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Abstract: Based on the theory that a large partial least squares (PLS) regression 8 

coefficient on the autoscaled data indicates an important variable, a novel strategy for 9 

variable selection called iteratively variable subset optimization (IVSO), is proposed 10 

in this study. In addition, we take it into consideration that the optimal number of latent 11 

variables generated by cross-validation will make a great difference to the regression 12 

coefficients and sometimes the difference can even vary by several orders of magnitude. 13 

In this work, the regression coefficients generated in every sub-model are normalized to 14 

remove the influence. In each iterative round, the regression coefficients of each 15 

variable obtained from the sub-models are summed to evaluate its importance level. A 16 

two-step procedure including weighted binary matrix sampling (WBMS) and 17 

sequentially addition is employed to eliminate uninformative variables gradually and 18 

gently in a competitive way and reduce the risk of losing important variables. Thus, 19 
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IVSO can achieve high stability. Investigated by one simulated dataset and two NIR 20 

datasets, IVSO shows much better prediction ability than another two outstanding and 21 

commonly used methods, Monte Carlo uninformative variable elimination (MC-UVE) 22 

and competitive adaptive reweighted sampling (CARS). The MATLAB code for 23 

implementing IVSO is available in the supplemental materials. 24 

Keywords: Partial least squares, Regression coefficient, Weighted binary matrix 25 

sampling, Sequentially addition, Variable selection 26 

 27 

1. Introduction 28 

Nowadays, multivariate calibration models have been playing an essential role in 29 

multi-component spectral data, such as ultraviolet (UV), near infrared (NIR) and 30 

Raman spectroscopy. However, the spectral data obtained from these modern 31 

spectroscopic instruments usually contain hundreds or thousands of variables with high 32 

colinearity. Latent variable extraction techniques, such as principal component 33 

regression (PCR) and partial least squares (PLS) 
1
, provide a way to address the high 34 

colinearity problem. But the full spectrum used in these methods may bring negative 35 

influence on the performance of the calibration model due to the existing of 36 

uninformative variables. Many papers have demonstrated that it is critical to conduct 37 

variable selection in models instead of using full spectrum.
2-6
 The advantages of 38 

variable selection have been concluded in the following three aspects: (1) improve the 39 

prediction accuracy of the model because of the elimination of uninformative variables 40 

that must lead to less precision as proved theoretically; (2) selecting wavelengths 41 

probably responsible for the property of interest makes the model more interpretative; 42 

(3) enhance the computational efficiency for modeling with a small amount of 43 
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variables.
7
  44 

At present, many methods on variable selection have been employed in 45 

multi-component spectral data. In general, these methods can be classified into two 46 

categories as static and dynamic approach. The static approaches use one criterion for 47 

the whole data space, while the dynamic approaches take into account the result of 48 

each iteration. The static approaches includes t-statistics and Akaike information 49 

criteria (AIC), uninformative variable elimination (UVE),
8
 Monte Carlo based 50 

uninformative variable elimination (MC-UVE),
9, 10

 variable importance in projection 51 

(VIP),
11
 selectivity ratio (SR),

12
 and moving window partial least squares (MWPLS).

13
 52 

The dynamic approaches consists of optimized algorithm-based such as Genetic 53 

algorithm (GA),
14-16

 particle swarm optimization (PSO),
17
 firefly,

18
 ant colony 54 

optimization (ACO),
19, 20

 gravitational search algorithm (GSA),
21
 and simulated 55 

annealing (SA).
22
 The variable selection methods, such as Random forest,

23
 successive 56 

projection algorithm (SPA),
24
 iteratively retaining informative variables (IRIV),

25
 57 

variable combination population analysis (VCPA),
26
 competitive adaptive reweighted 58 

sampling (CARS),
27
 interval random frog (iRF),

28
 are also the dynamic approaches. 59 

The theories of UVE, MC-UVE, CARS, and iRF comes from that the larger the 60 

absolute regression coefficient on the autoscaled data is, the more important the 61 

variable is.
8, 29

 In addition to regression coefficient, Kvalheim et al. discussed the usage of SR that 62 

can assist in improved algorithm for variable selection in latent variable regression model.
30
  63 

Among all the methods upon regression coefficient, MC-UVE and CARS are 64 

adopted extensively in multivariate calibration models for their better prediction. In 65 

both MC-UVE and CARS, Monte Carlo sampling technique is applied to the sample 66 

space to establish a large number of sub-models, which assures that the number of 67 

samples selected randomly for modeling is strictly the same, for example, 80% of all 68 
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samples is used to build the model. For MC-UVE, after N Monte Carlo sampling runs, 69 

one variable is evaluated according to a criterion which is equal to the ratio of the mean 70 

of the regression coefficients and its standard deviation. The variables with small 71 

criteria are eliminated. Unlike MC-UVE, in each iterative round, CARS removes the 72 

variables with small means of regression coefficients by the exponentially decreasing 73 

function (EDF) by force and adaptive reweighted sampling (ARS) competitively. 74 

However, it is the full spectrum in MC-UVE that is used to establish sub-models, which 75 

will lead to that the regression coefficients of the informative variables can be 76 

influenced by the uninformative variables. With regard to CARS, the enforced 77 

elimination of variables by EDF may lose important variables and further result in 78 

instability. Hence, in most cases the results achieved by MC-UVE and CARS are not 79 

satisfied enough.                 80 

In this study, a novel strategy for variable selection based on regression coefficient 81 

is proposed, called iteratively variable subset optimization (IVSO). At first, we 82 

introduce a new random sampling method, named weighted binary matrix sampling 83 

(WBMS),
31, 32

 which is an improvement of the binary matrix sampling (BMS).
25, 33

 84 

Giving different weights to different variables, WBMS aims to make variables with 85 

larger weights more likely to be chosen. On the contrary, if the weight of one variable is 86 

small, it will be selected with little or even no possibility. Furthermore, combining 87 

WBMS with another strategy called sequentially addition, the variables with small 88 

criteria are deleted and a new variable subset is yielded. After N WBMS runs, N 89 

different variable subsets are obtained and the root mean squares error of 90 
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cross-validation (RMSECV) is used as the objective function to search for the best 91 

variable subset. In addition, the regression coefficients of one variable in all 92 

sub-models are summed to evaluate its importance level. This data fusion step is a 93 

good option, as the noise cancels out and the systematic information accumulates. 94 

However, we find that the optimal number of latent variables generated by 95 

cross-validation will make a great difference to the regression coefficients, which is 96 

consistent with the viewpoint in Reference.
34
 Thus, the regression coefficients of the 97 

same variable in different sub-models cannot be calculated or compared directly due to 98 

the great difference. The strategy of normalization is applied to eliminate the influence. 99 

Tested on a simulated dataset and two NIR datasets, IVSO coupled with partial least 100 

squares (PLS) demonstrates better prediction ability and higher stability compared to 101 

the two outstanding methods above, namely MC-UVE and CARS. The result 102 

demonstrates that IVSO has the ability to eliminate uninformative variables gradually 103 

and gently in a competitive way, which can avoid those two problems of MC-UVE and 104 

CARS discussed above. It proves that IVSO is an efficient method for variable 105 

selection in multivariate calibration.  106 

Additionally, it should be noted that IVSO is just evaluated by NIR datasets with 107 

PLS in this study, but it is a general strategy and can be combined with other regression 108 

and pattern recognition methods, and applied to other kinds of datasets, such as 109 

metabolomic and quantitative structure-activity relationship (QSAR).        110 

                                                                           111 

2. Theory and algorithms 112 
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2.1. Notation 113 

In this study, the matrix X with dimensionality K × P represents the observation 114 

matrix, in which K stands for the number of samples in rows and P is the number of 115 

variables in columns. Vector y with dimensionality P × 1 denotes the measured 116 

property of interest, for example the concentration. In addition, the number of WBMS 117 

runs is set to N.  118 

2.2. Weighted binary matrix sampling (WBMS) 119 

In IVSO, a new method called WBMS is introduced for randomly sampling and 120 

further eliminating a part of uninformative variables, which is an improvement of 121 

binary matrix sampling (BMS). If the weight of one variable is small, the variable will 122 

be selected with little or even no possibility. Therefore, WBMS can eliminate variables 123 

competitively. 124 

It works as follows: assume that the weight of the ith variable is wi. At first, a 125 

binary matrix M with dimensionality N × P is generated, which contains either ‘1’ or 126 

‘0’. ‘1’ represents that the responding variable is included for modeling, while ‘0’ 127 

represents non-sampling for the variable. In each column, there are Nwi ‘1’ and the left 128 

ones are all ‘0’. The procedure is displayed in Fig. 1, where the row of M is set to 5 and 129 

the column is 7 for simplicity. When sampling, the weights of some variables are too 130 

small to be sampled in any column. The first and second columnns in Fig. 1 can 131 

represent this case. As the last column shows, if the weight of one variable is equal to 132 

1, it will be sampled in each iterative round. Next, permuting each column in M 133 

generates a new binary matrix NM. Remarkably, after the permutation, the number of 134 

‘1’ or ‘0’ in each column is kept unchanged. 135 

In the matrix of NM, each row represents a sampling process for building a 136 

sub-model. It can be summarized that when Nwi of one variable is less than 1, it will be 137 
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eliminated. 138 

(Insert Figure 1) 139 

2.3. Normalizing PLS regression coefficients 140 

PLS is one of the most widely used methods for establishing the relationship 141 

between the observation matrix X and the properties of interest y. The scores matrix T 142 

is a linear combination of X with the combination coefficients W, and c is the 143 

regression coefficient vector of y against T by least squares.
1, 35

 PLS can be expressed 144 

by by the following formulas: 145 

T = XW                               (1) 146 

y = Tc + e = XWc + e = Xb + e                      (2) 147 

where b = Wc is the vector of PLS regression coefficients and e is the vector of 148 

residuals that cannot be explained by the model.  149 

In addition, the matrix X needs to be autoscaled to guarantee that each variable has 150 

the same variance before modeling. It should be noted that the regression coefficients 151 

mentioned in this study have been changed into the absolute value before calculating. 152 

Afterwards, the larger the regression coefficient is, the more important the variable is.  153 

Moreover, it is found that the optimal number of latent variables generated by 154 

cross-validation will make a great difference to the regression coefficients and 155 

sometimes the differences can even vary by several orders of magnitude.
34
 Thus, the 156 

regression coefficients of the same variable in different sub-models may change a great 157 

deal and they cannot be calculated or compared directly. In this study, we employ the 158 

strategy of normalization to remove this influence. Assume that after building N 159 

sub-models, a regression coefficient matrix B (B = [b1, b2, … bN]
T)
 is generated. The jth 160 
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row vector in B, denoted by bj (1≤j≤N) records the regression coefficients of the jth 161 

sub-model. The elements in the matrix B will be set to 0 if the responding variables are 162 

not included into the sub-models. The regression coefficient bij of the ith variable in the 163 

jth sub-model is normalized as follow: 164 

cij = bij /max(bj)                          (3) 165 

where max(bj) stands for the maximum of the row vector bj. The normalized regression 166 

coefficient matrix composed by all cij is denoted by C. The elements in C range from 0 167 

to 1. 168 

2.4. The criteria and weights of variables 169 

For CARS, it is the mean of the regression coefficients of one variable that is 170 

considered as the criterion to determine its importance level. In IVSO, the normalized 171 

regression coefficient matrix C is summed in columns to generate a row vector s (s = [s1, 172 

s2,… sP]), where si stands for the sum of the regression coefficients of the ith variable in 173 

all N sub-models. The sum si of the ith variable is regarded as its criterion. By this data 174 

fusion step, the noise can be cancelled out and the systematic information can be 175 

accumulated. In this way the difference between variables will become larger than that 176 

in CARS, which accelerating the iteration. 177 

In each iterative round, the weight of the ith variable is defined as: 178 

wi = si / max(s), i = 1, 2,…, P                   (4) 179 

where max(s) is the maximum of the vector s. The weights of the variables having been 180 

eliminated are set to zero automatically so that the weight vector w is always 181 

p-dimensional. Moreover, it should be mentioned that the weight vector only work for 182 

sampling by WBMS in the next iterative round.  183 

2.5. Sequentially addition   184 
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In each iterative round, we combine WBMS with another strategy called 185 

sequentially addition to optimize the variable space. Firstly we use WBMS to eliminate 186 

variables in a competitive way. Denote L1 as the number of the variables which can be 187 

sampled by WBMS. Then the L1 variables are ranked based on their criteria. The 188 

variable space is further shrunk by sequentially addition. The L1 variables are 189 

sequentially added step by step to establish L1 PLS sub-models according to the rank 190 

and the performance of the sub-models is estimated by cross-validation. The first 191 

sub-model consists of only the first variable in the rank, and the second sub-model 192 

contains the first two variables, and the ith sub-model contains the first i variables. 193 

Repeat this process until the L1 variables are all included into the last sub-model. When 194 

the RMSECV value of the sub-model reaches minimum with addition one by one, the 195 

corresponding variable subset in this best sub-model is chosen. The number of 196 

variables in this variable subset is denoted by L2. The iterative process is continued with 197 

L1 getting closer to L2, until both L1 and L2 reach an equal value.  One variable subset is 198 

yielded in one iterative round and finally many different variable subsets are generated. 199 

The RMSECV value is employed as the objective function to search for the best 200 

variable subset.  201 

In each iterative round, sequentially addition can select a variable subset which 202 

contains informative variables. Thus, if some important variables are lost by WBMS, 203 

they still can be retained in the variable subset in the previous rounds by sequentially 204 

addition. When selecting the best variable subset among all iterative rounds, these lost 205 
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variables still have the opportunity to be included into the ultimate variable subset. In 206 

this way, no loss of important variables can be assured. For the same reason, IVSO 207 

possesses high stability. Overall, IVSO has the ability to eliminate variables gradually 208 

and gently in a competitive way and reduce the risk of losing important variables.  209 

2.6. General description of IVSO  210 

Fig. 2 shows the scheme of IVSO algorithm. The initial value of the weight of 211 

each variable is set to 1. It should be mentioned that the weights for sampling by 212 

WBMS are obtained from the previous iterative round. The detailed algorithm of IVSO 213 

is described as follows: 214 

Step 1: Creating a binary matrix NM with dimensionality N×P for sampling by 215 

WBMS gives N sampling runs. In each column of NM, there are Nwi ‘1’ and the left 216 

ones are all ‘0’. If the Nwi of one variable is less than 1, it will not be sampled in any row. 217 

Record the number of variables which can be sampled by WBMS, namely L1.  218 

Step 2: Build N PLS sub-models to calculate the regression coefficient matrix B. 219 

Each row of the matrix B is normalized to generate the matrix C, as Formula 2 did.  220 

Step 3: Each column of the matrix C is summed as the criterion of the 221 

corresponding variable, denoted by the vector s. Rank the L1 variables based on their 222 

criteria. 223 

Step 4: Build L1 sub-models through sequentially addition according to the rank. 224 

Take the variable subset in the sub-model with the lowest RMSECV value as the 225 

objective variable subset of this iterative round. Record this RMSECV value R and the 226 

length of this variable subset L2.  227 

Step 5: The vector s is normalized to calculate weights as Formula 3. The weights 228 

in this iterative round only work in the sampling of the next iterative round. 229 
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Step 6: Repeat the steps 1-5 until L1 is equal to L2, then many variable subsets are 230 

obtained. The variable subset with the lowest R value is chosen as the ultimate variable 231 

subset of the algorithm.        232 

(Insert Figure 2) 233 

 234 

3. Datasets and Software 235 

3.1. Simulated dataset 236 

This dataset, called SIMUIN, is simulated as described in Reference 18. SIMUIN 237 

contains 100 samples in rows and 200 variables in columns with exactly five latent 238 

variables. The relative eigenvalues by principal component analysis on the autoscaled 239 

data are 21.29%, 20.30%, 19.84%, 19.61%, 18.96%. The first 100 variables of 240 

SIMUIN are linearly relative with y but the last 100 ones are random numbers from 0 to 241 

1, regarded as uninformative variables. The noises with normal distribution in the range 242 

from 0 to 0.005 are added to SIMUIN . 243 

3.2. Corn moisture dataset  244 

The corn dataset is available in the website: http://www.eigenvector. 245 

com/data/Corn/index.html. This dataset contains 80 samples of corn measured on three 246 

different NIR spectrometers. The spectrum has been recorded from 1100 - 2498 nm 247 

with 700 spectral points at intervals of 2 nm. In this study, the NIR spectrum of 80 corn 248 

samples measured on m5 instrument is used and the moisture value is considered as 249 

property of interest y.  250 

3.3. Wheat dataset 251 

This NIR dataset
4
 consists of 100 wheat samples and the protein value is 252 

considered as property of interest y. The spectrum has been recorded from 1100 - 2500 253 

nm with 701 spectral points at intervals of 2 nm. Due to the ‘large p, small n’ problem,
36, 

254 
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37
 the original spectrum is compressed into a maximum of 200 points by an appropriate 255 

window size as did by Leardi.
14
 Setting the window size to 4, this dataset is reduced to 256 

175 variables with the average of every four original variables. 257 

3.4. Software 258 

All the computations are achieved in MATLAB on an ordinary computer 259 

configured to Intel Core i5 3.2 GHz CPU, 3G RAM, WIN7 Ultimate. The MATLAB 260 

code for implementing IVSO is available in the supplemental materials.  261 

 262 

4. Results and Discussion 263 

In this study, all the datasets are split into calibration set (80% of the dataset) and 264 

independent test set (20% of the dataset) based on Kennard - Stone (KS) method.
38
 KS 265 

method aims at covering the multidimensional space by maximizing the Euclidean 266 

distances between each pair of the selected samples. The calibration set is used for 267 

variable selection and goodness of fit, and the independent test set is used for 268 

validation of the calibration model for prediction. When conducting variable selection 269 

on the calibration set, cross-validation is conducted. Furthermore, in order to evaluate 270 

the performance of IVSO, we compare it with another two outstanding methods based 271 

on the regression coefficient, namely MC-UVE and CARS. For MC-UVE, the number 272 

of Monte Carlo sampling runs is set to 1000, and 80% samples are randomly chosen for 273 

modeling in each sampling run. As to CARS, the number of Monte Carlo sampling runs 274 

is set to 100. For all methods, the maximum latent variable is limited to 10 and the 275 

number of latent variables is determined by 10-fold cross-validation. Each dataset is 276 
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autoscaled to have zero mean and unit variance before modeling. Besides, the root 277 

mean square error of calibration set (RMSEC) and the root mean square error of 278 

prediction of test set (RMSEP) are employed to assess the performance of the three 279 

methods. In addition, because of the random sampling, these methods are conducted 50 280 

times to obtain statistical results and compare the three methods fairly.     281 

4.1. The influence of the number of sampling by WBMS  282 

To investigate the influence of the number of sampling runs by WBMS, we 283 

discuss four cases about the performance of IVSO, as shown in Fig. 3. The number of 284 

sampling runs is set to 3000, 5000, 8000 and 10000, respectively, in the three datasets. 285 

For these three datasets, their RMSEP values generated by full spectrum are 0.4043, 286 

0.0237 and 0.2382, respectively. All of the results of the three datasets have good 287 

stability. Overall, no significant influence on the results of IVSO has been found among 288 

these four cases. For the dataset of wheat protein, the median values of the four RMSEP 289 

values are the same, but the results with the parameter of 8000 shows the best stability. 290 

Thus, the number of sampling by WBMS is set to 8000 in this study.    291 

(Insert Figure 3) 292 

4.2. Simulated dataset 293 

This dataset is simulated to assess the ability of IVSO to select appropriate 294 

variable subset. The first 100 variables are linearly relative with y and regarded as 295 

informative ones, but the last 100 ones are noisy. The results obtained by conducting 296 

different methods within 50 times are discussed in detail.  297 

Table 1 includes the results of the three methods on the three datasets. The mean 298 

and 95% confidence interval are given as well. The simulated dataset is investigated 299 

by comparing with MC-UVE, CARS, the full spectrum and the first 100 informative 300 
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variables. Compared with the full spectrum, the RMSEC value of only the first 100 301 

variables drops from 0.0644 to 0.0091 and the RMSEP value drops from 0.4043 to 302 

0.0135, even using a smaller number of latent variable, 6. It demonstrates the 303 

importance and necessity for variable selection in multivariate calibration.     304 

The statistical features of the results by different methods can be observed visually 305 

in the boxplot of Fig. 4, in which Fig. 4A displays the results of the simulated dataset. 306 

As it can be seen from Table 1 and Fig. 4A, IVSO shows the best performance with 307 

regard to the improving the prediction ability of the model and good stability. The 95 % 308 

confidence interval of RMSEC and RMSEP results for each method shows that IVSO 309 

has no overlap with other methods. In addition, the selected latent variable of IVSO is 6, 310 

which is much smaller than that of the full spectrum.  311 

The frequency distribution of selected variables within 50 times is displayed in Fig. 312 

5. For different methods the selected variables all concentrate in the first 100 variables. 313 

Both IVSO and MC-UVE can select variables with high frequencies. However, the 314 

selected variables by CARS are of low frequencies and even no one variable can be 315 

selected by all 50 times, which reveals its instability. The fact is just consistent with its 316 

large confidence interval in Table 1 and standard deviation in Fig. 4A.  317 

Fig. 6A and Fig. 6B show the changing trend of the number of variables sampled 318 

by IVSO and CARS respectively. The arrow indicates the point reaching the optimal 319 

variable subset. As to MC-UVE, it is the full spectrum that is used to establish the 320 

sub-models, so no iterative round has ever occurred. For the simulated dataset in Fig. 321 

6A, the number of sampled variables decreases to 100 in the 3th and 4th iterative 322 

rounds, then the curve drops much more slowly. In stark contrast, the number of 323 

sampled variables of the simulated dataset in Fig. 6B varies tremendously in the front 324 

section of the curve. It is in the first iterative round that the number decreases to 97, 325 
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which means that just the first iterative round can removes not only uninformative but 326 

also informative variables. In the 11th iterative round CARS achieves its optimal 327 

variables subset containing only 26 variables. It can be concluded that CARS 328 

eliminates variables too quickly and thus lose informative variables, which may result 329 

from the enforced elimination of variables by EDF. On the contrary, IVSO has the 330 

ability to eliminate uninformative variables gradually and gently, and achieve much 331 

higher stability.  332 

Fig. 7 shows the RMSECV value of the variable subset chosen by sequentially 333 

addition in each iterative round, which is corresponding to the sampling curve of the 334 

simulated dataset in Fig. 6A. The ‘0’ iterative round stands for the process during which 335 

the weights of all variables are set to ‘1’ as initial values but all these variables are 336 

conducted by sequentially addition. From Fig. 7A, the RMSECV value of the 337 

simulated dataset drops first because of the existing of some uninformative variables 338 

and begins to rise again due to the missing of some informative variables. It 339 

demonstrates the good ability of IVSO to eliminate uninformative variables and keep 340 

informative ones. 341 

(Insert Table 1) 342 

(Insert Figure 4) 343 

(Insert Figure 5) 344 

(Insert Figure 6) 345 

(Insert Figure 7) 346 

4.3. Corn moisture dataset 347 

The results obtained by repeating the three different methods 50 times are reported 348 

in Table 1 and Fig. 4B. In Table 1, compared with the full spectrum, the RMSEC and 349 

RMSEP values of IVSO decrease by 98.4% and 98.6%, respectively. Clearly, IVSO 350 
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has highly improved the prediction performance. IVSO exhibits not only the best 351 

prediction ability in terms of the RMSEC and RMSEP values but also owns the best 352 

stability based on confidence interval. The number of latent variable is also the 353 

smallest, which means that it can generate more parsimony model. 354 

The frequencies of variables selected by these methods are displayed in Fig. 8. 355 

Both CARS and IVSO mainly select variables of 1908nm and 2108nm, which have 356 

been discussed and proven as the key wavelengths by the literature of CARS 357 

experimentally and theoretically
27
. These two wavelengths are relative with the water 358 

absorption and the combination of O-H bond.
13
 For CARS, it cannot select the key 359 

wavelength of 2108nm in every iterative round. However, except for these two key 360 

variables, MC-UVE selects too many other variables with high frequencies. 361 

From the corn moisture dataset in Fig. 6A and Fig. 6B, we also can see that the 362 

number of variables sampled by IVSO in the previous rounds drops much more 363 

gradually and gently than that of CARS. In the latter rounds, though this number of 364 

IVSO changes more quickly, the key variables of 1908nm and 2108nm still can be 365 

retained in every iterative round due to sequentially addition. But CARS cannot do it.  366 

In Fig. 7B, it reaches the optimal variable subset with the two key variables firstly 367 

in the 4th iterative round. Then the optimal variable subset keeps unchanged, so the 368 

RMSECV value is stable. From the RMSECV values, we can summary that the strategy 369 

of sequentially addition used in every iterative round makes the result stable. 370 

 (Insert Figure 8) 371 

4.4. Wheat protein dataset 372 

In Table 1 and Fig. 4C, IVSO can achieve better results with the smallest number 373 

of latent variable than the full spectrum. But after selecting variables, the RMSEP 374 

values of both MC-UVE and CARS get much worse. Fig. 9 displays the frequencies of 375 
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variables selected by these methods. The variables around 1144-1296nm can be 376 

selected by all methods, which is the same as the result of GA-PLS.
14
 IVSO can select 377 

variables with quite high frequencies. As to MC-UVE and CARS, it selects many 378 

variables in other regions. Moreover, the frequencies of variables selected by CARS are 379 

not high and even quite a number of variables are selected by less than five times. From 380 

the wheat protein dataset in Fig. 6A and Fig. 6B, we also can see that the number of 381 

variables sampled by IVSO decreases much more slowly than that of CARS. The 382 

RMSECV value of the variable subset in Fig. 7C goes down at first with the decrease of 383 

the uninformative variables and then goes up because of increasingly deleting the 384 

informative variables. 385 

 (Insert Figure 9) 386 

 387 

5. Conclusion  388 

This paper presents a new method for variable selection based on the regression 389 

coefficient, called iteratively variable subset optimization (IVSO). Investigated by one 390 

simulated dataset and two NIR datasets, IVSO is proven to be a better variable 391 

selection method than another two methods, namely Monte Carlo uninformative 392 

variable elimination (MC-UVE) and competitive adaptive reweighted sampling 393 

(CARS). IVSO can eliminate uninformative variables gradually and gently, and 394 

achieve good prediction and stability. The outstanding performance of IVSO indicates 395 

that it is an efficient procedure and an alternative for variable selection. 396 

Although IVSO is worked with partial least squares (PLS) to select variables in 397 

this study, it also can be coupled with other modeling methods on regression or 398 
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pattern recognition. Our future work will focus on investigating the application of 399 

IVSO in other fields, such as metabolomic and quantitative structure-activity 400 

relationship (QSAR).  401 
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Table 1 489 

Results of different methods on the three datasets. 490 

Methods nVara nLVsb 

RMSEC RMSEP 

Min-Max Average ± CIc Min-Max Average ± CI 

Simulated       

PLSd 200 10 0.0644 0.4043 

PLSe 100 6 0.0091 0.0135 

MC-UVE 78.2 ± 6.3 6 0.0087-0.0093 0.0089±8.3×10-5 0.013-0.0135 0.0132±5.8×10-5 

CARS 27.6 ± 4.8 6.3 ± 0.7 0.0080-0.0124 0.0100±3.1×10-4 0.0118-0.0197 0.0155±5.3×10-4 

IVSO 68.1 ± 2.1 6 0.0090-0.0093 0.0091±1.5×10-5 0.012-0.0137 0.0125±8.7×10-5 

Corn moisture     

PLS 701 10 0.017 0.0237 

MC-UVE 70.4 ± 2.6 10 2.4×10-3-3.0×10-3 2.7×10-3±4.1×10-5 2.8×10-3-3.7×10-3 3.2×10-3±4.0×10-5 

CARS 3.4 ± 2.7 3.1 ± 1.9 2.4×10-4-2.7×10-3 4.6×10-4±1.8×10-4 3.4×10-4-4.5×10-3 6.4×10-4±2.8×10-4 

IVSO 2.3 ± 0.8 2.3 ± 0.8 2.6×10-4-2.8×10-4 2.8×10-4±1.1×10-6 3.3×10-4-3.6×10-4 3.4×10-4±1.4×10-6 

Wheat protein       

PLS 175 10 0.3923 0.2382 

MC-UVE 10.6 ± 1.3 9.9 ± 0.3 0.3370-0.3657 0.3475 ±0.0012 0.2466-0.2791 0.2532 ±0.0027 

CARS 9.8 ± 2.8 8.2 ± 1.3 0.2501-0.3427 0.2969 ±0.0054 0.1818-0.3535 0.2432 ±0.0111 

IVSO 14.8 ± 3.0 7.5 ± 1.0 0.2415-0.2695 0.2641 ±0.0030 0.2313-0.2363 0.2339 ±0.0009 

a
 The number of selected variables 491 
b
 The number of selected latent variables of PLS 492 
c
 95% confidence interval (CI) 493 
d
 Results using the full spectrum with 200 variables by PLS  494 
e
 Results using only the first 100 informative variables by PLS 495 

 496 

 497 

 498 
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Figure Captions 499 

Fig.1. The process of generating binary matrix. 500 

 501 

Fig.2. The scheme of iteratively variable subset optimization (IVSO) algorithm. 502 

 503 

Fig.3. The boxplot for each dataset with the number of sampling runs by WBMS set 504 

to 3000, 5000, 8000 and 10000, respectively. (A) simulated dataset; (B) corn moisture 505 

dataset; (C) wheat protein dataset. On each box, the central mark is the median, the 506 

edges of the box are the 25th and 75th percentile, the whiskers extend to the most 507 

extreme data points are the maximum and minimum, the “+” plotted individually 508 

represents outliers.  509 

 510 

Fig.4. The boxplot of 50 RMSEP values for the three methods. (A) simulated dataset; 511 

(B) corn moisture dataset; (C) wheat protein dataset. On each box, the central mark is 512 

the median, the edges of the box are the 25th and 75th percentile, the whiskers extend 513 

to the most extreme data points are the maximum and minimum, and the “+” plotted 514 

individually represents outliers. 515 

 516 

Fig.5. The frequencies of variables selected by different methods within 50 times on 517 

the simulated dataset. (A) MC-UVE; (B) CARS; (C) IVSO. 518 

 519 

Fig.6. The changing trend of the number of sampled variables by IVSO (A) and 520 

CARS (B). 521 

 522 

Fig.7. The root mean squares error of cross-validation (RMSECV) of the variable 523 

subset chosen by sequentially addition in each iterative round. (A) simulated dataset; 524 

(B) corn moisture dataset; (C) wheat protein dataset. 525 

Page 22 of 32RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

23 

 

 526 

Fig.8. The frequencies of variables selected by different methods within 50 times on 527 

the corn moisture dataset. (A) MC-UVE; (B) CARS; (C) IVSO. 528 

 529 

Fig.9. The frequencies of variables selected by different methods within 50 times on 530 

the wheat protein dataset. (A) MC-UVE; (B) CARS; (C) IVSO. 531 

 532 

 533 
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Fig.1. The process of generating binary matrix.  
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Fig.3. The boxplot for each dataset with the number of sampling runs by WBMS se  

438x187mm (300 x 300 DPI)  

 

 

Page 25 of 32 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

Fig.3. The boxplot for each dataset with the number of sampling runs by WBMS set to 3000, 5000, 8000 and 
10000, respectively. (A) simulated dataset; (B) corn moisture dataset; (C) wheat protein dataset. On each 
box, the central mark is the median, the edges of the box are the 25th and 75th percentile, the whiskers 

extend to the most extreme data points are the maximum and minimum, the “+” plotted individually 
represents outliers.  
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Fig.4. The boxplot of 50 RMSEP values for the three methods. (A) simulated dataset; (B) corn moisture 
dataset; (C) wheat protein dataset. On each box, the central mark is the median, the edges of the box are 
the 25th and 75th percentile, the whiskers extend to the most extreme data points are the maximum and 

minimum, and the “+” plotted individually represents outliers.  
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Fig.5. The frequencies of variables selected by different methods within 50 times on the simulated dataset. 
(A) MC-UVE; (B) CARS; (C) IVSO.  
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Fig.6. The changing trend of the number of sampled variables by IVSO (A) and CARS (B).  
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Fig.7. The root mean squares error of cross-validation (RMSECV) of the variable subset chosen by 
sequentially addition in each iterative round. (A) simulated dataset; (B) corn moisture dataset; (C) wheat 

protein dataset.  
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Fig.8. The frequencies of variables selected by different methods within 50 times on the corn moisture 
dataset. (A) MC-UVE; (B) CARS; (C) IVSO.  
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Fig.9. The frequencies of variables selected by different methods within 50 times on the wheat protein 
dataset. (A) MC-UVE; (B) CARS; (C) IVSO.  
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