils may cause gum 177 formation during storage or cold weather ^{84, 92}. The cetane number (32-40) and heating values 178 (39-40MJ/kg) of vegetable oils are lower than diesel fuel. The kinematic viscosity (30-40cSt at 179 38°C) and flash point (above 200°C) of VOs are very high compared to diesel fuel ^{94, 95}. Blending 180 and heating of VOs can improve the viscosity and volatility. However, molecular structure does 181 not change and that is why, polyunsaturated behavior does not also change ^{84, 92, 96}. The use of 182 VOs in diesel engines obliges critical engine modifications, including evolving about piping and 183 injector development materials, also addition of a heat exchanger and an extra fuel tank in fuel 184 system ⁹⁷ otherwise, engine running times are decreased and maintenance costs are increased due 185 to higher wear, resulting increased engine failure risk ⁹⁸. However, direct or blending of VOs are 186 not suitable for direct or indirect injection diesel engine ^{99, 100}. Micro-emulsification, pyrolysis, 187

- 188 and trans-esterification have been used as remedies to solve the problems encountered due to
- 189 high fuel viscosity 100
- 190 Advantages
- 191 1. Easy to use and no need additional production cost

192 Drawback

- 193 1. High viscosity is the main problem of this process, as it creates poor fuel atomization
- 194 2. Very high flash point attributes to lower volatility characteristics
- 195 3. Storage and CFP problems
- 4. High carbon deposits, scuffing of the engine liner, injection nozzle failure are the majorproblems
- 198 5. The engine fuel system requires modification, and therefore, it is expensive.
- 199 **2.1.3 Hydrotreated Vegetable Oil (HVO)**

Hydrotreating of vegetable oils is an alternative method to esterification for evolving biobased 200 diesel fuels, which is also known as renewable diesel fuels. Hydrotreated Vegetable Oil (HVO) 201 202 can be produced from vegetable oils such as rapeseed, soybean, and animal fat etc., through the hydrotreating of oils ¹⁰¹⁻¹⁰³. Fig.3 shows the production technique of HVO, which consists of 203 three steps: first, pretreatment of the oils; then hydrotreatment of the oils to eliminate metals, N_2 204 as well as other impurities; and finally, isomerization to absorb any other impurities left in oils 205 ^{104, 105}. Fig.4 shows chemical reaction, where the oils and hydrogen (triglycerides) are reacted 206 under high pressure so as to evacuate oxygen, and the produced hydrocarbon chain is chemically 207 comparable with diesel fuel ¹⁰⁶. HVOs are chemical blends of paraffinic hydrocarbons and are 208 free of sulfur and aromatics. The cold flow properties of HVO can be balanced to meet the 209 nearby necessities up to -40°C by isomerizing linear paraffins into isoparaffins. However, Cetane 210

- number is found high (75 to 95), whereas the density is lower (770 to 790 kg/m³) of HVO $^{104, 107-104}$
- 109 , heating value is almost same 104 and the stability is good compared to diesel fuel $^{104, 110, 111}$.

HVO has low torque, and low engine performance compared to FAME at high speed as
 well as low total energy ¹¹⁴.

227 2. Any excess impurities left in HVO will cause premature deactivation of the catalysts ¹⁰⁴.

228 2.1.4 Influence of FAME on cold flow properties (CFPs) and oxidation stability (OS) of BDF

Fatty acid methyl esters are correlated with CFPs and OS of BDFs^{115, 116}. CFP is depended on 230 fatty ester chain length, while OS is depended on polyunsaturated fatty esters ¹¹⁷. OS is found 231 good when saturated fatty acid methyl ester is high, while CFP is good when unsaturated fatty 232 acid methyl ester is high ¹¹⁸. Melting point (MP) of long chain and saturated fatty compound is 233 higher to short chain and unsaturated fatty compound which causes crystallization at higher 234 temperature compared to short chain and unsaturated fatty compound ^{20, 37}. Pinzi et al. ¹¹⁹ 235 evaluated the effect of fatty acid chain length and unsaturation degree (UD) on physical 236 properties of vegetable oil biodiesel. CFPP was reduced with increasing UD from saturated to 237 monounsaturated fatty acid ester, because of the lower melting point of unsaturated fatty acid 238 239 components. OS is increased with decreasing the polyunsaturated fatty esters. Autoxidation of UNSFAE depend on the double bond position such as linolenic acid (one bis-allylic position at 240 C-11), as well as linolenic acid (two bisallylic positions at C-11 and C-14) and number such as 1 241 for methyl oleate, 41 for methyl linoleate and 98 for methyl linolenate. Maximum BDFs contain 242 huge measure of oleate, linoleate or linolenate (methyl/ethyl esters), which influence OS of 243 BDFs ^{20, 36}. 244

245 2.1.5 Effect of biodiesel production on cold flow behaviors

Production methods of biodiesel are related to cold flow properties. Li et al. ¹²⁰ generated
biodiesel from sunflower, soybean, peanut, cottonseed, and corn oils through trans-esterification

and thermal cracking process. They examined the biodiesel for cementing point, CFPP, and 248 thickness according to ASTM guidelines. The results indicated that the pour point for trans-249 esterified biodiesel increases extensively, whereas CFPP decreases in contrast to catalytic 250 251 cracking biodiesel. The study showed that cold temperature affects the generation of biodiesel. Dunn¹²¹ derived biodiesel by using trans-esterification process with short chain monohydric 252 alcohol. This procedure produced trace amounts of minor constituents, such as saturated mono-253 acylglycerols and free steryl glucosides. These materials have higher liquefying and low 254 solubility properties permitting them to form robust residues that clog fuel filters throughout cool 255 climate, and affected OS. Bouaid et al.¹⁰ used biobutanol as alcohol in the trans-esterification of 256 rapeseed oil and frying oil to enhance the low temperature behavior, such as CP, PP., and CFPP 257 without influencing the other biodiesel properties; therefore, the operability of biodiesel in cold 258 regional areas was improved. Seames et al. 53 generated canola oil- and SBO-based biodiesel 259 through thermal cracking process and improved the behavior of cold flow and oxidation stability 260 of biodiesel. Jurac et al.¹²² evaluated that ram material quality and compositions have significant 261 262 effect on cold flow behavior and other biodiesel properties. Low temperature behavior serves as the physico-chemical qualities that determine biodiesel transformation from browning vegetable 263 oil. Udomsap et al. ¹²³ produced BDF by trans-esterification using feedstock containing high 264 concentrations of high melting point saturated long-chain fatty acids; however, BDF had a 265 tendency to have moderately poor behavior of cold flow. Given this result, biodiesel has some 266 impediments for engine use at cold areas. 267

268 **2.1.6 Summary**

Biodiesel is environmentally safe and a renewable resource, which makes it more viable alternative fuel. The cost of biodiesel mainly depends on the process used and its source or

RSC Advances Accepted Manuscript

availability. It has various production methods, but trans-esterification process is more effective 271 compared with other methods based on processing cost and fuel properties. Pyrolysis produces 272 more gasoline than BDF, but thermal cracking and pyrolysis equipment are costly. Direct 273 274 utilization of vegetable oils for diesel engines can be problematic and cause numerous intrinsic failures. Because of polymerization, poor cold flow behavior causes gum formation during 275 storage or cold weather, as well as high viscosity, acid composition, and free fatty acid content. 276 Cold flow properties and other properties of BDFs are dependent on the production method 277 employed. This finding emphasizes the importance of methods used in biodiesel production. 278

279 **3.** Cold flow behaviors of biodiesel old flow behaviors

Cold flow behavior is an essential property of biodiesel, particularly when used at low temperatures ¹¹. The cold flow behavior of biodiesel is normally assessed using PP, CP, and CFPP ¹⁶. PP is defined as the least temperature at which fuels may become pourable. CP refers to the temperature at which crystals begin to appear. CFPP corresponds to the temperature at which fuel crystals have agglomerated in sufficient amounts to cause a fuel filter to plug ¹²⁴.

285 **3.1** COLD FILTER PLUGGING POINT (CFPP):

CFPP t is defined as the temperature at which fuel filters clog because of solidified or gelled fuel component. CFPP is less progressive than CP and is recognized by some investigators to be a superior implication of low temperature operability. The CFPP of biodiesel can be measured according to the ASTM standard D6371-05 ¹²⁵, which is a standard test method for measuring CFPP of sample fuels. In this method, fuel samples are pipetted under vacuum condition and cooled with 1 °C temperature determination. The experiment is then continued until wax crystals and clogs at fuel filters are observed.

3.2 POUR POINT (PP):

PP is defined as the temperature at which a number of crystal agglomerations and gel formation 294 are observed in the fuels, consequently preventing the fuel to flow. For practical measurement of 295 PP, users determine the temperature before materials clog the fuel filter. The PP of biodiesel can 296 297 be measured according to the ASTM standards D5949, D5950, D5985, D5985, D6749, D6892, and D97. ASTM D5949-02 is the standard test method for measuring the PP of petroleum 298 products. In this method, an automatic pressure pulsing is used, which consists of a 299 300 microprocessor in a controlled test chamber used to manipulate the heating and cooling temperatures of the test fuel, as well as sensors for recording temperature and optically detecting 301 the test fuel movement. Peltier device controls heating or cooling rate. It is used to heat fuel 302 samples and then allowed to cool at a fixed rate (for example, 1.5 ± 0.1 °C/min). An optical sensor 303 is employed to observe the movement of the fuel sample; it uses a light source to illuminate the 304 sample. In this process, at a rate of 0.1 °C/min, the temperature is reduced until movement of the 305 fuel sample is not observed. The lowest temperature where no movement of fuel is observed 306 indicates the pour point ^{126, 127}. 307

308 3.3 CLOUD POINT (CP):

Cloud point is defined as the temperature of the fuel at which wax crystals first appear as the fuel 309 is cooled ¹²⁸. This is the most reasonable estimation of CFPs. Because the solidified wax thickens 310 the oil, the fuel filters and injectors of the engine are clogged. CP is always higher than PP. The 311 CP of biodiesel can be measured according to the ASTM standards D5771, D5772, D5773, and 312 D2500. ASTM D5771 is the standard test method for measuring the CP of petroleum products, 313 in which optical detection cooling method is used. In this process, the temperature is measured 314 within the range of -40 °C-49 °C with 0.1 °C temperature determination. The temperature of 315 one or more autonomous test cells can be controlled continuously with microprocessor-316

controlled CP devices at the base of the container. CP is determined using a light emitter on one
side and light recipient at the opposite side of the container. In this process, temperature is
continuously decreased until wax crystals are observed in the container of fuel samples. At
present, automatic CP measuring instruments are available ¹²⁹.

321 **3.4 Summary**

Commonly measured cold flow properties of biodiesel are the values of CP, PP, and CFPP, 322 323 because these properties vary according to the global climatic conditions. Several methods are employed to measure these parameters, including different automatic instruments that are in 324 accordance with the ASTM and EN standards. In these instruments, the starting point is set with 325 the help of software and the results are displayed automatically as well as an audible alert. The 326 results obtained from 327 these measurements accurate are more

328

RSC Advances

TABLE 2 (A) FATTY ACID METHYL ESTER OF BIODIESEL FUELS

	C12:0	C14:0	C16:0	C16: 1	C18: 0	C18:1	C18:2	C18: 3	C20:0	C20:1	C22: 0	SATURAT ED	MONOUNSA FURATED	POLYUNSAT URATED	Ref.
PME	0.3	1	38.1	0.2	4.1	44.2	11	0.3	0.4	0.2	0.1	44.1	44.6	11.3	130
CME	-	-	4.5	0.3	2.2	62.7	20.6	9.7	-	-	-	6.7	63	30.3	18
MOME	0	0.1	2.9	1.7	5.5	74.1	4.1	0.2	2.3	1.3	2.8	18.6	77.1	4.3	88
BWCO	-	0.54	14.18	0.74	3.77	47.51	24.83	4.97	0.80	-	0.10	19.5	48.43	32.0	22
JOME	-	0.1	17.7	0.8	6.4	41.8	32.9	0.2	0.1	-	-	24.3	42.6	33.1	130
SOME	-	0.08	10.49	0.12	4.27	24.2	51.36	7.48	0.36	0.28	0.40	15.7	24.67	58.5	22
СоВ	42.1	17.4	11.3	0.2	3.8	9.2	3	<.1	0.2	<.1	<.1	4 75	9.4	3	131
APME			18.4	0.3	11.8	18.3	26.7	23.2	0.5	0.6	-	30.7	19.4	49.9	23
CIME	-	-	12.01	-	12.9	34.09	38.26	0.3	-	-	-	24.9	34.09	38.5	23
SME	.1	.1	10.2	-	3.7	22.8	53.8	8.6	0.3	-	-	0 14.5	22.8	6 62.3	23
SFME		0.5	6.6	0.5	4.3	66.1	17.2	2	0.4	0.5	0.5	12.3	67.1	19.2	18

PME= PALM OIL METHYL ESTER, CME=CANOLA OIL METHYL ESTER, MOME= Moringa oleifera METHYL ESTER, JOME= JATROPHA OIL METHYL
 ESTER, BWCO= WASTE COOKING OIL BASED BIODIESEL, COB= COCONUT BIODIESEL, APME= APHANAMIXIS POLYSTACHYA METHYL ESTER,
 CIME=CALOPHYLLUM INOPHYLLUM METHYL ESTER, SME=SESAME OIL METHYL ESTER, SFME=SUNFLOWER OIL METHYL ESTER.

332

333

336												
550	Properties	PME	BWCO	CFME	JOM	MOME	CME	SOME	ROME	SME	CB	СоВ
337					Ε							
338	Kinematic viscosity (cSt,40°C)	1.792	4.54	5.3	5.11	5.073	4.528	4.374	4.6	4.399	4.017	3.18
339	Density (g/cm ³ ,15°C)	0.860	0.879	0.889	0.875	0.886	0.912	0.869	0.872	.885	0.85 9	0.877
340	CFPP (°C)	12	-9	3	10	18	-10	-3		-1	11	-1
341	PP (°C)	15	-11		-6	19	-9	1	-6	1	15	-4
- / -	$CP(^{\circ}C)$	13	-8		10	21	-3	1	1, -3	1	16	1
342	Oxidation	23.56	5.8		4.84	12.64	7.08	4.08		1.135	3.18	8.01
343	stability(h, 100°C)											
0.0	Viscosity index	203.6	403		194.6	206.7	236.9	257.8		229.0	183.2	
344												
345	Heating value(MJ/kg)	40.01	40.11	39.69	39.65	40.12	40.19	39.97	39.76	39.99	39.9 1	38.30
346	Flash point (°C)	214.5	103	169	162	176	186.5	202.5	145	208.5	172.5	136.5
247	Cetane number	52	58.3	52.3	52.3	67.07	37	37	58	50.48	59	60
347	Acid value (mg	0.184	0.28	0.43	0.27	0.185	0.31	0.48	0.3	0.3		0.106
348	KOH/g)	70 132-	33 61	135	132 136	70 132 138	132 139	132 141	141 143	138 145	132 147	132 148
349	Ref.	134	55, 01	155	132, 130,	70, 152, 150	132, 139, 140	142	144	146	152, 147	152, 140

335 **Table 2 (b)** properties of various biodiesel

350

PME = PALM OIL METHYL ESTER, BWCO= WASTE COOKING OIL BIODIESEL, CFME= CHICKEN FAT METHYL ESTER, JOME= JATROPHA OIL
 METHYL ESTER, MOME= MORINGA OLEIFIERA METHY ESTER, CME= CANOLA METHYL ESTER, SOME= SOYBEAN OIL METHYL ESTER, ROME=
 RAPESEED OIL METHYL ESTER, CB= CALOPHYLLUM BIODIESEL, COB= COCONUT BIODIESEL

354

356

4. Effect of cold flow behaviors of biodiesel on engine operation

358 A number of studies have been attempted to solve the issues of engine operation during cold climate, such as clogging of fuel filters, inadequate burning, fuel fasting, and start-up problem. In 359 cold climatic condition, diesel fuel start to crystallize. When ambient temperature is the same as 360 361 the temperature required for crystallization, high-molecular weight paraffins (C18-C30 nalkanes) in petrodiesel nucleate and create wax crystals, which cease at the fluid stage composed 362 of shorter-chain-alkanes and aromatics. The fuel can be nucleated and developed into solid 363 crystals with high-melting points at cold temperature ¹²¹. When solidified materials clog fuel 364 lines and filters due to the crystallization of saturated FAME components ^{34, 48, 123} and the 365 precipitation of large crystals of high-melting fractions in BDFs¹⁴⁹, create problems of fuel 366 starvation and operability. As the temperature is being reduced, crystals keep increasing in 367 number and slowly develop to approximately 0.5-1 mm size. Subsequently, the crystals start to 368 agglomerate: thus, the fuel flow systems cease to flow, thereby clogging the fuel lines and filters 369 ^{117, 150}. Liquid molecules can produce adequate thermodynamic force by strong intermolecular 370 force of interaction for causes of crystallization, which force is increased when liquid 371 temperature reduce to below the melting points. Crystallization happen in two step 1st nucleation 372 and 2nd crystal growth. Nucleation is occured when liquid molecule come together to produce 373 crystal lattices or crystallites. Crystal growth is subsequent to nucleation. It includes the growth 374 of the crystal lattices formed. Meanwhile, the lattices grow by the nucleation of the layers of new 375 376 lattices on the existing ones to form large crystals. This growth continues until a continuous network of crystals is formed which results in disruption of fuel flow causing fuel starvation in 377 the engine, ultimately leading to incomplete combustion which is responsible for starting 378 problem in vehicle during cold season ¹⁵¹⁻¹⁵³. Table 3 shows for poor cold flow behaviors of 379

biodiesel fuels crystal grow and clogs fuel filter and lead to engine disappointments. Fuel linesand filters are plugged because of the crystallization of the compounds

- 3821. ASEAN based
- i. Palm oil methyl ester

Udomsap et al.¹²³ found that BDF produced from feedstock containing high concentrations of 384 high melting point saturated long-chain fatty acids tends to have relatively poor cold flow 385 properties. Therefore, biodiesel has some impediments for diesel engine use at cold weather. For 386 example, biodiesel derived from PME has a cloud point that ranges from 10 °C to 20 °C, which 387 may cause trouble in cold seasons. Kleinova et al. ¹⁵⁴ used palm oil based biodiesel and 388 confirmed that the cold flow behavior of FAME/FAEE is one of the few research problems at 389 low temperature because of their crystallization properties. The formation of microscopic 390 crystals is due to a decrease in temperature to achieve the saturation temperature of any of the 391 FAME/FAEE components. In particular, the cold flow properties remarkably change because of 392 the precipitation of large crystals of high-melting fractions in BDFs, subsequently clogging the 393 fuel filters and flow lines and creating engine operability problems ¹⁴⁹. 394

395 ii. Mahua methyl ester

Knothe et al. ³⁶ investigated the characteristics of cold flow performance and exhaust emissions of MME and ethanol-blended MME and reported that during cold seasons, solid crystals rapidly develop and agglomerate, clogging fuel lines and filters and creating significant operability issues.

400 iii. Waste cooking oil methyl esters

Borugadda et al. ¹⁵⁵ stated that poor cold flow properties of biodiesel are the major problems in operating an engine at cold weathers. They investigated the low temperature

properties of castor oil methyl esters and (WCOMEs) by using ASTM and DSC techniques. The
findings confirmed that WCOME biodiesel had the most unfavorable cold flow properties
because of the localization of long chain saturated fatty acids (18 wt.%)³⁴
2. EU based

i. rapeseed oil methyl ester

Broatch et al. ³⁴ reported that diesel engine start ability can be deteriorated at under-zero ambient temperature, which also creates problems of fuel starvation and operability when solidified materials clog fuel lines and filters due to the crystallization of saturated FAME components. When ambient temperature decreases, additional solids are created.

412 3. North America based

413 i. Soybean oil methyl ester

Boshui et al. ⁴⁸ further confirmed these findings and attributed the problems to the high amount of saturated FAME segments. Chiu et al. ¹⁵⁶ and serrano et al. ¹¹⁷ report that when the temperatures diminished bellows the CP, grow the crystal and agglomerate continually until to achieve clog fuel systems. Tang et al. ¹⁵⁷ confirmed that the precipitate formation during cold temperature storage is dependent on the feedstock and blend concentrations. The dissolvability effects of biodiesel blends are maintained at low temperature and room temperature prompting a high amount of precipitates formed

Biodiesel	Properties	Effect on engine operation system	Ref.
Waste cooking oil	PP, CFPP	Fuel starvation and operability problems as solidified	34
Biodiesel		material clogs fuel lines and filters.	
		Diesel engine start-ability can be deteriorated	
Biodiesel	CP, PP,	Clogged fuel filters and flow lines and created engine	149
	CFPP	operability problem.	
Soybean Biodiesel	PP, CFPP	Fuel starvation and operability issues as solidified	48
		materials clog fuel lines and fuel filters	

421 **Table 3** Effect of cold flow behaviors on engine operation system during cold weather

Biodiesel	CP, CFPP,	The fuel nucleate and grow to form solid crystals.	121
	PP	Clogs fuel filters bringing on startup and operability	
		problems	117 156
Biodiesel, Soybean	CFPP, PP,	Crystal grow and clogs fuel filter and lead to engine	117, 156
Biodiesel	СР	disappointments	20
MME	CP, PP	The solid and crystal quickly develop and agglomerate.	20
		Clogging fuel lines and filters and creating significant operability issues	
Palm biodiesel	СР	Grow wax crystals and clogging fuel lines and filters	150
Canola biodiesel	PP. CFPP	Plugging fuel line and fuel filter	158
Poultry fat	CFPP, CP	Create crystal and cease the flow of fuel lines and filters	159
biodiesel	,		
Peanut biodiesel	CFPP, CP, PP	The fuel lines and filters are plugged due to the crystallization	55
Palm biodiesel	PP, CP	some impediment on biodiesel use in diesel engine at cold weather	123
Soybean, Poultry	CFPP, CP,	The formation of precipitate	157
fat, Cottonseed oil	PP		
based biodiesel			
Pongamia biodiesel	CP, PP	Formation of crystals.	29
		Fuel starvation and operability problems as solidified	
		material clog fuel lines and filter	154
FAME	PP	Formation of crystal	154
		Clogging the fuel lines and filters	

422

423	CFPP= Cold filter plugging point, PP= Pour point, CP= Cloud point

424 4.1 Influences of high blended biodiesel on engine system

When biodiesel increases the percentage in biodiesel blend, increased viscosity and carbon 425 residue increases which can clog the fuel filter, coke the injector ¹⁶⁰. Moreover, hydraulic 426 behavior of the injector can be affected and consequently combustion process can be deteriorated 427 ³⁴. According to BMW Group Malaysia, B10 biodiesel have technical challenge to run the 428 429 engine. Vehicles testing suggest that FAME, which boils at high temperatures, will move into the motor oil, as it does not evaporate when the engine runs at high temperatures causing it to 430 431 thin and possibly leading to oil sludge. This reduces lubricity and increases the risk of engine 432 damage. They also found that higher level of water in B10 biodiesel lead to corrosion of fuel

433 system, which promotes oxidation in fuel tank, resulting fuel filter blockage. Incompatibility of additives with FAME forms the films deposit at fuel injector as well as creates injection 434 invariance, resulting reduced idling cycle stability ¹⁶¹. The presence of steryl glucosides (SG), 435 436 saturated monoacylglycerols (MAG) or free steryl glucosides (FSG) may create problem in case of flowability of biodiesel and blended biodiesel, because of high melting point of SG and 437 insolubility in fuel. In biodiesel fuel, SG considered as a "dispersed fine solid particles", which 438 promotes the crystallization of other component ¹²¹. SG may promote the formation of 439 aggregates in biodiesel, exacerbating problems caused by saturated monoglycerides and other 440 known cold-crystallizing components ¹⁶². Due to the formation of aggregates while using 441 biodiesel and biodiesel blend, the fuel filter may clog¹²¹. Tang et al.¹⁵⁷ demonstrated that fuel 442 delivery systems of diesel engine may be affected by the formation of precipitates while using 443 biodiesel blends. The formation of precipitates in PF- and SBO-based biodiesel is attributed to 444 the mono-glycerides and steryl-glucosides, respectively. The formation of precipitates in CSO-445 based biodiesel is attributed to both mono-glycerides and steryl-glucosides. 446

447 **4.2** Summary

- 448 Based on the above information, the following conclusions can be drawn:
- 449 1. Poor cold flow behavior of biodiesel has negative effect on engine operation system in
 450 cold areas.
- 451 2. Formation of crystals, as a result of *poor cold flow behavior of biodiesel, causes clogged*452 *fuel filters and fuel system and creates operability problems in cold areas.*
- 453 3. Cold flow properties of biodiesel are significant, and the limitation of these properties
 454 varies with climatic condition.
- 4. *In cold climatic areas, such as Canada, a high* CFPP will clog-up a diesel engine more
 easily; thus, the poor cold flow behavior of biodiesel needs to be improved.

457

458 **5** Oxidation stability of biodiesel

RSC Advances Accepted Manuscript

Oxidation stability is a parameter that depicts the degradation propensity of biodiesel and is 459 significant in solving conceivable issues with engine parts ^{26, 40, 163}. Biodiesel is oxidized in the 460 localized unsaturated fatty acids, and subsequently the double bonds offer an abnormal state of 461 reactivity with oxygen ^{26, 40, 45}. Oxidation is mostly performed on two stages, namely, primary 462 and secondary oxidation. Primary oxidation occurs with a group of reaction categorized as 463 initiation, propagation, and termination (Fig. 5) in the first set of carbon free radicals derived 464 from carbon atom after removing the hydrogen. In the presence of diatomic oxygen, the 465 formation of peroxy radicals becomes faster, even not allowing substantial alternatives for the 466 carbon-based free radica^{26, 40}. Carbon free radical is more active compared with peroxy free 467 radical but is adequately responsive for rapid dynamic hydrogen reaction with a carbon structure 468 to form carbon radical and ROOH. The derived carbon free radical can react with diatomic 469 470 oxygen and undergo propagation steps. In the termination step, two free radicals react with each other to form a non-radical species (Fig. 5). If the radical species concentration is sufficient, 471 peroxyl-linked molecules (R-OO-R) is formed from peroxyl radicals at low temperature $\frac{164}{1}$. 472 473 $ROO + ROO \rightarrow R-OO-R+O_2$ (1)

During the induction period, the ROOH deposit remains for a certain period of time. This is determined by the relative sensitivity to oxidation stability and based on the stress conditions. The level of ROOH rapidly increases until the initial period is achieved ⁴⁰.

The hydroperoxide (ROOH) level can reach a peak and then reduce or increase and plateau at a steady state value. With insufficient amount of oxygen, the formation of ROOH can slow or even stop, while ROOH decomposition continues. Correspondingly, different elements (for example, higher temperature or increased presence of hydroperoxide-decomposing metal catalysts, such as copper and iron) that increase ROOH disintegration rate can result in ROOH fixation to peak. In

482 any case of ROOH fixation profile, most extreme ROOH levels constructed are typically 300– 483 $400 \text{ meq } O_2/\text{kg}^{-164}$.

Initiation	$: \mathbf{R}\mathbf{H} + \mathbf{I} \to \mathbf{R} \bullet + \mathbf{I}\mathbf{H}$
Propagation	: $\mathbf{R} \bullet + \mathbf{O}_2 \rightarrow \mathbf{ROO} \bullet$
	$\mathbf{ROO}\bullet + \mathbf{RH} \to \mathbf{ROOH} + \mathbf{R}\bullet$
Termination	: $\mathbf{R} \bullet + \mathbf{R} \bullet \to \mathbf{R} - \mathbf{R}$
	ROO• + ROO• \rightarrow Stable Products

484

485

Fig. 5 chemical reaction of primary oxidation [27, 126]

Once shaped, hydroperoxides (ROOH) continue to decay and inter-react to shape various 486 secondary oxidation items, including aldehydes, alcohols, short chain carboxylic acids, and 487 higher atomic weight oligomers, even at ambient temperature ¹⁶⁵. Numerous studies reported 488 different secondary oxidation products. For example, vegetable oil oxidation produces 25 489 aldehyde components (hexenals, heptenals, propane, pentane, and 2.4-heptadienal)^{164, 165}. 490 Polymeric species forms with the inclusion of unsaturated fat chains. Trimers or tetramers are 491 smaller than polymeric flavors, but no explanation exists behind this distinction. Viscosity is 492 enhanced by polymer developments, such as the establishment of C–O–C and C–C linkages, to 493 form fatty acids, esters, and aliphatic alcohol^{40, 164}. Hasenhuettle¹⁶⁶ explained the hydroperoxide 494 decomposition mechanism of formic acid. Fig. 6 shows the ethyl linoleate ester radical oxidation 495 496 details as follows: step 1, hydrogen deliberation from the allyl group; step 2, oxygen assault at 497 either end of the radical focus, creating intermediate peroxy radicals; step 3, monohydroperoxide 498 formation; and step 4, partial decomposition of the initially formed monohydroperoxides into oxo-products and water ⁴⁰. 499

508 5.1 Principles and standard methods for measurements of oxidation stability of BDF

Various methods were reported to characterize the oxidation stability of biodiesel, such as 509 compositional analysis (gas or liquid chromatography), free and total glycerol content, FFA, 510 511 various structural indices (APE, OX, iodine value, BAPE, and electromagnetic spectroscopy), product levels of primary oxidation (peroxide value), product levels of secondary oxidation 512 (anisidine value, aldehyde content, attendance of quantities of filterable insoluble materials, total 513 acid number, and polymer levels), physical properties (density and viscosity), and accelerated 514 oxidation (Rancimat IP or oil stability index and pressurized DSC).^{26, 40}. No single technique can 515 characterize the biodiesel, and the probability that any new test will have the capacity to totally 516 characterize biodiesel oxidation stability is low ⁴⁰. Now several method are discussed below: 517

518

(i) Rancimat method (EN14112)

The Rancitmat method is the most important process to determine the oxidation stability of 519 biodiesel. The sample fuel (FAMEs) needs to be oxidized to peroxides. Afterward, the products 520 521 are decomposed completely to produce secondary oxidation products, which incorporate volatile organic compounds as well as low molecular organic acids, including formic and acetic acids. 522 Moreover, Rancimat strategy is the standard and official system for determining the oxidative 523 524 stability of oils and fats by the American Oil Chemists' Society. In this technique, the temperature extent is typically restricted to 130 °C⁸⁹. Sample fuels (FAMEs) are heated to 110 525 °C, and the air in samples is bubbled and oxidized; removal of bubbled air also deionizes the 526 H₂O in the flask. An electrode is connected to determine the solution conductivity. The 527 conductivity starts to increase with time, and the IP is determined by the oxidation curve formed 528 after continues process. The IP is defined at the inflection point of the oxidation curve. 529 Conductivity and IP measurements mainly depend on the volatile acidic gases, for example, 530

formic acid, acetic acid, and other acids ^{89, 167}. The storage stability of sample fuel can be
measured by a modified Rancimat method.

533

(ii) Pressure differential scanning calorimetry (PDSC) (ASTM D5483)

Based on the pressure differential scanning calorimetry (PDSC), oxidation induction time of 534 biodiesel can be measured. Oxidation induction time (OIT) needs to be measured in the event 535 536 that the test is directed in an isothermal pathway, and the oxidation temperature (OT) needs to be measured as the steadiness parameter in the non-isothermal method⁸⁹. In this process, OIT is 537 evaluated in isothermal curve and OT is evaluated in dynamic way ¹⁶⁸. Yamane et al. ¹⁶⁹ Yamane 538 et al. [170] used PDSC to determine the OIT of biodiesel blends with antioxidant, which was 539 calibrated with indium metal as standard. This method was conducted using an open 110/L 540 platinum pan as sample. Test sample (3.0 mg) was used for each analysis at 551 kPa static air. 541 The test sample was heated at an ambient temperature of 110 °C at 10 °C/min heating rate; this 542 process was followed by isothermal pathway and continued until significant oxidation stability 543 was attained in the sample 170 . 544

545 (iii) Analysis of the IR spectra

IR spectra analysis is used to measure oxidation stability. It is simple, easy, and fast compared with other methods. The FTIR is used to obtain the peak characteristics of biodiesel molecule with strong ester peaks at 1750 cm⁻¹ (C=O vibration), C–O vibrations of approximately 1170 cm⁻¹ to 1200 cm⁻¹, and a signal at 1435 cm⁻¹, which is the methyl ester group (–O–CH3) with its deformation vibration^{89, 171}. Furlan et al. ¹⁷² used infrared spectroscopy to characterize the oxidation stability of biodiesel. The degradation IR showed highly affected shapes of hydroxyperoxide, alcohol, acid, aldehyde, and ketone during oxidation. An extra carbonyl group

was formed because of oxidation; a second harmonic of the carbonyl with band associated at 553 3400 cm^{-1} to 3500 cm^{-1} is beneficial in determining the oxidation stability of biodiesel. The 554 FTIR measurements were performed in soybean- and crambe-based biodiesel. The results 555 showed that more carbonyl was produced in soybean-based biodiesel compared with crambe-556 based biodiesel. Moreover, a minimum stable nature of soybean biodiesel to thermal stress was 557 observed ^{89, 173}. The stability and quality of biodiesel and blended biodiesel can be analyzed 558 using near infrared (NIR) and middle infrared (MIR) spectroscopy ^{40, 174, 175}. Multivariate was 559 calibrated with NIR and MIR spectroscopy to analyze the pure biodiesel quality and trans-560 esterification reaction, which is used to determine the BDF properties ^{40, 176, 177}. 561

562 **5.2 summary**

The oxidation stability of biodiesel mainly depends on the SFAE or USFAE. Poor oxidation stability of biodiesel has negative effect on engine operation and performance. Oxidation is mostly performed in two stages, namely, primary and secondary oxidation. Several methods are employed to characterize biodiesel oxidation stability, but not applicable for all biodiesel. Rancimat method and IR spectra analysis are effective and easy methods used to measure biodiesel oxidation stability, in which IR spectra analysis is the best. However, all methods have some limitations in characterizing the oxidation stability of biodiesel.

570 6 Effect of oxidation stability on engine operation system

571 Oxidation stability is one of the important fuel properties. This property is lower in biodiesel 572 than in diesel fuel ⁸⁹. Many researches attempted to identify the problems of engine operation 573 system during biodiesel oxidation. Waynick et al. ⁴² reported that when biodiesel is oxidized, one 574 potential issue is the propensity to form structures in engine components, for example, injectors 575 and fuel pump parts. Oxidation can degrade BDF properties and seriously affect engine

performance. Monyem et al.⁴⁵ studied in some cases, oxidation brings about the compound 576 structure of biodiesel breaking separated to frame shorter chain acids and aldehydes. In its 577 propelled stages, oxidation causes biodiesel to end up acidic, bringing about fuel framework 578 579 erosion also to form insoluble gums and sediments that can plug fuel filters and varnish affidavit on fuel framework segment. Oxidation influences fuel properties such as viscosity, cetane 580 number etc. Westbrook et al. 43 confirmed that at the point when biodiesel was oxidized to 581 become acidic, destructive acids and storage conditions may cause increased wear in engine fuel 582 pumps and injector. 583

Graboski et al. ¹⁷⁸ confirmed that the oxidation of biodiesel prompts the arrangement of 584 hydro-peroxides, which can assault elastomers or polymerize to frame insoluble gums that 585 clogged the fuel filters. Oxidation products, such as carboxylic and hydro-peroxides acids, can 586 act as plasticizers of elastomers. For instability of oxidation flash point and other properties of 587 biodiesel can be affected, possibly raising issues beyond the fuel conveyance framework. 588 Introduction of water in the fuel can bring about the development of rust and consumption 589 exacerbated by the localization of acids and hydro-peroxides shaped by fuel oxidation. Knothe ⁴⁴ 590 noted that when biodiesel was oxidized at very high level, biodiesel mixed with petro-diesel 591 (PD) can separate into two stages bringing on fuel pump and injector operational issues. 592 Polymerization-sort reaction leads to the development of higher atomic weight items and an 593 increment in viscosity. Insoluble species development can obstruct fuel lines and pumps. 594 Furthermore, Leung et al. ⁴⁶ investigated polymerization-sort reaction, biodiesel engine 595 lubricating oil, sludge formation, and increasing engine wear. 596

Table 4 Effect of oxidation stability on engine operating system:

Biodiesel		Effect on engine operation system	Ref.
Soybean	oil	Plugged the fuel filter and injector fouling and create starting	41
biodiesel		problem	

Biodiesel	Clogged the fuel filter pump and injector fouling	42
Soy biodiesel	Wear in engine fuel pumps and injector	43
Fat and vegetable	To frame insoluble gums and that clogged the fuel filters	178
oil based biodiesel		
soybean oil	Create fuel pump and injector operational problem	44
biodiesel		
Biodiesel	Formation of polymers that can clog fuel filter, line and	179
	injectors	
Biodiesel ¹	Debase engine lubricating oil, creating sludge and expanding	46
	engine wear.	

¹Twelve biodiesel samples

599 600

6.1 Improvement process of oxidation stability of biodiesel

601 Several studies have investigated several techniques on improving the oxidation stability of 602 biodiesel, such as using additives, purifying biodiesel production, and modifying storage 603 conditions $^{40, 89}$.

604

6.1.1 By using additives

Previous studies examined the effect of different antioxidants on biodiesel oxidation stability. 605 Two types of antioxidants are available, namely, chain breaker and hydroperoxide decomposers, 606 to improve oxidation by increasing the IP. The chain breaker cooperates with peroxide radical, 607 and an auto-oxidation response occurs and leads to the development of an antioxidant free 608 radical, which effectively balances out without further activities. The hydroperoxides and 609 hydroperoxide decomposers are reacted and converted into alcohols. In this situation, 610 unnecessary oxidized structures are formed from antioxidant. The common antioxidants used 611 include α -tocopherol, propyl gallate (PG), butylated hydroxyanisole (BHA), 3.5-di-tert-butyl-4-612 hydorxytoluene (BHT), pyrogallol (PY), and tert-butylhydroxyquinone (TBHQ)^{89, 180-182}. Fattah 613 et al. 183 used BHA, BHT, and TBHQ at 1000 and 2000 ppm in CIME as additives. The 614 oxidation stability of biodiesel improved with all additives, but the best result was with TBHQ at 615 616 2000 ppm with CIME20. From antioxidants, lipid or ester radicals (LOO•) consume abstracted

hydrogen. Afterward, they create stable radical intermediates with moderate delocalization,

618 which hinders oxidation in fuels, which is shown in Reaction (1).

 $(1) \overset{OH}{\underset{CH_{3}}{H_{3}}} \xrightarrow{LOO} \underset{LOOH}{\underset{LOOH}{LOOH}} \overset{O}{\underset{CH_{3}}{H_{3}}} \xrightarrow{CO} \underset{CH_{3}}{\underset{CH_{3}}{H_{3}}} \xrightarrow{CO} \underset{CH_{3}}{\underset{CH_{3}}{H_{3}}} \xrightarrow{CO} \underset{CH_{3}}{\underset{CH_{3}}{H_{3}}} \xrightarrow{O} \underset{CH_{3}$

Peroxyl radicals react with TBQH to produce semiquinone reverberation half and half, which allows radical intermediates to create more stable products. These products are reacted with one another to create dimers, dismutate, and regenerate semiquinone. These products also react to peroxyl radical, as shown in Reactions (2), (3), and (4).

617

619

620

626

628

629

630 The effect of these antioxidants can be arranged according to the stabilization factor BHA <631 BHT < TBQH (22.27 h < 25.82 h < 28.38 h).

These additives have a slight effect on other properties of biodiesel. Serrano et al. 184 632 enhanced biodiesel oxidation stability using four commercial synthetic-based (AO1, AO2, and 633 AO3) and one natural-based (AO4) antioxidants on SME, RME, PME and HOSME. All 634 additives enhance the sample biodiesel oxidation stability. The best result was observed with 635 AO3 at 1000 ppm with PME. Yang et al. ¹⁸⁵ investigated the effect of PY, PG, BHA, TBHQ, and 636 alpha-T at 0 ppm to 8000 ppm on SME. All the antioxidants enhance the oxidation stability of 637 biodiesel. IP of SME is 0.7 h. TBHQ and PY exhibit better enhancement at >3000 and <3000 638 ppm, respectively. They concluded the effectiveness of antioxidants in the order TBHO > PY > 639 PG > BHA > BHT with PY, TBHQ, and PG at 1500, 3000, and 8000 ppm, respectively; all were 640 able to meet the EN 14112 standards. Several antioxidants have different efficiencies in different 641 conditions. PY ¹⁸⁶, BHA ¹⁸⁷, BHT, TBHQ ^{183, 188}, or PG ¹⁸⁹ showed the best efficiency. α-T 642 performance was always the least ¹⁸⁵. Antioxidant performance is dependent on the fatty acid 643 profile of the oil or fat, the amount of naturally occurring antioxidants, storage, or other 644 conditions. Synthetic antioxidants exhibit better performance than natural antioxidants¹⁸⁷. 645

(4)

646

6.1.2 Production purifying

647 Many researchers reported that oxidation stability of biodiesel can be enhanced using production purification ^{40, 184, 190}. Biodiesel consists of fatty acid monoalkyl ester, which is generated 648 through different techniques. Harmful phospholipids are contained in crude vegetable oil, which 649 needs to be removed through hydration process ¹⁹¹. Free fatty acids, ketones, aldehydes, and 650 651 unsaturated hydrocarbons of oils are removed using deodorization refining process, which is the most effective process to remove these properties ¹⁹². The high AV of free fatty acid reduces 652 iodine as a catalyst. Homogeneous reagent or heterogeneous reagent can catalyze tran-653 654 esterification process. Homogeneous reagent consists of potassium hydroxide, hydrochloric acid, 655 sodium hydroxide, and sulfuric acid. Heterogeneous reagents are enzymes heterogenized on organic polymers, alkaline earth metal compounds, anion exchange resins, titanium silicates, and 656 657 guanidine. In the trans-esterification process, ethanol or methanol is used as an alcohol, and at the end of this process, selected products are eliminated either through citric acid wash or water 658 wash step ¹⁸⁴. Serrano et al. ¹⁸⁴ used two separate purification steps to eliminate the impurities of 659 660 methyl ester phases. These purification steps use distilled water and citric acid solution. They found that citric acid-washed biodiesel met the standard specifications of EN 14214, whereas 661 water-washed biodiesel failed. They also changed the values of biodiesel IPR to storage and 662 compared citric acid-washed biodiesel with water-washed biodiesel. Cooke et al. ¹⁹³ also used 663 purification process to eliminate impurities of ion interchange resin. 664

665

6.1.3 Modification of condition of storages

Biodiesel stability may increase by modifying the storage conditions. The storage processes of biodiesel are different, and many factors may affect the biodiesel stability ^{40, 194}. Rashed et al ⁴⁰ suggested that pure biodiesel needs to be stored within 7 °C to 10 °C temperatures. Crystal

formation can be avoided in cold climatic condition in contrast to underground storage, where storage temperatures need to be optimized ¹⁹⁵. Biodiesel storage containers should be made of aluminum, steel, polypropylene, or Teflon; among which, aluminum is the most suitable because it has no catalytic effect on biodiesel ⁴⁰. Biodiesel degradation increases with increasing temperature and air exposure. In addition, the water concentration in biodiesel can increase the degradation of biodiesel, which can be eliminated if BDFs are stored in tanks ¹⁹⁶.

675

6.1.4 Hydro-treating process

Biodiesel oxidation stability (OS) may be increased by using the partial hydrogenation ¹⁹⁷⁻¹⁹⁹. 676 This method was used to modify the chemical structure of fatty acid chains ^{197, 199} as well as to 677 convert polyunsaturated methyl esters to monounsaturated methyl esters under the mild reaction 678 condition to enhance the fuel properties of biodiesel in terms of improved OS and cetane 679 numbers (CN)^{41, 197, 200}. Partial hydrogenation reactions catalyzed by Ni-based catalysts²⁰⁰, 680 rhodium sulfonated phosphite or Pd/HPM catalyst used to improve the OS and CN have been 681 reported in the literatures ^{198, 199}. Hydrogenated FAME properties are depended on the time of 682 hydrogenation. After 2h hydrogenation, SFA increased by 46.9% and showed improved OS and 683 cetane numbers as well as inferior cold flow performances (CP & PP was increased 2, -3 to 15 to 684 18°C respectively)^{197, 200}. However, this results were better as compared to palm oil, tallow and 685 grease methyl esters ²⁰⁰. Hydroxylation and epoxidation were used to diminish the UFAME 686 percentages by 44% and 39% individually to improve OS, and CN; but CFPs of distilled 687 biodiesel remained unchanged ¹⁹⁷. However, CFP of biodiesel showed better result compared to 688 palm oil, tallow or grease, and other methyl esters ²⁰⁰. 689

690 **6.2 Summary**

Biodiesel oxidation stability is one of the problems in BDF. Polymers may form and can clog 691 fuel filter and fuel lines and cause injector fouling, thereby resulting in engine start-up problem 692 as well as sludge formation and increasing engine wear. Several techniques employed to solve 693 these problems, and adding antioxidant technique is the most effective. Based on the above 694 literature review, PY is the most effective antioxidant. The efficacy of antioxidants followed the 695 order PG > TBHQ \approx DBTHQ > BHT \approx BHA > DPD \approx OBPA. In addition, biodiesel oxidation 696 697 stability linearly increases when the amount of antioxidants increases, and this amount varies within a level. In some cases, the complex antagonistic interaction present in the amine 698 antioxidants causes destabilization. Furthermore, the water concentration in biodiesel can 699 increase the degradation of biodiesel, which can be eliminated if BDFs are stored in tanks. 700 Aluminum is the most effective container for the storage biodiesel. According to Section 6.1.4, 701 hydro-treating process can improve cold flow properties of biodiesel. However, this process did 702 703 not significantly improve all biodiesel cold flow properties.

704 7 Method of improvement of cold flow behavior of biodiesel

705 The methods provided by researchers to overcome cold flow operation problems are as follows:

- Use of 1.additives and blending, 2. Ozonization, 3. Winterization
- 707 7.1 By using additives and blending:

Previous studies examined the effect of different cold flow improvers (CFIs) on biodiesel CFPs. CFIs are used to improve the CP, PP, and CFPP as well as CFIs relieve the influence of wax crystals on fuel by modifying their shape, size, growth rate and agglomeration, which result inhibits the formation of large crystals at low temperatures ^{33, 34, 48, 156}. Biodiesel blend improved CFPs and added additives to prevent fuel gelling ^{35, 75, 77, 201, 202}. Boshui et al. ⁴⁸ investigated the effect of CFIs (OECP, EACP, and PMA) on cold flow properties and viscosity of soybean

biodiesel at low temperature by using multi-functional low temperature tester and rheometer. 714 OECP is the best and addition of 0.03% of OECP additive into the biodiesel at low temperature 715 reduces the PP and CFPP and decreases viscosity. OECP represses wax crystals from developing 716 717 to large sizes and inhibits crystal agglomeration at low temperatures; thus, the cold flow properties of sovbean biodiesel are enhanced. Wang et al.²⁰³ evaluated the effect of EVAC, 718 PMA, poly-alpha-olefin (PAO), and poly maleic anhydride, on low temperature properties. 719 720 Others significant properties of biodiesel from waste cooking oil (BWCO) were also evaluated. The results showed that PMA best improved the cold flow properties and viscosity index of 721 biodiesel from waste cooking oil without crumbling other imperative fuel properties of biodiesel. 722 After the addition of 0.04% PMA, the PP and CFPP of BWCO decreased by 8 °C and 6 °C. 723 respectively. At low temperature, PMA basically retarded crystal aggregation. Therefore, the low 724 temperature properties as well as viscosity index of BWCO were enhanced. Schumacher et al.²⁰⁴ 725 726 enhanced the cold climate functionality of biodiesel/diesel fuel by directly using vegetable oil additives. Specifically, they measured the CP, PP, and viscosity of methyl esters of soybean 727 728 biodiesel and low sulfur diesel. Adding directly vegetable oil additives improved the PP and CP of soya methyl ester and its blend with low sulfur diesel. The 20% soy diesel mix treated with 729 the SVO item at 0.75% should produce a safe working reach to most Midwest USA 730 communities. Giraldo et al.¹⁵⁰ evaluated the effect of three CFIs, namely, glycerol acetates, 731 glycerol ketals, and branched alcohol-derived fatty esters, on the low temperature properties of 732 palm biodiesel. Glycerol was chemically reacted with (CH₃)₂CO catalyzed by CH₃C₆H₄SO₃H to 733 obtain glycerol ketals (Fig.7). Glycerol was also allowed to react with CH₃COOH catalyzed by 734 CH₃C₆H₄SO₃H to obtain glycerol acetates (Fig.8). Branched alcohol-derived fatty esters were 735 736 acquired through the esterification of palm-inferred fatty acids with branched alcohols catalyzed

by $CH_3C_6H_4SO_3H$ (**Fig.9**). Crystallization points of pure and blended palm biodiesels were determined by DSC. The results showed that 2-butyl ester of palm biodiesel is a better cold flow improver compared with the methyl esters. After adding of 5% of this additive, the PP and CP decreased by 6 °C. DSC investigations precisely demonstrated that all the improvers reduced the crystallization points of biodiesel. Molecule size investigations by element light scrambling demonstrated that the added substances reduced the crystal sizes. These findings demonstrated

that CFIs improve the cold flow properties of biodiesel.

748

Fig. 8 Reaction for glycerol acetates synthesis ¹⁵⁰

749

750

Fig. 9 Branched alcohol-derived fatty esters synthesis scheme ¹⁵⁰

Dwivedi et al.²⁹ improved the low temperature properties of pongamia biodiesel by adding 751 CFIs, namely, ethanol, blending, and winterization. Winterization reduced both PP and CP of 752 pongamia biodiesel by 5 °C, whereas blending with diesel and kerosene reduced the CP by 9 °C 753 and 11.5 °C and PP by 11 °C and 12.5 °C, respectively. Similarly, when ethanol was used as a 754 cold flow improver, the PP and CP of biodiesel were reduced from 19 °C to 9 °C and 20 °C to 10 755 °C, respectively. The result showed that adding cold flow improver is better compared with other 756 methods in improving the cold flow properties of pongamia biodiesel. Joshi et al. 205, 206 757 evaluated the effect of blending alcohols and CFIs with poultry fat methyl esters (PFMEs) on 758 low temperature properties. They found that adding short-chain alcohols, such as ethanol, 759 760 isopropanol, and butanol (5%, 10%, and 20%) improved the cold flow properties compared with pure PFME. Moreover, the blending of butanol-PFME was better compared with ethanol and 761 isopropanol. Furthermore, adding 2.5, 5, 10, and 20 vol.% of ethyl levulinate (ethyl 4-762 oxopentanoate) additive into biodiesel (from cottonseed oil and poultry fat) enhanced the cold 763 flow properties at cold weather. The result showed that blending biodiesel with 20 vol.% ethyl 764 765 levulinate improved cold flow properties. The PP, CP, and CFPP of CSME were decreased to 3, 4, and 3 °C, respectively, whereas PFEM, PP, CP, and CFPP were decreased to 4, 5, and 3 °C, 766 respectively. Torres et al. ²⁰⁷ confirmed that the presence of synthesized additives and free fatty 767 768 acids in the starting material for biodiesel production improves the cold flow properties.

s

Esterification of stearic, oleic, and linoleic acids with bulky linear and cyclic alcohols was 769 carried out to synthesize fatty acid derivatives. Up to 5% of CFI blended with biodiesel increased 770 CFPP. Dunn²⁰⁸ investigated the effect of blending branched-chain alkyl alcohols and improvers 771 772 with soybean oil FAME on cold flow properties of biodiesel. Admixtures of SMEs with 0–100 vol.% tallow FAME and with n-propyl, isopropyl, n-butyl, isobutyl, and 2-butyl soyates were 773 analyzed for CP and PP. Cold flow properties of biodiesel derived from the trans-esterification of 774 775 soybean oil with propanol or butanol were better than those from traditional methyl esters. CP and PP of biodiesel blended with branching propyl or butyl ester head groups decreased more 776 evidently than those with straight-chain head groups. The addition of 65 vol.% of isopropyl in 777 SME was better than those of other alcohols, and the cloud point was reduced by 5°C. 778

Zuleta et al.¹⁶ evaluated the effect of blends of biodiesel from palm, sacha-inchi, jatropha, 779 and castor oil on biodiesel properties, such as oxidative stability and CFPP. These biodiesel 780 properties are mainly dependent on the type of methyl-ester constituents and generally opposite. 781 All biodiesel blends improved the CFPP; the best biodiesel blend was composed of 25% castor 782 and 75% jatropha. Furthermore, Park et al. ²⁰⁹ conform that blended of biodiesel improved CFPs 783 and OS of biodiesel (rapeseed, palm, and soybean biodiesel). The best biodiesel blend was found 784 at 20 wt.% palm, 60 wt.% rapeseed, and 20 wt.% soybean biodiesel. The CFPP of this blended 785 biodiesel was -6 °C, and the oxidation stability was 6.56 h. Kleinova et al. ¹⁵⁴ also improved the 786 cold flow properties of fatty esters by branched chain alcohols with fatty acids and blends of 787 esters with fossil diesel fuel. Lv et al.²¹⁰ evaluated the effects of CFIs, namely, commercial DEP, 788 PGE, and self-made PA, on the cold flow properties of PME biodiesel. They found that the peak 789 crystallization temperature of PME was near the CFPP. All CFIs were decreased PP, whereas 790 791 reduced CFPP was observed only when the CFI fixation was 1% or higher. The best performance

(CFPP PME reduced by 7 °C) was observed with CFI formulated from three components with 792 the formulation ratio (DEP:PGE:PA) of 3:1:1 (60, 20, 20) or 2:2:1 (40, 20, 20). 793 Soldi et al.²¹¹ evaluated the effect of using polymer additives to decrease issues caused by the 794 crystallization of paraffin amid the creation and/or transportation of paraffin oils and derivatives. 795 All the meth-acrylic copolymers reduced the PP of Brazilian diesel oil samples. The best result 796 was observed when 50 ppm of the polymeric additives was used with the proportion of 70 mol% 797 of octadecyl methacrylate, in which the PP was reduced by 22 °C. Moser et al. ²¹² improved the 798 cold flow properties and oxidation stability of soybean oil methyl esters (SME) by blending with 799 branched chain ethers 1-4 (Fig. 10) using additives. Better CP and PP were observed in each of 800 the four synthetic branched chain ethers 1-4 compared with SME. The most favorable cold flow 801 properties were found at 2-ethylhexyl ether 4, which contained the most bulky ether (2-802 ethylhexyl) and ester (isobutyl); the CP and PP were -23 °C and -25 °C, respectively. 803

804

Fig. 10 Synthesis of branched chain ethers 1-4²¹²

Smith et al. ^{213, 214} evaluated the effect of alkoxylation with alcohols, including ethanol, methanol, n-propanol, n-pentanol, n-butanol, tert-butanol, n-hexanol, n-octanol, and 2ethylhexanol, on the cold flow properties of biodiesel from canola oil. As shown in Fig. 10, the process involves the reaction for epoxidation and alkoxylation of methyl oleate. The best CP result was obtained for 2-ethylhexoxy butyl biodiesel at -6 °C, and CP was reduced by 6 °C than methyl biodiesel. CFPs of long-chain alkoxy biodiesel were improved because of protruding alkoxy chains, which likewise brought about an increase in viscosity.

Fig. 11 Process of reaction for epoxidation step1 and alkoxydation step 2 of methyl oleate ²¹³

RSC Advances Accepted Manuscript

Hamada et al.¹⁴⁹ evaluated the effect of cold flow of improvers (EVA and PGE) on CFPs 818 PME, and a solid fat content was obtained. DSC thermograms showed that the PGE added 819 substances reduced the crystallization temperature as well as actively smothered the crystal 820 821 development. Polarized light microscopy demonstrated that the synchronous expansion of PGE and EVA prompted the development of extensively little and fine-scattered crystals of PME, 822 which could enhance the viscosity at generally cold temperatures. Furthermore, Ming et al.²¹⁵ 823 improved the low-temperature performance of palm oil products [i.e., palm olein (PO), super 824 olein (SO), palm oil methyl esters (POME), palm kernel oil methyl esters (PKOME)] by 825 blending and using additives, namely, Tween-80, dihydroxy fatty acid (DHFA), acrylated 826 polyester pre-polymer, palm-based polyol (PP). The result showed that all additives met the 827 requirements for diesel fuel, with more significant reduction of PP and CP qualities observed for 828 palm biodiesel tests. The best reduction result of CP and PP were observed around 10.5 °C (by 829 addition of 1.0% DHFA + 1.0% PP to POME) and 7.5 °C (by addition of 1.0% DHFA to 830 POMEPO), respectively. 831 Bhale et al. ²¹⁶ examined the cold flow characteristics of mahua biodiesel (MME) and 832

evaluated the effect of CFIs (additives OS 110050 from Lubrizol, ethanol, and kerosene) on 833 CFPs of biodiesel. It was observed that all CFIs improved the low temperature performance. The 834 result of 20% ethanol blending and 2% commercial additives on low temperature behavior was 835 the same, and the CP and PP of MME reduced from 10 °C and 11 °C to 12 °C, respectively. 836 When 20% of kerosene was blended with MME, the CP and PP then decreased to 13 °C and 15 837 °C, respectively. Reduced emission without affecting the engine performance was also 838 performed. Phung et al. ²¹⁷ investigated the use of triglyceride autoxidation using a 839 homogeneous Co/Mn/Zr/bromide catalyst in a batch reactor at 150 °C for 2 h to improve the cold 840

flow properties of tallow-, canola oil-, or soy bean oil-based biodiesel and produced lower 841 molecular weight products compared to the fatty acids of the beginning triglycerides. The 842 monoesters Me(CH2)mC(O)OMe (m = 5-12) and diesters MeOC(O)(CH2)nC(O)OMe (n = 7-12) 843 844 12) were the main products in the autoxidation of tallow. The CP of all autoxidized tallow-. canola-, and soybean oil-based biodiesel were reduced by 13 °C, 16-11 °C, and 16-12 °C, 845 respectively. Rasimoglu et al.²¹⁸ evaluated the effect of trans-esterification parameters, such as 846 trans-esterification temperature (in the range of 20 °C–60 °C), reaction time (10–60 min), 847 alcohol-to-oil ratio (3.15:1–12.85:1 in moles), amount of catalyst (0.25–2 g catalyst/100 mL corn 848 oil) and stirring speed (300-800 rpm), on low temperature properties of corn oil-based biodiesel. 849 The best result was observed when alcohol-to-oil ratio was maintained at 3.15:1 - 4.15:1, and the 850 PP, CP, and CFPP were -10 °C, -4 °C, and -12 °C, respectively. Lin et al.¹²⁴ evaluated the 851 852 effect of thermal decomposition on cold flow properties and viscosity of fresh biodiesel, fresh diesel, and their blends performed in batch reactors at 250°C -425°C for 3 - 63 min. CFPs and 853 viscosity of biodiesel were measured by DSC and micro viscometer, respectively. 854 855 Polymerization and pyrolytic reactions had critical effect on both properties of biodiesel; however, cis-trans isomerization reactions had a minimal effect on both properties. Yori et al.²¹⁹ 856 confirmed that the formation of crystals was restrained by isomerizing soy oil with methanol and 857 using solid acid crystals at 125 °C to 275 °C to improve the cold flow quality of biodiesel. 858 Furthermore, Jin et al.²²⁰ confirmed that poor flow properties at cold conditions were attributed 859 to the long-chain fatty acids of biodiesel with an alcohol molecule attached. In the event that the 860 double bond of unsaturated fatty acids in these long chain fatty acids could be cracked 861 specifically, then it decreases the viscosity of BDF and subsequently improves the low 862

temperature properties. Table 5 and 6 shows the impact of CFIs on CP, PP, and CFPP, as well asthe behavior of crystal.

865

866 **7.2 Winterization technique**

Several researchers provided methodologies to enrich cold flow properties of biodiesel in 867 unsaturated esters by winterization techniques, which is performed by slowly cooling the 868 869 biodiesel, and the products of crystallization are then separated from the fuel by filtration. Perez et al. ⁵⁵ reported that the improvement process of cold flow properties of peanut biodiesel at low 870 temperature is attributed to its long chain-soaked compounds, for example, C20:0, C22:0 and 871 872 C24:0, by using different winterization techniques. Crystallization filtration was found to be the best technique using methanol, which reduced the CFPP from 17 °C to -8 °C with losses of 8.93 873 wt.% of biodiesel. Phase change material (PCM) can be used to enhance the cake from filtration 874 875 with long-chain saturated methyl esters for thermo-regulated materials. In addition to these cold temperature tests, crystallization of multicomponent mixtures, such as biodiesel, is monitored 876 using DSC. Kerschbaum et al.²²¹ used the winterization technique to improve the cold flow 877 properties of biodiesel derived from waste cooking oil. This technique reduced the saturated 878 methyl esters from 21.3% to 9.6%, and the corresponding CFPP value was also reduced by 879 11°K. 880

Gomez et al. ⁵⁶ evaluated the winterization process to improve the cold flow properties of biodiesel production from WCOME. Filtration with slow cooling was used to remove the high saturated FAME by 1.5% to 6%. In this process, the CFPP value was reduced by 2 °C to 4 °C. Therefore, the cold flow properties were enhanced.

Dunn et al. ^{57, 58} studied blending glycerides with biodiesel and demonstrated that PP and CP can be increased at a concentration of 0.01 wt.% of saturated mono-glycerides (SMG).

Winterization and using additives were also investigated to improve the cold flow properties of triglyceride oil-derived fuels. Results confirmed that winterization was best for reducing CP, and additives significantly improved the PP of distillate/methyl ester blends. Lee et al. ²²² evaluated the crystallization temperature of BDF and decreased the crystallization temperature of biodiesel by winterizing methyl soyate. Saturated ester was removed by winterization, which decreased the crystallization temperature of methyl soyate.

893 **7.3 Ozonation**

The cold flow behavior of biodiesel improved using ozonation technique. Soriania et al. ⁵⁴ explored the effect of ozonized vegetable oil biodiesels (1–1.5 wt.%) using sunflower oil, rapeseed oil, soybean oil, and palm oil. The result showed that PP was reduced. The PP of sunflower oil, soybean oil, rapeseed oil, based biodiesels were $-12 \, ^{\circ}C$, $-24 \, ^{\circ}C$, and $-30 \, ^{\circ}C$, respectively, but effect was not observed in CP. Similarly, the CP of palm oil-based biodiesel improved, but PP did not change. Other properties of treated biodiesel (with ozonized vegetable) were not changed.

Rafie and Nahed ²²³ evaluated the effects of ozonated vegetable oil (1 wt.%) on the cold flow 901 properties of neat biodiesel. The result demonstrated that the PP from biodiesel produced with 902 methanol trans-esterification of sunflower oil, linseed oil, and blended oil (from soy bean, 903 sunflower, and oleen oils) may have been scattered to 0, -3, and 0, respectively. The CP 904 remained insignificant, but blended oil showed a slight increment. Ozonated mixed oil showed a 905 decrease of flash point of corresponding biodiesel when the ozonated sample was prepared with 906 sunflower ozoned oil. Microscopic investigation in low temperature showed that ozonated mixed 907 oil impeded agglomeration of biodiesel into a solidified material, giving crystals. 908

909

Table 5 Effect of cold flow improvers on CP, PP and CFPP of biodiesel

Biodiesel	CFIs	CP (°C	C)	PP(°	C)	CFPP	(°C)	Ref.
-		BB ¹	AB^2	BB	AB	BB	AB	
SB	OECP (0.03%,m)			-1	-9	0	-6	
	PMA (0.03%,m)			-1	0	0	2	48
	EACP (0.03%,m)			-1	-1	0	-1	
								202
20 % BWC	0.04 % EVAC	-4	-12	-8	-18	-5	-16	203
40 % BWC	0.04 % EVAC	0	-6	-3	-8	-1	-7	
60 % BWC	0.04 % EVAC	2	-5	-2	-7	0	-6	
80 % BWC	0.04 % EVAC	4	3	1	-1	2	0	
100 % BWC	0.04 % EVAC	5	4	2	1	4	3	202
BWC	0.04% PMA	-8	-9	-11	-19	-9	-15	203
BWC	0.04% PAO	-8	-9	-11	-14	-9	-10	
BWC	0.04% HPMA	-8	-8	-11	-12	-9	-9	
BWC	0.04% EVAC	-8	-8	-11	-17	-9	-11	
CB	20 % Kerosene	-4	-11	-9	-15			224
JB	20 % Kerosene	1	-7	-2	-12			
MB	20 % Kerosene	10	-3	3	-7			
RO	Biobutanol	1 ± 2	-8	1±3	-18	0 ± 2	-21	10
RO	Ethanol	1±2	-2		-15		-6	
RO	Methanol	1±2	-3		-9		-14	
FO	Biobutanol		-8		-9		-21	
FO	Methanol		1		-3		-4	
FO	Ethanol		3		-1		-1	
BCO	Blended with diesel					-3	-8	34
BRO	With improver					-3±1	-20	
PB	5% 2-butvl esters	16	10	14	8			150
PR	5% IbF	16	12	14	10			150
PR	5% InE	16	12	14	10			150
PR	5% Acetaes	16	11	14	0			150
DD	5% Ketals	16	11	14	0			150
T D CME	570 KCtais	10	10	0	21			53
SME	FAME	3	-19	-3	-24			53
90% SB	0.1% Bio-flow-875	_1	-11	-5 -12	-18	_2	-5	156
20% SB	0.1% Bio-flow-875	-1	-5	-12	-30	-2 -4	-5	156
90% SB	0.1% Bio-flow-870	-1	-5 -1	-12	-24	-7	-0	156
20% SB	0.1% Bio_flow-870	-1	-4	-12	-24			156
100%BWC	0.1% Elow fit k	-5	-5	-15	-30	3	-1	50
90%RW/C	0.5% Flow fit b					_1	-1 _/	50
90%BWC	0.5% Flow fit k					-1	-4	50
60% BWC	0.5% Flow fit k					-5 _0	-10	50
	0.370 Flow fit k 0.5% Flow fit k					-9 10	-1/ 2/	50
40/0 DWC	0.370 Flow III K 0.5% Flow fit 1					-12 0	-24 _25	50
2070 DWC	0.570 Flow fit k 0.5% Flow fit k					-7 Q	-25 26	50
1070 DWC	U.J70 FIUW III K othenol	20	10	10	0	-0	-20	29
10070 PBD	Cultanoi 200/ Varagara	20 20	10 0 =	19 10	У 65			29
100% PBD	80% Kerosene	20	8.3	19	0.3			

100% PBD	80% Diesel	20	11	19	8			29
PFME	20% Ethanol	9	3	6	2	3	-1	205
PFME	20% Butanol	9	2	6	1	3	-1	205
PFME	20% Isopropanol	9	2	6	1	3	-1	205
COME	20% EL	5	1	4	1	5	2	206
PFME	20% EL	8	3	7	3	5	1	206
SFME	Ethanol			-3	-9			202
100% PSME	5% OFI-7650	19		18	15			123
100% PSME	0.5% FA-205	19		18	14			123
100% PSME	0.5% CH-6830	19		18	17			123
100% PSME	0.5% D	19		18	15			123
80% PSME	1% OFI-7650			14	12			123
80% PSME	1% FA-205			14	12			123
80% PSME	1% CH-6830			14	13			123
80% PSME	1% D			14	12			123
75% JB	25% CaB					1	-12	225
25% PB	75% SiB					14	-5	225
PB	1% DEP	18		13	13	16	12	226
PB	1% PGE	18		13	112	16	11.5	226
PB	1% PA	18		13	11	16	11	226
SME	2% 1	2	0	1	-1			212
SME	2% 2	2	0	1	-1			212
SME	2%3	2	-1	1	-2			212
SME	2% 4	2	-1	1	-2			212
BCO	butyl	-3	-4					213
BCO	2-EH butyl	-3	-6	3	-12			214
80% RBE	20 %butanol	-7	-8			-14	-16	35
20% RBE	80% butanol	-7	-11			-14	-24	35
10% RBE	90% butanol	-7	-16			-14	-31	35
80% RME	20 %butanol	-6	-8			-10	-13	35
20% RME	80% butanol	-6	-12			-10	-24	35
10% RME	90% butanol	-6	-16			-10	-30	35
BCO	Methanol ³	0	-4	-7	-10	-7	-12	159
40% PB	60% JB	16	6	12	2			116
20% PB	80% JB	16	2	12	-1			116
40% PB	60% PBD	16	2	12	-4			116
20% PB	80% PBD	16	-4	12	-6			116
MME	20 % Ethanol	18	8	7	-4			216
MME	20 % Kerosene	18	5	7	-8			216
MME	2 % OS 110050	18	8	7	-5			216
5% CME	Wintron XC30	-37	-43					227

911

CB = croton biodiesel, JB= jatropha biodiesel, MB = moringa biodiesel, FOBE = frying oil butyl

913 esters, CME= Canola methyl ester, SME= Soybeen oil methyl ester, BWC= waste oil biodiesel,

914 PBD= Pongamia biodiesel, SFME= Sunflower oil methyl esters (biodiesel), COME= cottonseed

- oil methyl esters, PFME= poultry fat methyl esters, CaB= castor biodiesel, SiB= Sacha inchi
- biodiesel, PB= Palm biodiesel, RBE= rapeseed butyl esters, RME= rapeseed methyl ester,
 MME= Mahua methyl ester
- 918 ¹ Before used additives or blend
- 919 ²After used additives or blend
- 920 ³alcohol to oil ratio 4.15:1

921 **Table 6** Effect of additives on crystal formation

Biodiesel	CFIs	Results	Ref.
SB	OECP, EACP,	Repressing the wax crystals from developing to a	48
	PMA	larger size and gave an obstruction to crystal	
		agglomeration at low temperatures.	
BWC	PMA, EVAC,	Shape of crystals modified and inhibiting the	203
	PAO, HPMA	formation of larger crystals at LT.	
BC, JB,	kerosene	The LTP of BD was enhanced by blending with	224
MB		kerosene. Improved the freezing and gelling point.	
BRO,	Biobutanol,	biodiesel created utilizing biobutanol as alcohol as	10
BFO		a part of the trans-esterification methodology	
		enhanced CFP without fundamentally influencing	
		the other fuel properties	
BWC	Diesel	The CFPP of BD improved and the start ability of	34
BRO	Improvers	engine recovered.	
DICO	mprovers	Diminishing the exhaust gases opacity peak	-
SB	20 % diesel and	Improve the PP and CP of BD and provide a safe	204
	0.75 SVO	operating range for most Midwest USA	
		communities	1.50
PB	2-butyl esters,	Diminished the PP and CP of BD.	150
	IbE, IpE,	Diminished de crystallization points of BD.	
	Acetates, Ketals		53
CME,	FAME	Higher cracking temperatures brought about higher	53
SME		yields and enhanced CPP of the fuel delivered.	
		The stability of fuel was enhanced	-
BWC	10PD and	Enhanced crystallization onset temperature. The	50
	Improvers ¹	CFPP of BD diminished maximum at 0.5% FTK,	
		WME/-10PD	20
PBD	Ethanol, kerosene	Improved the gum formation and crystallization	29
		point Improved the CP and PP. But it have	
		limitation to use in cold weather.	205
PFME	Ethanol, butanol,	Improved CFP of BD with increasing concentration	205
	isopropanol	of alcohol, and it have little effect on other BD	
		properties.	150
\mathbf{SB}	OS110050, Bio	change the crystal shape and enhanced the CFP of	156
	Flow-870, Bio	BDFs	

	Flow-875, and		
	diesel fuel anti-		
	gel		
CSME,	EL	Enhanced the CFP of biodiesel at cold weather.	206
PFME		Blends of CSME and 20 vol. % EL was best.	
SME	65% of SiPrE	Improved CP but no effect on PP	208
BD	Ethanol, methanol	Reducing crystal size and improve the PP of BD at cold climate	75
PME	DEP, PGE, PA	Improved the CFPP also peak crystallization	210
	· · ·	temperatures	
BBD	2-ethylhexoxy	CFP of long-chain alkoxy BD was improved also	214
		increased viscosity	
VOBD	MRP	CFPP reduced with increased of unsaturated degree	119
PB	Hybrid PB	Improved the cold flow properties of biodiesel	201
RBE,	Butanol, mineral	Improved the CFP and it was possible to use	35
RME	diesel	biodiesel fuel in the arctic zone or at temperature -	
		30 C or below	
MME	OS 110050 from	Improved the CFP of BD as well as diminishment	216
	Lubrizol, ethanol,	of emission without affecting the engine	
	kerosene	performance	

BD= Biodiesel, CFP= Cold flow properties, LFT= Low temperature properties, CP= Cloud
poind, PP= Pour point, MME= Mouha methyl ester, PAME= palm oil methyl ester, BBD= Butyl
Biodiesel, SME= Soybean oil methyl ester, VOBD= Vegetable oils biodiesel, PB= Palm oil
based biodiesel, BC= croton biodiesel, JB= jatropha biodiesel, MB= moringa biodiesel, ROBE=
rapeseed oil butyl esters, FOBE = frying oil butyl esters, CME= Canola methyl ester, SME=
Soybeen oil methyl ester, BWC= waste oil biodiesel, PBD= Pongamia biodiesel, SFME=
Sunflower oil methyl esters

929 ¹ flow fit, flow fit K,

930

931 7.4 Effect of other properties for improving the cold flow properties

All techniques of cold flow properties improvement have a slight effect on other properties of biodiesel, which could either be positive or negative. Oxidation stability and cold flow properties are both dependent on saturated and unsaturated fatty acid concentrations of biodiesel ¹¹⁷. Methods for the reduction of the cloud point of biodiesel that reduce the proportion of saturated esters, thereby increasing the proportion of unsaturated esters, impact directly on the oxidative stability and cetane number of the fuel. Oxidative stability refers to the autoxidation of the

938 ketals, glycerol acetates, and branched alcohol-derived, were used in palm biodiesel to improve 939 cold flow properties but exhibited a slight effect on other properties. For example, oxidation 940 941 stability (14 h, at 110 °C) did not change after additives were used, cetane number increased from 57 to 58, viscosity increased from 4.85 mm²/s to 4.90 mm²/s at 40 °C, and flash point 942 decreased from 117 °C to 111 °C ¹⁵⁰. Melero et al.²²⁸ investigated the use of oxygenated 943 compounds derived from glycerol for biodiesel. They concluded that adding compound 944 improved the cold flow properties (PP, and CFPP), viscosity, and oxidation stability (4.97 h to 5 945 h) but did not impair other important biodiesel properties. Joshi et al. ²⁰⁶ concluded that all tested 946 values were acceptable when \leq 15 vol. % of ethyl levulinate was added. IP increased from 5.1 h 947 to 6.9 h when 20 vol. % of ethyl levulinate was used for cottonseed methyl esters. Rafie and 948 Nahed ²²³ investigated the effect of the addition of ozonated oil to biodiesel. They concluded that 949 950 biodiesel degradation decreased in ozonated samples stored at room temperature nearly as much as those samples stored at 18 °C without ozonation. One approach for increasing resistance from 951 952 autoxidation is to treat BDF with ozone as inhibitor for degradation. Similar results were obtained when using different antioxidants. Winterization procedure change the chemical 953 composition of biodiesel 55, 221, which may have an influence on the other properties of 954 biodiesel (such as storage stability) because the concentrations of nearly all saturated fatty acid 955 methyl esters are reduced ²²¹. From the above literature review, it can be concluded that some 956 CFIs have positive or negative effects on the oxidation stability of biodiesel, which is similar to 957 ozonated and winterization techniques. The negative effect of CFI on oxidation stability is 958 minimal. 959

960 7.5 Impacts of additives on the environment

961 This section describes the effect of additives on emission (such as NO_x, CO, HC, PM and CO₂). 962

7.5.1 NO_x emission

NO_x is one of the most poor emission parameters for CI engine. This emission parameter mainly 963 depends on the internal temperature of engine cylinder, the presence of O₂, equivalence ratio, 964 and the reaction time of residence in engine cylinder⁸⁷. When methanol was used as an additive, 965 NO_x of biodiesel increased compared with diesel fuel at load condition, but decreased in no load 966 condition ²²⁹. Some researcher was used methanol and ethanol as additives with biodiesel at 967 968 variable load condition with fixed speed in four cylinder diesel engine to investigate the effect of emission parameters. NO_x of biodiesel-methanol improved compared with diesel fuel ^{230, 231}. Roy 969 et al. ²²⁷ investigated the performance and emissions of biodiesel with additives and found that 970 all load conditions of NO_x emissions were enhanced when kerosene was used with biodiesel, but 971 in other case, for example, additives with biodiesel and biodiesel with diesel, NO_x increased. 972 Suyin Gan and Hoon Kiat Ng ²³² used antioxidants (BHA, BHT, and TBQH) in B10 and B20 973 (palm biodiesel) to analyze the emission of diesel engine. They found that TBQH and BHA have 974 minimum NO_x emission, but NO_x emission increased when the percentage of fuel blends 975 976 increased.

977

7.5.2 HC and CO emission

HC is produced as a result of unburned fuels, whereas CO is produced as a result of incomplete oxidation of fuel hydrocarbons. Several researchers reported that HC and CO emissions of BDF are lower compared with diesel fuel ⁸⁷. Few researchers examined HC and CO emissions of biodiesel with additives (ethanol) as well as diesel and reported that HC emission decreased at high engine load condition ²²⁹. Moreover, few investigators found that HC emission increases when biodiesel–diesel and biodiesel–diesel–additives are used ^{230, 231}. Roy et al. ²²⁷ found that HC and CO of all blends of biodiesel with additives decrease at up to medium load condition.

985

986 **7.4 Summary**

987 *According to the above information, the following conclusions were derived:*

- Cold flow issues of biodiesel are improved through different techniques, such as the use of additives, blending with diesel, thermal cracking, winterization techniques, and ozonated techniques, as well as modification of production techniques. However, all methods have some limitations, and no single technique can be used for all biodiesels.
- 2. Among the techniques, the addition of CFI is the most effective; Tables 5 and 6 show
 the effects of additives on CFP and crystallization behavior, respectively. It also
 shows that the most effective cold flow improver is PMA followed by EVAC, OECP.
 In the literature, PAO and HPMA are found to be less effective. However, based on
 table polymeric additives are more significantly effective than other additives, such
 as IbE, IpE, ethanol, and methanol. Although, based on economy and environmental
 benefit EVAC and Wintron XC30 are more effective, respectively.
- Crystallization temperature of biodiesel depends on the localized areas and the
 decrease rate of crystal formation; thus, the CFPP, PP, and CP of biodiesel are
 enhanced and the engine start-up and operation system are improved.
- 10034. Addition of additives in biodiesel has significant effect on emission, in which NOx1004emission decreased in some cases. Similarly, the CO and HC emission are reduced1005for pure biodiesel and blended biodiesel at some load conditions but are increased at1006some load and blended conditions.
- Some additives show effect on CP, PP, CFPP, and some on both or all the properties
 (Table 5), and this is the main limitation of additives.

1010	The studies presented demonstrate that poor cold flow behavior of biodiesel results in engine
1011	operation system problems in cold weather. BDF is confronted with engine start-up problem in
1012	cold weather because of its poor cold flow behavior. Engine fuel system and fuel filters are
1013	clogged because of the poor cold flow behavior of biodiesel. Cold flow behavior of biodiesel is
1014	less favorable than petroleum diesel fuels in cold areas. The cold flow behavior of biodiesel is
1015	generally assessed through its PP, CP, and CFPP. Oxidation stability is another problem of
1016	biodiesel, which can be influenced by IP, PV, density, and viscosity. Based on the review of
1017	this paper, the following discussion can be written:
1018	1. Poor cold flow properties and oxidation stability are some of the problems of
1019	biodiesel. These properties are strongly dependent on fatty acid compositions.
1020	Cold flow properties of biodiesel decrease when the concentration of unsaturated
1021	fatty increases, whereas biodiesel oxidation stability decreases when the
1022	concentrations of linoleic and linolenic acids increase.
1023	2. Many techniques and standard methods are used to determine the cold flow
1024	properties, such as CP, PP, and CFPP and oxidation stability.
1025	3. The poor cold flow behavior of BDFs has a negative effect on engine operation
1026	system, especially in cold areas, such as Canada and New Zealand. High values
1027	of CFPP and PP allow the formation of crystals more easily compared with diesel
1028	fuels, thus clogging fuel filters and fuel lines of petroleum diesel engine more
1029	easily and causing start-up and operability problems of engine.
1030	4. If influencing factors affecting CFP of biodiesel are controlled or enhanced, then
1031	the cold flow behavior of biodiesel is likewise enhanced.

1009 8 Discussion

Page 58 of 68

- 1032 5. CFP of biodiesel can be enhanced through using additives, blending with diesel,
 1033 thermal cracking, and using winterization and ozonated techniques, as well as
 1034 modifying production techniques.
- 1035 6. Adding CFI as an additive to the biodiesel blends significantly reduces the CP, PP, and CFPP of biodiesel. Winterization technique is one of the important 1036 techniques used to enhance the cold flow behavior of BDFs. However, this 1037 technique is limited by its low yields. Ozonated technique also enhances the cold 1038 flow properties of BDFs. Thermal decomposition process is used to improve the 1039 cold flow properties of biodiesel, but some limitations exist in this process. When 1040 polymerization reactions are used, viscosity increases, in contrast to when used 1041 pyrolytic reactions are used. CFPs of biodiesel are also improved by changing the 1042 1043 catalyst.
- 10447. Blending biodiesel with diesel is one of the significant processes to enhance the1045cold flow properties and oxidation stability of biodiesel. However, this process is1046only applicable up to B30 (up to 30% biodiesel) and does not change the1047chemical behavior of biodiesel. Nevertheless, adding additives is the best1048technique to reduce the CP, PP, and CFPP value of biodiesel and has a slight1049effect on other properties of biodiesel. Furthermore, using this technique1050significantly modifies crystal size, as shown in Tables 5 and 6.
- 1051 8. The outcome of the few added substances provides a restricted impression
 1052 because the substances more unequivocally influence the PP than the CP or have
 1053 just a slight effect on CP. CP is more vital than PP for enhancing low temperature
 1054 stream attributes.

- 9. Biodiesel is more inclined to the dissolvability effect when at low temperature,
 prompting the arrangement to hasten which causes genuine ramifications for the
 fuel conveying system.
- 10. Biodiesel oxidation stability can be influenced by various parameters, such as IP,
 PV, AV, IV, density, viscosity, and temperatures; the main factors are IP and
 BAPE.
- 1061 11. Biodiesel oxidation stability is one of the problems in BDF. In this problem,
 1062 biodiesel can form polymers that can clog fuel filter and fuel lines and cause
 1063 injector fouling, resulting in engine start-up problem as well as sludge formation
 1064 and increasing engine wear.
- 1065 12. Oxidation stability of biodiesel can be improved via different techniques, such as
 1066 using antioxidants, purifying during production, and modifying storage condition;
 1067 using antioxidants is the most effective.
- 106813. Based on the above literature, the efficacy of antioxidants followed the order PG1069> TBHQ \approx DBTHQ > BHT \approx BHA > DPD \approx OBPA. Oxidation stability of1070biodiesel increases linearly with increasing amount of antioxidants. Synthetic1071antioxidants are more effective compared with natural antioxidants.
- 1072 14. The addition of additives in biodiesel significantly influences the environment;
 1073 some load conditions and additives decrease the NO_X, CO, and HC emissions.
- 1074 15. Biodiesel cold flow properties and oxidation stability are strongly dependent on 1075 fatty acid compositions. Cold flow properties of biodiesel decrease when the 1076 concentration of unsaturated fatty increases, whereas biodiesel oxidation stability 1077 decreases when the concentrations of linoleic and linolenic acids increase.

RSC Advances Accepted Manuscript

RSC Advances

- 1078 16. Based on the review of this paper, it can be written that high-blended with 1079 additives are the best method for improvement of CFPs and OS of BDFs as well 1080 as hydrotreated process also improved compared to other method.
- 1081 9 Recommendation
- 1082
- 1083 Based on the review of this paper, the following recommendation can be written
- Still it is necessary to investigate potential additives, which can significantly improve
 both the CFPs and OS of BDFs.
- Further studies are required to investigate the enhancement of biodiesel cold flow
 behavior using CFIs and blending with BDF and petroleum diesel fuel. Considerable
 number of experimental research is required for few potential additives to assess their
 comparative performance.
- 3. Further studies are necessary to investigate the effect of CFI on engine combustion and emission because only a few number of studies have been carried out to evaluate the effect of CFI (for example, the use of ethanol, methanol, and kerosene as additives) on emission. Also need to investigate the effect of CFIs on oxidation stability of biodiesel fuel.
- 4. Further studies are required to investigate the various methodologies for the improvement
 of cold flow properties and oxidation stability of new biodiesel which would be helped to
 develop the alternative fuels for cold climatic condition.
- 1098 Acknowledgement

The authors would like to appreciate University of Malaya for financial support through High
 Impact Research grant titled: Clean Diesel Technology for Military and Civilian Transport
 Vehicles having grant number UM.C/625/1/HIR/MOHE/07 and PRPUM grant number
 CG054-2013.

1103 **References**

1104 1105	1.	A. K. Agarwal, T. Gupta, P. C. Shukla and A. Dhar, <i>Energy Conversion and Management</i> , 2015, 94 , 311-330
1106	2	H Imdadul H Masiuki M Kalam N Zulkifli M Rashed H Rashedul I Monirul and M
1107	2.	Mosarof, <i>RSC Advances</i> , 2015, 5 , 67541-67567.
1108	3.	B. Masum, M. Kalam, H. Masjuki, S. Palash and I. R. Fattah, <i>Rsc Advances</i> , 2014, 4 , 27898-27904.
1109	4.	B. Masum, M. Kalam, H. Masjuki, S. A. Rahman and E. Daggig, <i>Rsc Advances</i> , 2014, 4 , 51220-
1110		51227.
1111	5.	H. J. Berchmans and S. Hirata, <i>Bioresource Technology</i> , 2008, 99 , 1716-1721.
1112	6.	V. B. Veljković, S. H. Lakićević, O. S. Stamenković, Z. B. Todorović and M. L. Lazić, Fuel, 2006, 85,
1113		2671-2675.
1114	7.	S. Imtenan, H. Masjuki, M. Varman and I. R. Fattah, RSC Advances, 2015, 5, 17160-17170.
1115	8.	Y. Teoh, H. Masjuki, M. Kalam, M. Amalina and H. How, RSC Advances, 2014, 4, 50739-50751.
1116	9.	I. R. Fattah, M. Kalam, H. Masjuki and M. Wakil, RSC Advances, 2014, 4 , 17787-17796.
1117	10.	A. Bouaid, N. El boulifi, K. Hahati, M. Martinez and J. Aracil, Chemical Engineering Journal, 2014,
1118		238 , 234-241.
1119	11.	P. Tinprabath, C. Hespel, S. Chanchaona and F. Foucher, Fuel, 2015, 144, 80-89.
1120	12.	L. M. Freire, R. José Filho, C. V. Moura, L. E. Soledade, L. Stragevitch, Â. M. Cordeiro, I. M. Santos
1121		and A. G. Souza, <i>Fuel</i> , 2012, 95 , 126-130.
1122	13.	L. M. da Silva Freire, I. M. G. dos Santos, J. R. de Carvalho Filho, A. M. T. de Magalhães Cordeiro,
1123		L. E. B. Soledade, V. J. Fernandes, A. S. de Araujo and A. G. de Souza, Fuel, 2012, 94, 313-316.
1124	14.	A. Sarin, R. Arora, N. Singh, M. Sharma and R. Malhotra, <i>Energy</i> , 2009, 34 , 1271-1275.
1125	15.	H. Imahara, E. Minami and S. Saka, <i>Fuel</i> , 2006, 85 , 1666-1670.
1126	16.	E. C. Zuleta, L. A. Rios and P. N. Benjumea, Fuel Processing Technology, 2012, 102, 96-101.
1127	17.	B. R. Moser, in <i>Biofuels</i> , Springer, 2011, pp. 285-347.
1128	18.	B. R. Moser, <i>Fuel</i> , 2014, 115 , 500-506.
1129	19.	Á. Beck, G. Pölczmann, Z. Eller and J. Hancsók, <i>Biomass and Bioenergy</i> , 2014, 66 , 328-336.
1130	20.	G. Knothe, Fuel Processing Technology, 2005, 86, 1059-1070.
1131	21.	S. Ahmed, M. H. Hassan, M. A. Kalam, S. M. Ashrafur Rahman, M. J. Abedin and A. Shahir,
1132		Journal of Cleaner Production, 2014, 79 , 74-81.
1133	22.	W. F. Fassinou, A. Sako, A. Fofana, K. B. Koua and S. Toure, <i>Energy</i> , 2010, 35 , 4949-4954.
1134	23.	S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. Rizwanul Fattah and A. Sanjid,
1135		Energy Conversion and Management, 2015, 91 , 149-157.
1136	24.	A. Atabani and A. da Silva César, Renewable and Sustainable Energy Reviews, 2014, 37, 644-655.
1137	25.	K. A. Sorate and P. V. Bhale, Renewable and Sustainable Energy Reviews, 2015, 41, 777-798.
1138	26.	S. Jain and M. P. Sharma, Renewable and Sustainable Energy Reviews, 2010, 14, 667-678.
1139	27.	L. S. Teixeira, M. B. Couto, G. S. Souza, M. Andrade Filho, J. C. Assis, P. R. Guimarães, L. A.
1140		Pontes, S. Q. Almeida and J. S. Teixeira, <i>Biomass and bioenergy</i> , 2010, 34 , 438-441.
1141	28.	M. Mittelbach and C. Remschmidt, Biodiesel: the comprehensive handbook, Martin Mittelbach,
1142		2004.
1143	29.	G. Dwivedi and M. P. Sharma, Waste and Biomass Valorization, 6, 73-79.
1144	30.	G. Dwivedi and M. Sharma, Renewable and Sustainable Energy Reviews, 2014, 33, 316-322.
1145	31.	R. Misra and M. Murthy, Renewable and Sustainable Energy Reviews, 2010, 14, 3005-3013.
1146	32.	WH. Wu, T. A. Foglia, W. N. Marmer, R. O. Dunn, C. E. Goering and T. E. Briggs, Journal of the
1147		American Oil Chemists' Society, 1998, 75 , 1173-1178.
1148	33.	Y. Wang, S. Ma, M. Zhao, L. Kuang, J. Nie and W. W. Riley, <i>Fuel</i> , 2011, 90 , 1036-1040.
1149	34.	A. Broatch, B. Tormos, P. Olmeda and R. Novella, <i>Energy</i> , 2014, 73 , 653-660.
1150	35.	V. Makarevičienė, K. Kazancev and I. Kazanceva, Renewable Energy, 2015, 75, 805-807.
1151	36.	G. Knothe, Energy & Environmental Science, 2009, 2 , 759-766.

1152 G. Knothe, Energy & Fuels, 2008, 22, 1358-1364. 37. 1153 38. M. Gautam, D. Martin and D. Carder, Proceedings of the Institution of Mechanical Engineers, 1154 Part A: Journal of Power and Energy, 2000, **214**, 165-182. 1155 39. M. Gautam and D. Martin, Proceedings of the Institution of Mechanical Engineers, Part A: 1156 Journal of Power and Energy, 2000, **214**, 497-511. 1157 40. M. Rashed, M. Kalam, H. Masjuki, H. Rashedul, A. Ashraful, I. Shancita and A. Ruhul, RSC 1158 Advances, 2015, 5, 36240-36261. 1159 41. H. Tang, N. Abunasser, A. Wang, B. R. Clark, K. Wadumesthrige, S. Zeng, M. Kim, S. O. Salley, G. Hirschlieb, J. Wilson and K. Y. Simon Ng, Fuel, 2008, 87, 2951-2955. 1160 1161 42. J. Waynick, AVFL-2b. National Renewable Energy Laboratory, 2005. 1162 43. S. Westbrook, Contract No DEAC3699GO10337, Sub Contract No ACE3307501, 2005. 1163 44. G. Knothe, Fuel Processing Technology, 2007, 88, 669-677. 1164 A. Monyem and J. H. Van Gerpen, *Biomass and Bioenergy*, 2001, 20, 317-325. 45. 1165 46. D. Leung, B. Koo and Y. Guo, *Bioresource technology*, 2006, 97, 250-256. 1166 47. T. Q. Chastek, *Biomass and Bioenergy*, 2011, **35**, 600-607. 1167 48. C. Boshui, S. Yuqiu, F. Jianhua, W. Jiu and W. Jiang, *Biomass and Bioenergy*, 2010, **34**, 1309-1313. 1168 49. L. Cao, J. Wang, C. Liu, Y. Chen, K. Liu and S. Han, Applied Energy, 2014, 132, 163-167. 1169 50. X. Chen, Y. Yuan and Y. Lai, Remote Sensing, Environment and Transportation Engineering 1170 (RSETE), 2011 International Conference on, 2011. G. Knothe, J. H. Van Gerpen and J. Krahl, The biodiesel handbook, AOCS press Champaign, IL, 1171 51. 1172 2005. 1173 52. R. M. Joshi and M. J. Pegg, Fuel, 2007, 86, 143-151. 1174 W. Seames, Y. Luo, I. Ahmed, T. Aulich, A. Kubátová, J. Št'ávová and E. Kozliak, Biomass and 53. 1175 Bioenergy, 2010, 34, 939-946. 1176 54. N. U. Soriano Jr, V. P. Migo and M. Matsumura, Fuel, 2006, 85, 25-31. 1177 55. Á. Pérez, A. Casas, C. M. Fernández, M. J. Ramos and L. Rodríguez, *Bioresource technology*, 2010, 1178 101, 7375-7381. 1179 M. E. González Gómez, R. Howard-Hildige, J. J. Leahy and B. Rice, Fuel, 2002, 81, 33-39. 56. 1180 R. Dunn and B. Moser, The Biodiesel Handbook. Urbana, IL: AOCS Press, 2010, pp. 147-203. 57. 1181 58. R. Dunn, M. Shockley and M. Bagby, Journal of the American Oil Chemists' Society, 1996, 73, 1182 1719-1728. 1183 59. S. Wahidin, A. Idris and S. R. M. Shaleh, Energy Conversion and Management, 2014, 84, 227-233. 1184 60. J. Yano, T. Aoki, K. Nakamura, K. Yamada and S.-i. Sakai, Waste Management, 2015, 38, 409-423. 1185 61. Z. Ullah, M. A. Bustam and Z. Man, *Renewable Energy*, 2015, 77, 521-526. 1186 62. S. E. Mahesh, A. Ramanathan, K. M. M. S. Begum and A. Narayanan, Energy Conversion and 1187 Management, 2015, 91, 442-450. 1188 63. A. Talebian-Kiakalaieh, N. A. S. Amin and H. Mazaheri, *Applied Energy*, 2013, **104**, 683-710. 1189 64. J. Garpen and M. Canakei, Am. Soc. Of Agricultural Eng, 2000, 44, 1429-1436. 1190 Z. Helwani, N. Aziz, M. Z. A. Bakar, H. Mukhtar, J. Kim and M. R. Othman, Energy Conversion and 65. 1191 Management, 2013, 73, 128-134. 1192 66. J. Sáez-Bastante, S. Pinzi, F. J. Jiménez-Romero, M. D. Luque de Castro, F. Priego-Capote and M. 1193 P. Dorado, Energy Conversion and Management, 2015, 96, 561-567. 1194 67. J. H. Van Gerpen and B. He, in Thermochemical Conversion of Biomass to Liquid Fuels and 1195 Chemicals, The Royal Society of Chemistry, 2010, pp. 382-415. 1196 68. G. Knothe, Green Chemistry, 2011, 13, 3048-3065. 1197 69. S. V. Ghadge and H. Raheman, *Biomass and Bioenergy*, 2005, 28, 601-605. 1198 70. M. A. Wakil, M. A. Kalam, H. H. Masjuki, A. E. Atabani and I. M. Rizwanul Fattah, Energy 1199 Conversion and Management, 2015, 94, 51-67.

1200	71.	M. Mofijur, A. E. Atabani, H. H. Masjuki, M. A. Kalam and B. M. Masum, Renewable and
1201		Sustainable Energy Reviews, 2013, 23 , 391-404.
1202	72.	H. Karabas, <i>Renewable Energy</i> , 2013, 53 , 384-388.
1203	73.	M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka and J. Hidaka, Applied Catalysis A: General, 2008,
1204		334 , 357-365.
1205	74.	S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Renewable and Sustainable
1206		Energy Reviews, 2012, 16 , 143-169.
1207	75.	M. Veríssimo and M. T. S. Gomes, <i>Fuel</i> , 2011, 90 , 2315-2320.
1208	76.	N. Usta, B. Aydoğan, A. Çon, E. Uğuzdoğan and S. Özkal, Energy conversion and Management,
1209		2011, 52 , 2031-2039.
1210	77.	C. Echim, J. Maes and W. De Greyt, <i>Fuel</i> , 2012, 93 , 642-648.
1211	78.	M. H. Najafi, S. Zeinoaldini, M. Ganjkhanlou, H. Mohammadi, D. L. Hopkins and E. N.
1212		Ponnampalam, <i>Meat Science</i> , 2012, 92 , 848-854.
1213	79.	A. E. Atabani, A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin and H.
1214		Fayaz, Renewable and Sustainable Energy Reviews, 2013, 18 , 211-245.
1215	80.	R. Sawangkeaw and S. Ngamprasertsith, Renewable and Sustainable Energy Reviews, 2013, 25,
1216		97-108.
1217	81.	A. Sanjid, H. H. Masjuki, M. A. Kalam, S. M. A. Rahman, M. J. Abedin and S. M. Palash, Renewable
1218		and Sustainable Energy Reviews, 2013, 27 , 664-682.
1219	82.	A. Karmakar, S. Karmakar and S. Mukherjee, Renewable and Sustainable Energy Reviews, 2012,
1220		16 , 1050-1060.
1221	83.	H. Raheman and S. V. Ghadge, <i>Fuel</i> , 2007, 86 , 2568-2573.
1222	84.	F. Ma and M. A. Hanna, Bioresource Technology, 1999, 70, 1-15.
1223	85.	A. Hajinezhad, S. Abedi, B. Ghobadian and Y. Noorollahi, Energy Conversion and Management,
1224		2015, 99 , 132-140.
1225	86.	D. Y. C. Leung, X. Wu and M. K. H. Leung, <i>Applied Energy</i> , 2010, 87 , 1083-1095.
1226	87.	H. Rashedul, H. Masjuki, M. Kalam, A. Ashraful, S. A. Rahman and S. Shahir, Energy Conversion
1227		and Management, 2014, 88 , 348-364.
1228	88.	M. Mofijur, H. H. Masjuki, M. A. Kalam, A. E. Atabani, M. I. Arbab, S. F. Cheng and S. W. Gouk,
1229		Energy Conversion and Management, 2014, 82 , 169-176.
1230	89.	Z. Yaakob, B. N. Narayanan, S. Padikkaparambil, S. Unni K and M. Akbar P, Renewable and
1231		Sustainable Energy Reviews, 2014, 35 , 136-153.
1232	90.	M. Agarwal, G. Chauhan, S. P. Chaurasia and K. Singh, Journal of the Taiwan Institute of Chemical
1233		Engineers, 2012, 43 , 89-94.
1234	91.	M. Tariq, S. Ali and N. Khalid, <i>Renewable and Sustainable Energy Reviews</i> , 2012, 16 , 6303-6316.
1235	92.	A. Abbaszaadeh, B. Ghobadian, M. R. Omidkhah and G. Najafi, <i>Energy Conversion and</i>
1236		Management, 2012, 63 , 138-148.
1237	93.	M. Y. Koh and T. I. M. Ghazi, <i>Renewable and Sustainable Energy Reviews</i> , 2011, 15 , 2240-2251.
1238	94.	A. Murugesan, C. Umarani, R. Subramanian and N. Nedunchezhian, <i>Renewable and Sustainable</i>
1239		Energy Reviews, 2009, 13 , 653-662.
1240	95.	R. D. Misra and M. S. Murthy, <i>Renewable and Sustainable Energy Reviews</i> , 2010, 14 , 3005-3013.
1241	96.	M. F. Demirbas, M. Balat and H. Balat, <i>Energy Conversion and Management</i> , 2009, 50 , 1746-
1242		1760.
1243	97.	https://en.wikipedia.org/wiki/Vegetable oil fuel, 2015.
1244	98.	A. S. Ramadhas, S. Jayaraj and C. Muraleedharan, <i>Renewable Energy</i> , 2004, 29 , 727-742.
1245	99.	A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki and S. Mekhilef.
1246		Renewable and Sustainable Energy Reviews, 2012, 16 , 2070-2093.
-		

1247	100.	N. Yusuf, S. Kamarudin and Z. Yaakub, Energy conversion and management, 2011, 52, 2741-
1248		2751.
1249	101.	H. Aatola, M. Larmi, T. Sarjovaara and S. Mikkonen, SAE paper, 2008, 2500.
1250	102.	G. t. A. Westphal, J. r. Krahl, A. Munack, N. Rosenkranz, O. Schröder, J. Schaak, C. Pabst, T.
1251		Brüning and J. r. Bünger, Environmental science & technology, 2013, 47, 6038-6046.
1252	103.	P. Y. Hsieh, J. A. Widegren, T. J. Fortin and T. J. Bruno, <i>Energy & Fuels</i> , 2014, 28 , 3192-3205.
1253	104.	T. Hartikka, M. Kuronen and U. Kiiski, Technical performance of HVO (Hydrotreated Vegetable
1254		Oil) in diesel engines 0148-7191, SAE Technical Paper, 2012.
1255	105.	http://www.f3centre.se/fact-sheet/HVO, 2015.
1256	106.	M. Kuronen, S. Mikkonen, P. Aakko and T. Murtonen, Hydrotreated vegetable oil as fuel for
1257		heavy duty diesel engines, SAE Technical Paper, 2007.
1258	107.	J. Myllyoja, P. Aalto, P. Savolainen, VM. Purola, V. Alopaeus and J. Grönqvist, Google Patents,
1259		2014.
1260	108.	J. Myllyoja, P. Aalto and E. Harlin, Google Patents, 2012.
1261	109.	J. Myllyoja, P. Aalto, P. Savolainen, VM. Purola, V. Alopaeus and J. Grönqvist, Google Patents,
1262		2011.
1263	110.	NO. Nylund, K. Erkkilä, M. Ahtiainen, T. Murtonen, P. Saikkonen, A. Amberla and H. Aatola,
1264		Optimized usage of NExBTL renewable diesel fuel: OPTIBIO, Kopijyvä Oy, 2011.
1265	111.	R. Arvidsson, S. Persson, M. Fröling and M. Svanström, Journal of Cleaner Production, 2011, 19,
1266		129-137.
1267	112.	M. Stumborg, A. Wong and E. Hogan, Bioresource Technology, 1996, 56, 13-18.
1268	113.	J. Kann, H. Rang and J. Kriis, PROCEEDINGS-ESTONIAN ACADEMY OF SCIENCES CHEMISTRY,
1269		2002.
1270	114.	M. Pexa, J. Čedík, J. Mařík, V. Hönig, Š. Horníčková and K. Kubín, Agronomy Research, 2015, 13,
1271		613-620.
1272	115.	M. Sokoto, L. Hassan, S. Dangoggo, H. Ahmad and A. Uba, Nigerian Journal of Basic and Applied
1273		Sciences, 2011, 19 .
1274	116.	A. Sarin, R. Arora, N. P. Singh, R. Sarin, R. K. Malhotra and K. Kundu, <i>Energy</i> , 2009, 34 , 2016-
1275		2021.
1276	117.	M. Serrano, R. Oliveros, M. Sánchez, A. Moraschini, M. Martínez and J. Aracil, <i>Energy</i> , 2014, 65 ,
1277		109-115.
1278	118.	C. Liu, M. Yang, J. Wang, M. Wang and F. Huang, The 12th International Rapeseed Congress,
1279		2007.
1280	119.	S. Pinzi, D. Leiva, G. Arzamendi, L. M. Gandia and M. P. Dorado, <i>Bioresource Technology</i> , 2011,
1281		102 , 7280-7288.
1282	120.	H. Li, B. Shen and P. Yu, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
1283		2010, 32 , 1195-1200.
1284	121.	R. O. Dunn, Progress in Energy and Combustion Science, 2009, 35 , 481-489.
1285	122.	Z. Jurac and V. Zlatar, Fuel Processing Technology, 2013, 106 , 108-113.
1286	123.	P. Udomsap, U. Sahapatsombat, B. Puttasawat, P. Krasae, N. Chollacoop and S. Topaiboul,
1287		Journal of Metals, Materials and Minerals, 2008, 18 , 99-102.
1288	124.	R. Lin, Y. Zhu and L. L. Tavlarides, <i>Fuel</i> , 2014, 117 , 981-988.
1289	125.	A. Standard, Standard test method for cold filter plugging point of diesel and heating fuels. West
1290		Conshohocken, PA, USA: ASTM, 2005.
1291	126.	A. Standard, in standard test method for pour point of petroleum products (automatic pressure
1292		pulsing method), American Society for Testing and Materials, West Conshohocken, PA (USA),
1293		2001.
1294	127.	S. Taval. University of MissouriColumbia. 2006.

1295	128.	A. L. Lown, L. Peereboom, S. A. Mueller, J. E. Anderson, D. J. Miller and C. T. Lira, <i>Fuel</i> , 2014, 117 , E44 EE1
1290	120	544-551. A S D5771-12 in American Section of the International Association for Testing Materials West
1298	125.	Conshohocken PA 2012
1299	130	M I Abedin H H Masiuki M A Kalam A Saniid S M A Rahman and I M R Fattah
1300	100.	Industrial Crops and Products, 2014, 59 , 96-104.
1301	131.	M. A. Jobal, M. Varman, M. H. Hassan, M. A. Kalam, S. Hossain and J. Saveed, <i>Journal of Cleaner</i>
1302		<i>Production</i> , 2015, 101 , 262-270.
1303	132.	A. E. Atabani, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, H. W. Yussof, W. T. Chong and K. T.
1304		Lee, Energy, 2013, 58 , 296-304.
1305	133.	S. Senthilkumar, G. Sivakumar and S. Manoharan, Alexandria Engineering Journal.
1306	134.	N. Kumar, Varun and S. R. Chauhan, Renewable and Sustainable Energy Reviews, 2013, 21, 633-
1307		658.
1308	135.	E. Alptekin, M. Canakci and H. Sanli, Waste Management, 2014, 34, 2146-2154.
1309	136.	W. M. J. Achten, L. Verchot, Y. J. Franken, E. Mathijs, V. P. Singh, R. Aerts and B. Muys, Biomass
1310		and Bioenergy, 2008, 32 , 1063-1084.
1311	137.	R. Singh and S. K. Padhi, Natural product radiance, 2009, 8, 127-132.
1312	138.	M. Wakil, M. Kalam, H. Masjuki, I. R. Fattah and B. Masum, <i>RSC Advances</i> , 2014, 4 , 56984-56991.
1313	139.	M. G. Kulkarni, A. K. Dalai and N. N. Bakhshi, <i>Bioresource Technology</i> , 2007, 98 , 2027-2033.
1314	140.	A. N. Ozsezen, M. Canakci, A. Turkcan and C. Sayin, <i>Fuel</i> , 2009, 88 , 629-636.
1315	141.	I. Çelikten, A. Koca and M. Ali Arsian, <i>Renewable Energy</i> , 2010, 35 , 814-820.
1316	142.	R. C. R. Santos, R. B. Vieira and A. Valentini, <i>Microchemical Journal</i> , 2013, 109 , 46-50.
1317	143.	J. Qian, Q. Yang, F. Sun, M. He, Q. Chen, Z. Yun and L. Qin, <i>Bioresource Technology</i> , 2013, 128 , 8-
1210	1 / /	13. S. A. Abo El Enin, N. K. Attia, N. N. El Ibiari, G. I. El Diwani and K. M. El Khatib, <i>Ponowable and</i>
1220	144.	S. A. Abo El-Ellin, N. N. Attia, N. N. El-Iblan, G. I. El-Diwani and K. M. El-Khatib, Renewable and
1320	145	L Danielski C Zetzl H Hense and G Brunner. The Journal of Supercritical Fluids 2005 34 133-
1322	140.	141.
1323	146.	A. Savdut, M. Z. Duz, C. Kava, A. B. Kafadar and C. Hamamci, <i>Bioresource Technology</i> , 2008, 99 .
1324		6656-6660.
1325	147.	A. Sanjid, H. Masjuki, M. A. Kalam, S. A. Rahman, M. Abedin and I. R. Fattah, RSC Advances,
1326		2015.
1327	148.	M. Arbab, H. Masjuki, M. Varman, M. Kalam, H. Sajjad and S. Imtenan, RSC Adv., 2014, 4, 37122-
1328		37129.
1329	149.	H. Hamada, H. Kato, N. Ito, Y. Takase, H. Nanbu, S. Mishima, H. Sakaki and K. Sato, European
1330		Journal of Lipid Science and Technology, 2010, 112 , 1323-1330.
1331	150.	S. Y. Giraldo, L. A. Rios and N. Suárez, <i>Fuel</i> , 2013, 108 , 709-714.
1332	151.	R. O. Dunn, Improving the cold flow properties of biodiesel by fractionation, INTECH Open Access
1333		Publisher, 2011.
1334	152.	G. Dwivedi and M. Sharma, Renewable and Sustainable Energy Reviews, 2014, 31 , 650-656.
1335	153.	O. Edith, R. B. Janius and R. Yunus, Pertanika J. Sci. Technol, 2012, 20, 1-14.
1336	154.	A. Kleinová, J. Paligová, M. Vrbova, J. Mikulec and J. Cvengroš, <i>Process Safety and Environmental</i>
1337		Protection, 2007, 85 , 390-395.
1338	155.	V. B. Borugadda and V. V. Goud, <i>Thermochimica Acta</i> , 2014, 577 , 33-40.
1339	156.	Cw. Chiu, L. G. Schumacher and G. J. Suppes, <i>Biomass and Bioenergy</i> , 2004, 27 , 485-491.
1340	157.	H. Lang, S. U. Salley and K. S. Ng, Fuel, 2008, 87, 3006-3017.
1341	158.	н. Lin, D. Ivi. Haagenson, D. P. Wiesenborn and S. W. Pryor, Fuel, 2011, 90 , 1771-1777.

1342	159.	E. Ramalho, J. Carvalho Filho, A. Albuquerque, S. de Oliveira, E. Cavalcanti, L. Stragevitch, I.
1343		Santos and A. Souza, <i>Fuel</i> , 2012, 93 , 601-605.
1344	160.	B. Terry, R. L. McCormick and M. Natarajan, <i>Impact of biodiesel blends on fuel system</i>
1345		component durability, SAE Technical Paper, 2006.
1346	161.	http://www.theedgemarkets.com/my/article/bmw-malaysia-b10-could-severely-damage-
1347		engines, 2015.
1348	162.	http://www.biodieselmagazine.com/articles/1566/the-role-of-sterol-glucosides-on-filter-
1349		plugging/, 2015.
1350	163.	H. Sulistyo, M. F. Almeida and J. M. Dias, <i>Fuel Processing Technology</i> , 2015, 132 , 133-138.
1351	164.	J. Pullen and K. Saeed, <i>Renewable and Sustainable Energy Reviews</i> , 2012, 16 , 5924-5950.
1352	165.	R. McCormick, M. Ratcliff, L. Moens and R. Lawrence, <i>Fuel Processing Technology</i> , 2007, 88 , 651-
1353		657.
1354	166.	G. L. Hasenhuettl and R. W. Hartel, Food emulsifiers and their applications, Springer, 2008.
1355	167.	M. M. Valle, R. Leonardo and J. Dweck, Journal of Thermal Analysis and Calorimetry, 2014, 116,
1356		113-118.
1357	168.	M. Dantas, A. Albuquerque, L. Soledade, N. Queiroz, A. Maia, I. Santos, A. Souza, E. Cavalcanti, A.
1358		Barro and A. Souza, Journal of thermal analysis and calorimetry, 2011, 106 , 607-611.
1359	169.	K. Yamane, K. Kawasaki, K. Sone, T. Hara and T. Prakoso, International Journal of Engine
1360		Research, 2007, 8 , 307-319.
1361	170.	J. Xin, H. Imahara and S. Saka, <i>Fuel</i> , 2009, 88 , 282-286.
1362	171.	M. M. Conceiçao, V. J. Fernandes, A. S. Araújo, M. F. Farias, I. M. Santos and A. G. Souza, Energy
1363		& fuels, 2007, 21 , 1522-1527.
1364	172.	P. Y. Furlan, P. Wetzel, S. Johnson, J. Wedin and A. Och, <i>Spectroscopy Letters</i> , 2010, 43 , 580-585.
1365	173.	K. Arisoy, <i>Energy Sources, Part A</i> , 2008, 30 , 1516-1522.
1366	174.	J. S. Oliveira, R. Montalvão, L. Daher, P. A. Suarez and J. C. Rubim, <i>Talanta</i> , 2006, 69 , 1278-1284.
1367	175.	F. C. Oliveira, C. R. Brandao, H. F. Ramalho, L. A. da Costa, P. A. Suarez and J. C. Rubim, Analytica
1368		chimica acta, 2007, 587 , 194-199.
1369	176.	P. Baptista, P. Felizardo, J. C. Menezes and M. J. Neiva Correia, <i>Talanta</i> , 2008, 77 , 144-151.
1370	177.	P. Baptista, P. Felizardo, J. C. Menezes and M. J. N. Correia, Analytica Chimica Acta, 2008, 607,
1371		153-159.
1372	178.	M. S. Graboski and R. L. McCormick, Progress in energy and combustion science, 1998, 24, 125-
1373		164.
1374	179.	C. Bannister, C. Chuck, M. Bounds and J. Hawley, Proceedings of the Institution of Mechanical
1375		Engineers, Part D: Journal of Automobile Engineering, 2011, 225 , 99-114.
1376	180.	A. Wojdyło, J. Oszmiański and R. Czemerys, Food chemistry, 2007, 105 , 940-949.
1377	181.	E. C. R. Maia, D. Borsato, I. Moreira, K. R. Spacino, P. R. P. Rodrigues and A. L. Gallina, Fuel
1378		Processing Technology, 2011, 92 , 1750-1755.
1379	182.	A. K. Domingos, E. B. Saad, W. W. Vechiatto, H. M. Wilhelm and L. P. Ramos, Journal of the
1380		Brazilian Chemical Society, 2007, 18 , 416-423.
1381	183.	I. M. Rizwanul Fattah, H. H. Masjuki, M. A. Kalam, M. A. Wakil, A. M. Ashraful and S. A. Shahir,
1382		Energy Conversion and Management, 2014, 83 , 232-240.
1383	184.	M. Serrano, A. Bouaid, M. Martínez and J. Aracil, Fuel, 2013, 113, 50-58.
1384	185.	Z. Yang, B. P. Hollebone, Z. Wang, C. Yang and M. Landriault, Fuel Processing Technology, 2013,
1385		106 , 366-375.
1386	186.	M. Mittelbach and S. Schober, Journal of the American Oil Chemists' Society, 2003, 80, 817-823.
1387	187.	R. O. Dunn, Fuel Processing Technology, 2005, 86 , 1071-1085.
1388	188.	A. Sarin, R. Arora, N. Singh, R. Sarin and R. Malhotra, Energy & Fuels, 2010, 24, 2652-2656.

1389	189.	SK. Loh, SM. Chew and YM. Choo, Journal of the American Oil Chemists' Society, 2006, 83,
1390		947-952.
1391	190.	B. Bertram, C. Abrams and B. Cooke, Google Patents, 2004.
1392	191.	G. F. Zagonel, P. Peralta-Zamora and L. P. Ramos, <i>Talanta</i> , 2004, 63 , 1021-1025.
1393	192.	A. Demirbaş and H. Kara, Energy Sources, Part A, 2006, 28 , 619-626.
1394	193.	B. Cooke, C. Abrams and B. Bertram, 2003.
1395	194.	R. L. McCormick, M. Ratcliff, L. Moens and R. Lawrence, Fuel Processing Technology, 2007, 88,
1396		651-657.
1397	195.	G. Karavalakis, S. Stournas and D. Karonis, Fuel, 2010, 89 , 2483-2489.
1398	196.	L. Das, D. K. Bora, S. Pradhan, M. K. Naik and S. Naik, <i>Fuel</i> , 2009, 88 , 2315-2318.
1399	197.	K. Wadumesthrige, S. O. Salley and K. S. Ng, <i>Fuel Processing Technology</i> , 2009, 90 , 1292-1299.
1400	198.	N. Nikolaou, C. E. Papadopoulos, A. Lazaridou, A. Koutsoumba, A. Bouriazos and G.
1401		Papadogianakis, Catalysis Communications, 2009, 10 , 451-455.
1402	199.	A. F. Pérez-Cadenas, F. Kapteijn, M. M. P. Zieverink and J. A. Moulijn, Catalysis Today, 2007, 128,
1403		13-17.
1404	200.	B. R. Moser, M. J. Haas, J. K. Winkler, M. A. Jackson, S. Z. Erhan and G. R. List, European journal
1405		of lipid science and technology, 2007, 109 , 17-24.
1406	201.	V. Plata, V. Kafarov and E. Castillo, CHEMICAL ENGINEERING, 2012, 29.
1407	202.	H. rahimi, B. Ghobadian, T. Yusaf, G. Najafi and M. Khatamifar, Renewable Energy, 2009, 34,
1408		335-342.
1409	203.	J. Wang, L. Cao and S. Han, <i>Fuel,</i> 2014, 117, Part A , 876-881.
1410	204.	L. Schumacher, W. Wetherell and J. Fischer, ASAE/CSAE-SCGR Annual International Meeting,
1411		Toronto, Ontario, Canada, 18-21 July, 1999., 1999.
1412	205.	H. Joshi, B. R. Moser, J. Toler, W. F. Smith and T. Walker, <i>Renewable Energy</i> , 2010, 35 , 2207-
1413		2210.
1414	206.	H. Joshi, B. R. Moser, J. Toler, W. F. Smith and T. Walker, <i>Biomass and Bioenergy</i> , 2011, 35 ,
1415		3262-3266.
1416	207.	M. De Torres, G. Jiménez-Osés, J. A. Mayoral and E. Pires, Bioresource Technology, 2011, 102,
1417		2590-2594.
1418	208.	R. O. Dunn, Energy & Fuels, 2009, 23 , 4082-4091.
1419	209.	JY. Park, DK. Kim, JP. Lee, SC. Park, YJ. Kim and JS. Lee, <i>Bioresource technology</i> , 2008, 99,
1420		1196-1203.
1421	210.	P. Lv, Y. Cheng, L. Yang, Z. Yuan, H. Li and W. Luo, Fuel Processing Technology, 2013, 110, 61-64.
1422	211.	R. A. Soldi, A. R. Oliveira, R. V. Barbosa and M. A. César-Oliveira, European Polymer Journal,
1423		2007, 43 , 3671-3678.
1424	212.	B. R. Moser and S. Z. Erhan, <i>Fuel</i> , 2008, 87 , 2253-2257.
1425	213.	P. Smith, Y. Ngothai, Q. Nguyen and B. O'Neill, <i>Fuel</i> , 2009, 88 , 605-612.
1426	214.	P. C. Smith, Y. Ngothai, Q. D. Nguyen and B. K. O'Neill, <i>Fuel</i> , 2010, 89 , 3517-3522.
1427	215.	T. C. Ming, N. Ramli, O. T. Lye, M. Said and Z. Kasim, European journal of lipid science and
1428		technology, 2005, 107 , 505-512.
1429	216.	P. V. Bhale, N. V. Deshpande and S. B. Thombre, <i>Renewable Energy</i> , 2009, 34 , 794-800.
1430	217.	P. Phung, W. N. Rowlands, A. Thiyakesan, P. Benndorf, A. F. Masters and T. Maschmeyer,
1431		Catalysis Today, 2014, 233 , 162-168.
1432	218.	N. Rasimoglu and H. Temur, <i>Energy</i> , 2014, 68 , 57-60.
1433	219.	J. C. Yori, M. A. D'Amato, J. M. Grau, C. L. Pieck and C. R. Vera, <i>Energy & fuels</i> , 2006, 20 , 2721-
1434		2726.
1435	220.	F. Jin, X. Zeng, J. Cao, K. Kawasaki, A. Kishita, K. Tohji and H. Enomoto, Fuel, 2010, 89, 2448-2454.
1436	221.	S. Kerschbaum, G. Rinke and K. Schubert, <i>Fuel</i> , 2008, 87 , 2590-2597.

- 1437 222. I. Lee, L. A. Johnson and E. G. Hammond, Journal of the American Oil Chemists' Society, 1996, 73, 1438 631-636. 1439 223. S. El Rafie and N. Attia, Desalination, 2008, 228, 168-174. 1440 224. G. Kafuku and M. Mbarawa, International Journal of Green Energy, 2010, 7, 434-444. 1441 225. E. C. Zuleta, L. A. Rios and P. N. Benjumea, Fuel Processing Technology, 2012, 102, 96-101. 1442 226. P. Lv, Y. Cheng, L. Yang, Z. Yuan, H. Li and W. Luo, Fuel Processing Technology, 2013, 110, 61-64. 1443 227. M. M. Roy, W. Wang and M. Alawi, Energy Conversion and Management, 2014, 84, 164-173. 1444 228. J. A. Melero, G. Vicente, G. Morales, M. Paniagua and J. Bustamante, Fuel, 2010, 89, 2011-2018. 1445 229. P. Kwanchareon, A. Luengnaruemitchai and S. Jai-In, Fuel, 2007, 86, 1053-1061. 1446 230. L. Zhu, C. S. Cheung, W. G. Zhang and Z. Huang, Science of The Total Environment, 2010, 408, 1447 914-921.
- 1448 231. C. H. Cheng, C. S. Cheung, T. L. Chan, S. C. Lee, C. D. Yao and K. S. Tsang, *Fuel*, 2008, **87**, 1870-1449 1879.
- 1450 232. S. Gan and H. K. Ng, *Energy Conversion and Management*, 2010, **51**, 1536-1546.