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Abstract 

Reactive oxygen species (ROS) are an inevitable by-product of cellular metabolism. 

ROS generation associated with interaction of ionizing radiation with biological 

molecule, and devoted enzymes in phagocytic cells (NADPH oxidase and 

myeloperoxidase) or may be the result of imbalanced radical generating and 

scavenging systems. Albeit the myth about ROS as Pandora’s Box, it has several 

innovative physiological roles in body. ROS serve as signalling messengers for 

activation of transcription factors from cytokine-receptor interactions. It facilitates the 

evolution and membrane fusion of spermatozoa and oocyte during fertilization. 

NADPH oxidase enzyme and nitric oxide (NO) are function as potent vasodilators 

and immunity booster. ROS has been suggested as a prevalent regulator of several 

nuclear factors including erythroid 2-related factor 2 (Nrf2), nuclear factor kappa-B 

cells (NFκB), mitogen-activated protein kinase (MAPK) and p53 which further 

associated with plenty of signalling cascades. Under physiological conditions the 

amount of ROS generated in body can be counterbalance by natural anti-oxidant of 

body. However, the aberrant augmented level of ROS predominantly leads to various 

defined disorders comprising myocardial infarction, autoimmune diseases, 

atherosclerosis, alzheimer, parkinson and emphysema diseases. Ordinarily, it has been 

observed that physiological roles of ROS are knocked down in front of their 

pathological action. But here a need of glimpse about the explicit line of margin 

between patho-physiological function of ROS. Worthy of this note is to reveal the 

beneficial responsibility of ROS in different cellular pathways and metabolic 

functions, over its injurious consequence.  

 

Keywords: Mitochondria, ROS, RNS, Physiology, Pathology, Signalling mechanism. 
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Abbreviations: ROS, Reactive oxygen species; NO, Nitric oxide; Nrf2, Nuclear 

factor erythroid 2-related factor 2; NFκB, Nuclear factor kappa-B cells; MAPK, 

Mitogen-activated protein kinase; TNFα, Tumor necrosis factor-α; PTP, Permeability 

transition pore; NADPH-oxidase, Nicotinamide adenine dinucleotide phosphate-

oxidase; eNOS, Endothelial nitric oxide synthase; BH4, Tetrahydrobiopterin; RNS, 

Reactive nitrogen species; JNK, c-Jun N-terminal kinases; PKB/Akt, Protein kinase 

B; mTOR, Mammalian target of rapamycin; GPCR, G protein-coupled receptors; 

TLR, Toll-like receptors; ICAM-1, Intercellular adhesion molecule-1; cAMP, Cyclic 

adenosine monophosphate; Keap1, Kelch-like ECH-associated protein 1. 
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Introduction 

Mitochondria are the primary site of ROS generation. During aerobic metabolism 

electron transport chain reaction leads to instantaneous production of ROS as an 

unavoidable by-product [1]. Mitochondrial ROS generation is composed of four multi 

protein complexes (complex I-IV). Complex I and III are widely identified as the core 

site of ROS generation [2]. Endogenous production of ROS may initiate numerous 

signalling cascades for maintaining homeostasis in physicochemical or patho-

physiological states [3]. Recent extensive evidences suggested that conventionally 

mitochondrial ROS plays a pivotal role in managing several transcription factors and 

receptor interactions [4-5]. Despite of physiological role several evidences show 

debilitating proposition about ROS at higher level. Over production of ROS due to 

damaged mitochondria is considered as major predictor for the development of acute 

and chronic disorders. Increased level of ROS involved in the activation of wide range 

of gene expression and associated pathogenesis [6]. As the brain consumed 20% 

oxygen of the total body’s oxygen consumption, the vulnerability of oxidative damage 

is most prominent in this area. The accumulation of cellular ROS destroys the normal 

redox state in neural cells and leads to neurodegenerative diseases [7]. Ma et al. 

(2012) concluded the overproduction of these ambiguity molecules by mitochondria 

of β-cell activate various insidious metabolic disorder (diabetes mellitus followed by 

β-cell failure) [8]. Moreover, evidences suggested that high glucose concentration 

increased oxidative stress and further contribute to diabetes and associated 

complications [9-10]. In addition, ROS interfere with nuclear factor kappa-B (NF-κB) 

and tumor necrosis factor-α (TNFα) pathway and may leads to rheumatoid arthritis 

[11]. Indeed, free radicals react with all biological macromolecules (lipids, proteins, 

nucleic acids and carbohydrates) which contribute to oxidative stress and activate 
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various apoptotic pathways. Further, intracellular ROS also affect the mitochondria by 

activation of caspases with the rapid release of cytochrome c which ultimately leads 

to apoptosis [12]. TNFα can induce ROS by interacting with TNF receptor (TNF-Rl) 

and leads to apoptosis/ necrosis. ROS induce apoptosis may affect 'Guardian of the 

genome’ p53 which cause immense alteration in different signalling [13-14]. 

However, mitochondrial low oxidative stress or mitochondrial hormesis/mitohormesis 

prompts an adaptive reaction results including lower glucose metabolism, improve 

stress resistance, and influence mitochondrial signalling and metabolism [5]. In-

addition, Perez-Matute et al. (2009) also supports that ROS act as a loyal second 

messenger at low level and regulates vital cellular functions [4]. NO is an imperative 

mediator of endothelial function and cardiovascular physiology because of its vaso-

dilatory, anti-platelet, anti-proliferative, and anti-inflammatory potential. Increased 

bioavailability of NO in the blood vessels may improve the inflammation, 

atherosclerosis, hypertension, vascular endothelial dysfunction and associated 

cardiovascular diseases [15]. Moreover, recent evidence has shown that oxidative 

stress generated by reactive oxygen and nitrogen species monitor the array of 

physiological signalling in cardiovascular system [16]. The contentious facts on 

patho-physiological action of ROS can differentiate only upon its level in cells. 

Despite of the consciousness about these two parts of the coin, an overt line of 

boundary between physiological and pathological level of ROS is still unclear. Thus, 

there is a need of revisiting to understand the relation of oxidative stress level to 

precise health effect. The present review delineates positive liability of ROS in 

several cellular and metabolic pathways, more than its deleterious effects and put a 

requisite of measurable level of ROS, which may explain that how the physiological 

state get convert into pathological state.  
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Generation of reactive oxygen species 

To begin with Richard Altmann, an elementary organism has been illustrated within 

the cells which conclusively recognized as ‘bioblast’ or powerhouse of the cell or 

mitochondria [17]. Primarily mitochondria was regarded as only an energy generator, 

but in last few decades’ number of evidences revealed its extensive role in generating 

ROS and -associated fascinating mechanisms [18]. Mitochondria are the foremost site 

for in vivo production of free radical in continuous chain reaction mode, which 

extensively involved in various patho-physiological pathways. Superoxide is 

generated on the innermost membrane of mitochondria (matrix) [19]. This superoxide 

consecutively monitors mitochondrial functions including mitochondrial biogenesis, 

mitochondrial membrane permeability transition, lipid peroxidation, and 

mitochondrial DNA damage [20-21]. Mitochondrial ROS generation is organized by 

four multi-protein complexes (complex I-IV) [2]. Mitochondria comprise almost eight 

sites from where superoxide may generate [22]. Interestingly, out of them seven sites 

liberates generates superoxide within the matrix, but eighth (site IIIQo) on complex 

III and glycerol 3-phosphate dehydrogenase have an ability to discharge produced 

superoxide in inter membrane space. ROS moving in inter membrane space can easily 

cross the mitochondrial membrane in contrast to ROS present in the matrix [23]. 

Therefore, the ROS generated by site IIIQo on complex III and glycerol 3-phosphate 

dehydrogenase has more impact to participate in cellular signalling. In-addition, 

complex I (NADH CoQ reductase) has ability to stimulate the transfer of electron 

from NADH to co-enzyme Q which is responsible for production of significant 

amount of ROS. The translocation of proton from matrix to the inter membrane space 

revealed the potential of complex I to generate and release ROS as complex III. 

Moreover, complex II enzyme (succinate dehydrogenase) may reduce CoQ and 

Page 6 of 33RSC Advances



showing its involvement in production of superoxide [24-25]. Overall studies indicate 

that complex I, II and III have huge potential to generate ROS, but major contributors 

are complex I and complex III [2]. These contributions of producing ROS by each 

enzyme complex are variations in different tissue and pathologic conditions [26] 

[Figure 1]. 

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase) is a 

multisubunit (membrane associated components, i.e., p22 phagocytes oxides, 

gp91phox and cytosolic component enzyme, i.e., p47phox, p40phox, p67phox, small 

GTPase Rac) enzyme which plays an integral role to catalyze the reduction of 

molecular oxygen to form superoxide. NADPH oxidase activation through 

translocation and accumulation of cytosolic proteins with the membrane turn out 

electron transference, which further combines with molecular oxygen and generate 

superoxide anion [27-28].  

Endoplasmic reticulum (ER) is another major site of ROS production. It contains 

several proteins and enzymes including endoplasmic reticulum oxidoreductase, 

reduced glutathione and protein disulfide isomerase which participate in ER stress-

induced ROS production. Protein folding is précised system which initiates the 

translaction of accurate folded protein to intended site. Any adversity in this system 

process leads to misfolding or immature protein aggregate and ER stress -associated 

ROS. Protein folding is carried out by the formation of disulfide bond which produce 

a specific oxidising environment. Alteration in the disulfide bond formation results to 

protein misfolding which leads to generate significant amount of ROS due to 

depletion of glutathione (GSH). Repetitive cycle of breakage and formation of 

disulfide bond degrade the level of GSH. Each cycle produce more and more ROS as 
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by-product. Moreover, accumulated unfolded proteins cause Ca
+2 

leakages in cytosol 

which further responsible for mitochondrial ROS production [29-30]. 

Redox signalling plays a vital role in physiological and patho-physiological 

regulation. Cellular redox reactions maintain the equilibrium between oxidized and 

reduced state of cysteines and methionines. Extracellular fluid infused protein may 

oxidized by reacting with thiol group present in cystein residue. This thiol reaction 

with protein can modify critical cellular signalling mechanism. Disufide bonding 

between thiol group of cystein and extracellular protein is the major source of ROS 

and radition induced cellular death. Regulation of protein redox state through 

thiol/disulfide bonding may maintain physiologic functions [29-31].  

Endothelial nitric oxide synthase (eNOS), is an exceptional enzyme that has the 

ability to generate both free radicals (Peroxynitrite) and free radical scavenging (NO) 

agent. Coupling of eNOS with cofactor tetrahydrobiopterin (BH4) produces NO 

during the conversion of L-arginine to L-citrulline in the presence of NADPH-

dependent enzyme. NO, is a key regulator of vascular and cardiac functions having 

anti-inflammatory, anti-platelet, anti-proliferative and anti-migratory properties [32]. 

However, uncoupled eNOS produces reactive nitrogen species (RNS). Superoxide 

reacts with NO and leads to versatile nitrogen species; Peroxynitrite may further 

convert in peroxynitrous acid by protonation and may yield nitrogen dioxide and a 

hydroxyl radical [33-34]. Peroxynitrite and peroxynitrous acid can cause lipid 

peroxidation and membrane damage in vessel wall [35]. 

Pathological role of ROS 

Healthy mitochondria persistently generate low levels of superoxide during 

conventional respiration. On the other hand Injured and unsynchronized mitochondria 
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generate large amount of superoxide which further cause detriment to mitochondrial 

components including lipids, proteins, DNA and eventually cell death [1, 36]. 

Numerous studies have demonstrated the pathological role of ROS in different 

metabolic syndrome. Indeed, ROS regulate autophagy process by directly modifying 

major proteins including Atg4, Atg5 and Beclin. Higher level of ROS indirectly alters 

the vital signalling pathway including c-Jun N-terminal kinases (JNK), p38 which 

leads to autophagy. Intriguingly, ROS mediated autophagy process allied with 

numerous diseases, comprising neurodegenerative diseases, diabetes mellitus, 

myodegenerative diseases, crohn’s disease, and different type of cancer. Elevated 

ROS also obstruct the key signalling of protein kinase B (PKB/Akt) and down 

regulate mammalian target of rapamycin (mTOR) [37-39]. Clinical evidences support 

the subclinical based concept of DNA damage associated activation of mutagenic and 

apparently carcinogenic factor [40]. Additionally, high oxidative stress has 

acknowledged as key mediator in the occurrence and development of diabetes 

mellitus and -associated complications. Furthermore, diabetes related oxidative 

alteration would affect cellular metabolism, functions, and gene expression [41-42]. 

Oxidative stress is the major pitfall of vascular endothelial dysfunction and associated 

cardiovascular pathology. eNOS-generated NO is an imperative endothelial factor 

which can obstruct pathological event for cardiovascular disorders, including platelet 

aggregation, inflammation, vascular proliferation, hypertension, and leukocyte 

adhesion [43-44]. Excessive extent of NADPH-oxidase derived superoxide reacts 

with NO and converts this into versatile nitrogen species “Peroxynitrite”. 

Peroxynitrite further reduced the bioavailability of NO by initiating eNOS uncoupling 

by oxidizing BH4. Thus, a deficiency in production or bioavailability of NO leads to 

atherosclerotic events, vascular endothelial dysfunction and -associated 
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cardiovascular diseases [45-46]. Moreover, in vitro evidence revealed that ample 

amount of ROS triggered apoptosis in renal cells through activation of caspase-3 leads 

to nephrotoxicity [47-48]. About three decades before Baltimore invent one more 

ROS mediated cellular signalling (NFκB). It has been found NFκB signalling leads to 

atherosclerosis, schizophrenia and cancer generation [49-51]. NFκB has five distinct 

transcription factors (p65, p50, p52, c-Rel and RelB) which react with DNA through 

homology domain and may stimulate transcription of various genes. Furthermore, 

seven individual proteins of IκB family (inhibitory proteins) can modulate NFκB 

signalling cascade [52-54]. Schreck and his colleagues primarily revealed the 

important role of oxidative stress in stimulating NFκB and -associated transcription 

factors [55]. Oxidative stress mediated NFκB signalling activation may lead to cell 

inflammation, proliferation, and apoptosis [56-57]. ROS generated oxidative stress 

initiate glomerular, tubular injuries and may initiate NF-κB. NF-κB further alters the 

transcription of the intercellular adhesion molecule-1 and tumor necrosis factor (TNF-

α) which cause renal injury [47-48, 58] [Figure 2]. ER stress associated production 

involved in wide range of pathologic condition such as cancer, neurodegenerative 

diseases, cardiac diseases, diabetes mellitus and muscle degeneration diseases [29-

30]. Thus, mentioned all above evidences suggest that ROS generated oxidative stress 

may cause serious pathological condition. However, pathological role of ROS is only 

associated with its elevated level. 

Physiological role of ROS 

ROS including superoxide anions (O
2-

) and hydrogen peroxide (H2O2), are highly 

reactive molecules which may leads to organ pathogenesis. However, it is recognized 

that low level of ROS act as vital signalling molecules for modulating the normal 

cellular processes [59]. ROS are salient mediators and signal modifiers during 
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numerous biological processes and cascades such as G protein-coupled receptors 

(GPCR), Notch [60], Wnt-��-catenin [61], MAPK, JAK-STAT, NF-�B, and 

PI3K/AKT [62].  

Physiological role of ROS associated with myocardium 

Recent evidence suggests that ROS could serve as paracrine signalling mediators 

upon pathological stimulation [63]. Paracrine signalling in the epicardium and 

endocardium is associated with fibroblast growth factor and retinoic acid dependent 

signalling. These vital signalling pathways carry the proper growth and differentiation 

of the myocardium [64-65].  

Physiological role of ROS associated with insulin sensitivity 

ROS promotes tyrosine phosphorylation-dependent signaling (protein tyrosine 

phosphatises, PTP) which leads to phosphorylation of PTP1B and dephosphorylation 

of tyrosyl phosphorylated substrates and PTEN enzyme. PTP is regulated by cysteines 

which inactivate its nucleophilic properties and increase insulin sensitivity and 

glucose homeostasis. ROS also improve the insulin sensitivity by terminating PI3K 

signalling via dephosphorylation of phosphatidylinositol-3,4,5-triphosphate (PIP3) 

[66]. ROS play an important role in the regulation of insulin receptor kinase activity 

by auto phosphorylation of the insulin receptor kinase at Tyr-1158, Tyr-1162, and 

Tyr-1163 sites [67]. In general, insulin controls several physiological functions such 

as glucose metabolism, lipid metabolism and synthesis of protein. Loh et al. (2009) 

also revealed supportive evidence on the basis of in vivo study conducted by him 

suggesting the enhancement of insulin signalling by ROS [66].  

Physiological role of ROS associated with autophagy 
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ROS regulate the process of autophagy which in turn implicated with various 

physiological processes and maintain the cell homeostasis. Autophagy is a process of 

engulfing or breaking of intracellular proteins and organelles of cells by lysosome and 

further repurposes the constituents for new biosynthesis. In-addition autophagy plays 

a central role in maintaining the homeostasis during starvation and prevention of 

pathogenic infection [37, 68]. Starvation activates PI3K signalling followed by 

mitochondrial ROS generation which inactivate the cysteine protease Atg4 and 

promote autophagy.  

Physiological role of ROS associated with apoptosis 

Mitochondrial ROS significantly leads to apoptosis which have physiologic functions 

during embryogenesis. Interestingly, mitochondrial cytochrome-C which leads to 

caspase signalling activation intensely arbitrated by direct or indirect ROS action and 

that ultimately causes cell death. In-spite of that, ROS have their own anti-apoptotic 

actions also [69]. Apoptosis has an imperative biological function in the improvement 

and homeostasis of cell masses [70]. Apoptosis also involved in certain physiologic 

action including involution of breast [71], endometrium detachment during 

menstruation [72], removal of T cells during thymus development [73], castration-

induced prostate atrophy [74] and epidermal cell death [75]. Recent study revealed 

apoptosis-dependent cavitation is an essential step for the formation of embryogenesis 

and growth of mammary gland, lung, and kidney by epithelial lumen creation route 

[76]. 

Physiological role of ROS associated with immunity 

The physiological role of ROS also includes their potential against pathogens in 

favour to immune response. Superoxide generation may kill the growth of bacteria 
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and resist the host from infection. Additionally, evidence supports that ROS derived 

NADPH oxidase also plays a crucial role in host protection [77-79]. ROS initiate the 

immunity of cells by causing oxidative burst via NADPH oxidase to kill the 

pathogens in cells. Uncoupling proteins 1–3 (UCPs1-3; mitochondrial anion carrier 

proteins) are supposed to play an important role in minimizing ROS discharge from 

the electron transport chain [80]. However, UCP2 in macrophages increase 

mitochondrial ROS for MAPK activation and oxidative burst agumentation in favour 

of pathogen elimination [81-82]. More recent studies have demonstrated that 

mitochondrial ROS are significantly initiated by Toll-like receptors (TLR) and 

associated pathways. The stimulation of cell-surface TLRs (TLR1, TLR2, and TLR4), 

but not endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) leads to an increase in 

mitochondrial ROS production through ECSIT (evolutionarily conserved signalling 

intermediate in Toll pathways) and TRAF6 (tumour necrosis factor receptor-

associated factor 6 signalling). Collectively, the study concluded that, TLRs which are 

prominently obtained from bacteria can produce immunity against bacterial infection 

by inducing ROS [83]. 

Physiological role of ROS associated with capacitation 

ROS have another crucial liability in early events of capacitation. The capacitation is 

a term used to define the complex and not well-characterized process that allows 

spermatozoa to complete their preparations to fertilize oocytes. Some of the early 

events of capacitation include a calcium influx, rise in pH [84], increase in 

intracellular cyclic adenosine monophosphate (cAMP) [85] and the generation of low 

and organize level of superoxide anion [86]. Another important aspect of capacitation, 

reported more than ten years before is that the proteins from the fibrous sheath are 

subjected to tyrosine phosphorylation (P-Tyr) [87]. Moreover, post translational 

Page 13 of 33 RSC Advances



modifications of these proteins become very important for sperm function, because 

spermatozoa are unable to synthesize proteins. Studies revealed that this potential role 

of protein P-Tyr is dependent on ROS [88-89]. Ford, (2004) publish a report which 

revealed the increment of capacitation by the addition of ROS and vice versa. This 

study also support ROS-induced cAMP and tyrosine kinase activation through protein 

tyrosine phosphorylation as signalling cascade for regulation of sperm function [90]. 

Conversely, excessive ROS generation may devastate its protective action in 

capacitation. The posivtive and negative influence of ROS generation on fertilizing 

ability but the threshold level of ROS-associated with sperm cell maturation is still 

unclear. Thus further revisit on this aspects is needed for the contemporary treatment 

of infertility [90-92]. 

Physiological role of ROS associated with signalling cascade 

Nrf2 is another prominent regulator of cellular resistance to oxidants. Keap-1 (Kelch-

like ECH-associated protein1) dependent and independent activation of Nrf2 plays a 

pivotal role in regulating anti-oxidant and anti-inflammatory defence mechanism 

through various physiological cellular signalling. It also revealed that low level of 

ROS can significantly initiate the activation of Nrf2 signalling [93-94].   

Albeit, H2O2 is an inevitable by-product of cellular metabolism. The production of 

H2O2 is most commonly associated in neutrophils which play important defensive role 

in host. Moreover, some studies reveal that H2O2 act as novel signalling messenger at 

low level. Several prosurvival pathways regulated by H2O2 including kinase, 

oxidation of cysteines and transcriptional factors such as p53, NF-kappa B and AP-1 

[95]. 
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Thus, the diverse biological activities of oxygen radicals and related species are likely 

rooted in the oxygen-dependent evolution of complex life forms. These critical 

evidences collectively suggest the physiological role of ROS may offer a precious 

therapeutic option and that may be indispensable in cellular pathology. 

Conclusion   

For a long time, evidences pursuit the stochastic action of ROS but the devoted role of 

ROS has soared in both physiology and pathology. ROS is a double-edged sword, 

with protective and toxic capabilities. All pathological conditions instigate 

involvement of high level of ROS. However, low levels of ROS are not only 

suspicious against diseases, but also have the additional property to regulate 

physiological cellular signalling. Both these facts widely asserted and acknowledged, 

but the mystery regarding the level of ROS conversion from physiological action to 

pathological action is still unclear. Ample numbers of important cellular pathways, 

where ROS are involved. For instance, MAPK [96-97], 'Guardian of the genome’ p53 

[98-99], Hypoxia-inducible factor 1-α (HIF1-α) [100], SP-1 transcription factor [101-

102], AP-1 transcription factor [101, 103], caspase regulation [104], cytokine [105], 

platelet derived growth factor [106-107] and fibroblast-derived growth factor [108], 

are well known remnant key signalling cascades which have been altered by ROS. 

Thus it is further important to clarify that what extant of ROS is protective and 

another one is aggressive. Concept becomes more worthy for the individuals getting 

anti-oxidant treatment in life-threatening diseases like cancer. Moreover, potent anti-

oxidant may cause developmental deformity due to crucial reduction of ROS level as 

compared to its threshold level needed for therapeutic effect. In light of this view 

point we suggest there should be a precise border line between patho-phyisological 

actions with statistical level of ROS. This statistical approach may offer new 
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perspectives for better and in-time treatment of ROS -associated diseases with 

specific amount of anti-oxidant agents. 
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Legends for Figures: 

Figure 1: Figure portrays the involvement of various sites in generation of ROS. 

NADPH-oxidase indicates nicotinamide adenine dinucleotide phosphate-oxidase; 

eNOS indicates endothelial nitric oxide synthase; NO indicates nitric oxide; RNS 

indicates reactive nitrogen species; ROS indicates reactive oxygen species. 

 

Figure 2: Figure interpret the pre-diabetic-associated cardiovascular signalling 

alterations and their possible contribution to cardiovascular disease pathology. ROS 

indicates reactive oxygen species; TNFα indicates tumor necrosis factor-α; NFκB 

indicates nuclear factor kappa-B cells; mTOR indicates mammalian target of 

rapamycin; JNK indicates c-Jun N-terminal kinases; PI3K indicates 

phosphatidylinositide 3-kinase; PKB/Akt indicates protein kinase B; GPCR indicates 

G protein-coupled receptors; Nrf2 indicates nuclear factor erythroid 2-related factor 2; 

cAMP indicates cyclic adenosine monophosphate; MAPK indicates mitogen-activated 

protein kinase; TLR indicates toll-like receptors; HIF1-α indicates hypoxia-inducible 

factor 1-α. 
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