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Abstract

We study the multiple pulse spin locking dynamics of the nuclear spins in a liquid or a gas en-

trapped in nanosized cavities. Two cases are considered when the cavities in orientational order and

isotropically disordered. The spins inside the cavities are coupled by the dipole-dipole interaction

with the same interaction constant. It is shown that, under the high temperature approximation,

in a spin system, irradiated by multiple pulse sequence, the quasi-equilibrium state is established.

An analytical expression is obtained describing the dependence of the steady-state magnetization

on the structural parameters of a nanocavity and the characteristics of a gas or a liquid confined in

nanocavities. The relaxation process which follows the establishment of equilibrium is considered.

For the case of orientationaly ordered cavities, the analytical expression for the relaxation time is

derived. When the nanocavities are isotropically disordered, the time dependence of the magneti-

zation is numerically calculated. As shown for this case, the relaxation process is characterized by

two time constants differing by two orders of magnitude.

An advantage of the application of the multiple pulse spin locking measurement method over

the NMR cryoporometry technique is that the measurements of magnetization and its relaxation,

along with the information about the cavity size, allow determining the shape and orientation of

the nanocavity.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) has become a powerful analytical tool in the study

of structure and dynamic properties of molecules (both organic and inorganic) in solutions,

liquid crystals, and solids, and compound environments such as membranes [1—3].

Over the past two decades it was becoming increasingly clear that the NMR technique is

very applicable tool for studying soft matter systems such as nanostructures and nanoporous

materials [4—6]. Based on a significant difference in magnetic and non-magnetic properties of

the material enclosed in nanocavities, several methods for studying the structure of these ma-

terials have been proposed [7—14]. Molecular geometries can be derived from cross-relaxation

rates which depend on the internuclear distance due to spin-spin interactions, such as the

dipole-dipole interactions (DDI) between nuclear spins [4—6]. In isotropic liquids the secu-

lar dipole-dipole coupling essentially vanishes, but it is still possible to use the non-secular

dipole-dipole coupling by the way of their effect on the relaxation of the spin system [1—3].

Various NMR techniques, ranging from cryoporometry technique [14], spin locking [15],

spin dynamics in a local field [16, 17], multiple-quantum NMR [18—22] to spin-relaxation

experiments [6, 23], were used to identify and quantify finite size effects. Nanoporous mate-

rials have found wide application, from gas separations in the petrochemical industry to air

or water purification and using in medicine like controlled drug delivery.

The feature of the NMR spectroscopy which makes it so useful for chemical and structural

analysis of liquids and solutions is high resolution allowing one to observe extremely weak

interactions such as the interaction of nuclear spins with magnetic fields induced by orbital

motions of electrons which leads to the chemical shift. These weak interactions are sensitive

to the local properties of environment and may be used as a determinative method for char-

acterizing environment. However, in solids, suffi ciently strong DDI "covers" these weaker

interaction and do not allow one using the last interactions to specify the environment.

The idea of coherent averaging of strong interactions, such as DDI, for the purpose of

narrowing NMR spectral line has been spawned various high-resolution NMR techniques

for solids. Of particular interest has been the development of methods of suppressing the

effects of homonuclear dipolar broadening and thus obtaining high resolution NMR spectra

of solids. One of the most effective and promising techniques is the multiple-pulse radio-

frequency (RF) irradiation, application of which can increase by several orders the sensitivity
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of the NMR method in the study of weak interactions in solids [24, 25]. The multiple-pulse

NMR can provide a much higher data rate because the NMR signal can be sampled between

the RF pulses and the relaxation curve is recorded during one scan. Accordingly, the spin-

lock experiment may yield information about slowly fluctuating processes [24, 25].

However, most of studies using the multipulse RF NMR methods deal with the spin

dynamics of a nuclear spin system in bulk solid. To our best knowledge, the multiple-

pulse NMR methods were not applied to study the spin dynamics and spin-spin and spin-

lattice relaxations in gases or liquids confined to nanoscale volumes such as nanopores and

nanocavities. Motivation of application of multiple-pulse NMR methods in the study of

nanoscale structures can be explained by the fact that in gases or liquids the intermolecular

DDI between nuclear spins are not averaged to zero [26], as usually happens in bulk gases

or in isotropic liquids [27]. Only very weak long-range residual DDI do not vanish in liquids

[8]. The measurement of residual long-range dipolar coupling can potentially provide unique

information on structured media [10]. The difference between the long-range DDI and DDI

in nanoscale materials is that the latter is characterized by a single universal dipolar coupling

constant which depends on the volume, shape of the nanocavity and its orientation relatively

to the external magnetic field [26, 28—30]. This dependence can be used to obtain useful

information on the structure of nanosized objects from the NMR experiments [31].

In this paper we consider the multiple spin locking dynamics and spin lattice relaxation

in liquids or gases entrapped in nanosized cavities (Fig.1). We investigate two cases. In

the first case, the material is in orientational order when the cavities are oriented along a

common direction, their long axis, a, see Fig. 1 (a). In the second case, the material is

isotropically disordered, as schematically illustrated in Fig. 1 (b).

This paper is organized as follows. In section II, for the convenience of the reader, we

describe the procedure of averaging in coordinate and spin spaces. In section III, we consider

a quasi-equilibrium state and steady-state magnetization. In section IV, the evolution of the

spin system during multiple-pulse spin locking is analyzed. The last section is the conclusion.
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II. AVERAGING OF THE DIPOLE-DIPOLE HAMILTONIAN IN COORDINATE

AND SPIN SPACES

Largely the possibility of extraction of the structural and dynamic parameters from the

NMR experiments is based on averaging of spin motion in the coordinate and the spin

spaces. Part of this averaging occurs quite naturally, for example, averaging in coordinate

of the dipole-dipole interactions in liquid samples. An example of averaging in the spin

space is truncation of the internal spin-spin interaction Hamiltonians of spin systems in high

magnetic fields.

For an adequate description of a spin system restricted by a cavity and irradiated by a

multiple pulse RF sequence, the Hamiltonian should be averaged in both coordinate and

spin spaces.

A. Averaging in coordinate space

Let us consider a system of N nuclear spins, I = 1/2, enclosed in an elongated cavity

with the principal axes a, b, and c = b; an external field H0 is directed along the z-axis (

Fig. 1). The dipole-dipole Hamiltonian of a spin system in the external magnetic field can

be separated into the two parts: one of them is a secular part with respect to Iz (Iz is the

projection of the spin angular momentum operators ~I on the z- axis) and the second is a

non-secular part. The secular part of the DDI Hamiltonian is given by [1, 32]

Hd = −
∑
i<j

γ2~
r3ij

P2 (cos θij)
(

3IziIzj − ~Ii~Ij
)
, (1)

where γ is the gyromagnetic ratio, P2 (cos θij) = 1
2

(3 cos2 θij − 1), ~Ii~Ij =
∑

µ IiµIjµ and Ijµ

is the projection of the angular momentum operator of the j-th spin (j = 1, 2, . . ., N) on

the µ-axis (µ = x, y, z), θij is the angle between the z-axis and the radius-vector
−→r ij from

the i-th to the j-th spins.

For bulk gases or liquids, molecular diffusion [1, 33] causes practical vanishing of the

averaged DDI Hamiltonian [34]. Actually, the averaged value of the intensity of interactions

depends on the angle θij asP2 (cos θij). The averaged value of this quantity over angle θij is

zero: P̄2 (cos θij) =

π∫
0

P2 (cos θij) sin θijdθij = 0.
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In contrast to bulk gases or liquids, in nanosized cavities, molecules of a gas or a liquid

are subjected to restricted diffusion, but still move randomly throughout the whole cavity,

from one cavity wall to another, during a time tmov which is much less than the NMR time

scale, tmov << tNMR [26, 28—30, 35]. As a result, the averaged value of P2 (cos θij) can be

not zero. Let us estimate the characteristic size l of a nanocavity containing water at which

the condition tmov << tNMR is fulfilled. The diffusion coeffi cient of water molecules can

be estimated by using the Einstein-Stokes equation. The diffusion coeffi cient for spherical

particles moving through a liquid, D = kBT
6πσλ

, where kB is the Boltzmann’s constant, T is

the absolute temperature, σ = 8.94×10−4 Ns
m2 is the dynamic viscosity and λ = 2×10−10 m

is the molecular van der Waals radius [36]. Within framework of this hydrodynamic model,

we estimate D ≈ 2× 10−9m
2

s
that is close to the experimental value D ≈ 2.299× 10−9m

2

s
at

250C [37].

The typical NMR time scale which characterizes the flip—flop transition is tNMR =(
γ2~
r3

)−1
' 10−5s . Therefore, the averaged DDI Hamiltonian can be non-zero if the typical

length l of the water-confined cavity is much less than
√

2DtNMR ' 200 nm. Then, taking

into account the ergodic theorem [26, 28, 29], the spin evolution in a nanosize cavity can be

described by the averaged DDI Hamiltonian

H̄d = G
∑
i<j

(
3IziIzj − ~Ii~Ij

)
(2)

with the space-averaged pair coupling G for any pair of the i-th and j-th spins [28, 29]

G = −γ
2~
V
P2 (cos θ)F (ε) , (3)

where V is the cavity volume and F (ε) is the form-factor depending monotonically on the

ratio ε = a
b
: limε→∞ (F (ε)) = 2π

3
, limε→0 (F (ε)) = −4π

3
, and limε→1 (F (ε)) = 0 [26], θ

denotes the orientation of the cavity with respect to the external magnetic field, ~H0 ( Fig.

1c). Note, that for spherical cavities ε = 1 and F (ε)= 0, and hence, averaging the DDI

Hamiltonian gives zero, as in the case of a bulk liquid. The averaged DDI Hamiltonian (2)

can be rewritten in the following form [29]

H̄d =
G

2

(
3I2z − ~I2

)
, (4)

where ~I2 = I2x + I2y + I2z is the square of the total nuclear spin operator and Iµ =
∑

i Iµi is

the operator of the projection of the total spin operator onto the µ-axis (µ = x, y, z).
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B. Averaging in spin space

Evolution of a spin system containing nuclear spins I entrapped in a nanosized cavity and

irradiated by a RF pulse train
(
π
2

)
y
− tc
2
− (ϕl − tc)k (here ϕl denotes the pulse which rotates

spins through an angle ϕ around the l-axis, tc is the time interval between the pulses) can

be described by a solution of the following equation for the density matrix ρ (t):

dρ (t)

dt
= [H (t) , ρ (t)] , (5)

with the Hamiltonian

H (t) = H0 +HRF (t) + H̄d. (6)

Here H0 is the Zeeman energy
H0 = −ω0Iz (7)

represents the interaction of the spin system with an external magnetic field ~H0 directed

along the z- axis and ω0 = γH0. HRF (t) gives the action of the RF field on the spin system:

HRF (t) = γH1

(
~l~I
)
f (t) cosωt (8)

where H1 and ω , are the amplitude and frequency of a RF field pulse, ~l is the unit vector

along direction of the RF field , f (t) is the pulse function that describes the pattern of the

RF-field pulses:

f (t) =
tw
tc

∞∑
k=0

δ

(
t

tc
− k − 1

)
, (9)

tw is the duration of the pulse. Without loss of generality, we can assume that ω = ω0 and

~l = {1, 0, 0}.
To solve Eq. (5), we apply the unitary transformation

ρ̃ (t) = U (t) e−itH0ρ (t) eitH0U+ (t) (10)

with the unitary operator

U (t) = exp

{
−iωeIx

∫ t

0

dt′ [f (t′)− 1]

}
(11)

where ωe = γH1tw
tc

is the magnitude of the effective field.

6
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Eq. (5) for the density matrix after transformation (10) can be rewritten as

dρ̃ (t)

dt
=
[
H̃ (t) , ρ̃ (t)

]
, (12)

where

H̃ (t) = ωeIx +H(0)dx + φ2 (t)H(2)d + φ−2 (t)H(−2)d , (13)

are φm (t) is the periodic function with the period tc

φm (t) = exp

{
imωe

∫ t

0

dt′ [f (t′)− 1]

}
, m = ±2 , (15)

H(0)dx is the secular part
([
H(0)dx , ωeIx

]
= 0
)

H(0)dx = −G
4

(
3I2x − I2

)
(16)

and H(m)d is the non-secular part
([
H(m)d , ωeIx

]
= mωeH(m)d

)
H(±m)d = −3G

8

∑
ij

I±i I
±
j . (17)

where I+i and I
−
i are the raising and lowering spin angular momentum operators of the i−th

spin.

To account for the time-dependent terms in equation (13), we expand the periodic func-

tions φm (t) (15) in the Fourier series:

φm (t) =
∞∑

n=−∞
c(m)n e−iωnt, φm (t) = φ∗−m (t) , ωn =

2πn

tc
, (18)

where

c(±2)n =
(−1)n sin (2ϕ)

nπ + 2ϕ
(19)

and ϕ = ωetc.

In the case where ωe ' ωloc , ( ωloc = 1
2
G
√

3 (N − 1) is the local dipolar field [19]), the

Hamiltonian (13) can be divided into two parts:

H̃ (t) = Heff +Q (t) , (20)

where

Heff = ωeIx + c00H
(0)
dx +

sin (2ϕ)

2ϕ

(
H(2)d +H(−2)d

)
(21)

7
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is a sum of the time-independent terms and

Q (t) =
∞∑

n=−∞,n6=0

e−iωnt(c(2)n H
(2)
d + c(−2)n H(−2)d ) (22)

is the time-dependent term.

Similarly to consideration of multiple pulse technique in bulk solid NMR [38—40], we apply

the perturbation theory which, in the first approximation, takes into account only the time-

independent Hamiltonian (21). Note that, when ϕ approaches to zero, the Hamiltonian (21)

coincides with the Hamiltonians for spin systems irradiated by a continuous RF magnetic

field providing spin locking in bulk solids [32] and nanocavities [15].

The effective Hamiltonian (21) describes a dipolar coupled spin system of liquid or gas

in a cavity under an effective magnetic field with the amplitude ωe ' ωloc.

Below we analyze the characteristics of the considered spin system basing on the structure

of hydrogenated amorphous silicon a-Si:H with nano-cavities of ∼45 nm3 containing H2 at

2 kbar (N ∼ 600) [26, 41].

Fig. 2 presents the dependences of the local dipolar field ωloc on angle θ and volume V

(Fig. 2a), on angle θ and number of spins N (Fig. 2b), on angle θ and form factor F

(Fig.2c), and on volume V and form factor F (Fig.2d).

In the case of gas, the number of spins and the cavity volume are independent values

and the local field decreases with increase of volume as 1/V (Fig. 2a). For a liquid with the

constant spin density, N
V
, the local field decreases as 1/

√
V . The local dipolar field can be

practically regarded as a negligible quantity in experiments with the liquid at ωloc ≤ 100 Hz

which corresponds to the volume of about 600 nm3.

The absolute value of the local field reaches its maxima at θ = 0 and θ = π (parallel and

antiparallel to the external DC magnetic field) and at θ = π
2
(perpendicular to this field).

Note, that at

cos θ = ± 1√
3

(23)

the local dipolar field vanishes (Fig. 2). Eq. (23) has two solutions: θmag = 54. 74 ◦ (which

is known as "the magic angle" [32] for bulk solids) and θ = 125.26 ◦. At these angles the

first approximation for the local magnetic field gives zero.

In the range of angles from θ = 0 to θmag = 54. 74 ◦, the local field field is reduced when

8
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the form factor increases from −4 to 2, between 54. 74 ◦ and 125.26 ◦ the local field increases

(Fig.2c). The strong dependence on the form factor is observed at small volumes, and

this dependence decreases with increasing the cavity volume (Fig.2d). From experiments

at θ = 0.96 , the spin-spin relaxation time T2 was determined to be 1.3 ms [26]. The

angle θ = 0.96 is very close to the magic angle where the spin-spin relaxation due to DDI

is relatively small, and one can observe the contribution of other mechanisms. The local

field ωloc is defined as 1
T2
[1, 32] which gives ωloc ' 770 Hz. Our estimation of the DDI

contribution gives ωloc ∼ 400 Hz . Therefore, the contribution of the non-DDI mechanisms

to the local field can be estimated as ∼ 370 Hz. With increasing deviation from the magic

angle, the relative contribution of DDI to the local field increases.

During the time T2 ∼ ω−1loc the behavior of the spin system is described by the Hamiltonian
Heff , and a quasi-equilibrium state is established. Decrease of the magnetization during

further evolution of the spin system is described by the time-dependent Hamiltonian part

(22), Q (t).

III. MULTIPLE PULSE SPIN LOCKING STATE AND STEADY-STATE MAG-

NETIZATION

The spin locking state can be achieved by a technique which provides the magnetization

to be parallel to an effective field ωe. A quite simple but convincing experiment, to reach the

spin locking state, consists in the application of the first short RF
(
π
2

)
y
pulse that turns the

magnetization along the x−axis. At high temperature approximation, the density matrix
just after the

(
π
2

)
y
pulse is given by the following expression

ρ (0) = 1− α0ω0Ix, (24)

where α0 is the initial inverse temperature of the Zeeman reservoir. Then the phase of

the RF pulses is suddenly changed to zero, so that the RF field of multiple pulse sequence

becomes directed along the x-axis, i.e. in the same direction as the magnetization.

The last terms in the effective dipolar Hamiltonian (21) contain flip-flop terms I+i I
−
j +

I+i I
−
j [15], that ensures establishment of the quasi-equilibrium state of the spin system for

the time of order of the spin-spin relaxation time T2 ∝ ω−1loc . A spin system in the quasi-

equilibrium state can be described by the density matrix which is similar to the matrix

9
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considered at the study of processes in bulk solids [32]

ρeq = 1− αeHeff , (25)

where αe is the inverse temperature of the spin system in the quasi-equilibrium state. During

the establishment of the state (t . T2) we may also neglect absorption of energy by the

system from external RF fields and apply the law of the energy conservation (similarly to

bulk solids [32]), i.e. the conservation of energy 〈Heff〉,

Tr (ρ (0)Heff ) = Tr (ρeqHeff ) (26)

from which follows that

Me

M0

=
(

1 +m
(
3 cos2 θ − 1

)2)−1
, (27)

where

m =
3

16
(N − 1)

(
1 + 3

(
sin (2ϕ)

(2ϕ)

)2)(
γ2~F (ε)

2ωeV

)2
, (28)

Me is the projection of the steady-state magnetization at t & T2 on the observation axis,

and M0 is the magnetization immediately after the
(
π
2

)
y
pulse application.

In multiple pulse experiments with bulk solid samples the period tcis usually chosen such

that ϕ ' ωloctc < 1 [24, 25]. Figure 3 gives the steady-state magnetization as a function of

θ and ϕ (Fig. 3a); θ and N (Fig. 3b); ϕ and N (Fig. 3c); V and N (Fig. 3d); ϕ and V

(Fig. 3e); θ and V (Fig. 3f).

The normalized magnetizationMe/M0 is changed within from 10% up 40% with variation

of the orientation of the nanocavity θ, the pulse duration tc and the number of spins in the

cavity N , and volume V at constant form factor, F (Fig. 3). Variations of θ and ϕ lead to

the change of the normalized magnetization by about 30% with other parameters constant

(Fig. 3a) . The change of Me/M0 of the order of 10% is also obtained when the number

of spins and the pulse duration are only varied (Figs. 3b and 3c). A significant change (up

to 50%) in the magnetization is caused by varying the volume, especially, when the cavity

volume is relatively small, about 10-25 nm3 (Figs. 3d, 3e, 3f). Change in magnetization

with variation of the form factor is shown in Fig. 4: as a function of ϕ and F (Fig 4a); θ

and F (Fig. 4b); V and F (Fig. 4c); N and F (Fig.4d). It can be stated that the change in

the magnetization varies from 50% (Figs. 4a, 4c ) to 60% (Figs. 4b and 4d ).

10
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The results obtained above are valid for the case when all cavities in the sample have

the same orientation (Fig. 1a). Such cavernous material, for example, was described in

[26, 42]. To compare the experimental data and theoretical results in the case when the

cavities are oriented arbitrarily, it is necessary to perform averaging of the steady-state

magnetization over θ. At uniform distribution of directions over angle θ, the averaged

normalized magnetization is:

〈
Me

M0

〉
θ

=
1

2

∫ π

0

dθ sin θ
Me

M0

. (29)

The integration gives

〈
Me

M0

〉
=

√
3

6
√
m

arctan i
√
3√

1+i 1√
m√

1 + i 1√
m

−
arctan i

√
3√

1−i 1√
m√

1− i 1√
m

 . (30)

Equation (30) can be converted to an expression containing only real variables, but this

expression is too cumbersome and we do not give its explicit form here. Fig. 5 presents the

averaged value of the steady-state magnetization as a function of ϕ and V (Fig. 5a); ϕ and

N (Fig. 5b); ϕ and F (Fig. 5c); V and N (Fig. 5d).

In the case of disoriented cavities, the averaged normalized steady-state magnetization

〈Me/M0〉 is changed within to 60% with variation of the pulse duration tc, the number of

spins in the cavity N and volume V at constant form factor F (Fig. 5). The largest change

in the magnetization as a function of the form factor (Fig. 6) is achieved at large number

of spins (Fig. 6a), low volumes (Fig. 6b) and small ϕ (Fig. 6c).

IV. EVOLUTION OF THE SPIN SYSTEM DURING MULTIPLE-PULSE SPIN

LOCKING

After establishing the quasi-equilibrium state of a spin system, described by Eq. (25),

further evolution of the spin system, at times t � T2, is characterized by a slow change

of the effective energy 〈Heff〉 . The change of the effective energy is governed by the time-
dependent terms of the Hamiltonian (22). In the high temperature approximation, using

the results for a bulk solid [46], we can write

d

dt
〈Heff〉 = −Tr

(
H2
eff

) dαe (t)

dt
(31)

11
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The equation for the inverse temperature αe (t) will be derived by using the method of the

non-equilibrium state operator [46] which gives

dαe (t)

dt
= −αe (t)

T1e
, (32)

where T1e is the characteristic time of the spin lattice relaxation during the multiple-pulse

RF irradiation of the spin system

T1e = lim
ξ→0

Tr
(
H2
eff

)∫ 1
0
dλ
∫ 0
−∞ dte

−ξt
〈[
e(λ+it)HeffQ (t) e−(λ+it)Heff , Heff

]
[Heff , Q (t)]

〉 , (33)

where 〈...〉 notes the thermodynamic averaging with the quasi-equilibrium operator (25).

Using relation Me(t)
M(T2)

= αe(t)
αe(T2)

, we obtain that the nuclear magnetization relaxes according

to the expression

Me (t) = Me (T2) e
− t
T1e , (34)

where Me (T2) is the steady-state magnetization just after the establishment of the quasy-

equilibrium state, considered as the initial value for the relaxation process.

To calculate the relaxation time T1e, one has to know the correlation function gqq (t, t′) =

〈Q(t)Q(t′)〉. Following [43], we will assume that the function gqq (t, t′) depends on t and t′

only through their differences t− t′. As in the case of a solid [43], we assume an exponential
correlation function defined by

gqq (t− t′) =
〈
Q2(0)

〉
e−
|t−t′|
τc . (35)

Eq. (33) can be expressed as

T1e =
1

W (3 cos2 θ − 1)2
, (36)

where

W = tc
9

2ζ

(
γ2~
2V

F (ε)

)2
(N − 1)

(
1− 1

ζ

(1− cos 2ϕ) sinh ζ

cosh ζ − cos 2ϕ

)
(37)

and ζ = 2tc
τc
.

Expressions (36) and (37) give the dependence of the spin lattice relaxation time on the

correlation time τc, period of the pulse sequence tc, local magnetic field ωe, the characteristics

of gas or liquid inside the cavity: volume V , number of the molecules N , and parameters

of the cavity: shape F (ε) and orientation θ. Fig. 7 presents the obtained from (36)

dependencies of T1etc on θ and ϕ (Fig. 7a), θ and ζ (Fig. 7b), V and N (Fig. 7c), V and ζ
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(Fig. 7d). Figs. 7a and 7b show that the relaxation time increases sharply at orientations

of the cavity close to θmag = 54. 74 ◦ and θ = 125.26 ◦ . At θ = 54. 74 ◦ and 125.26 ◦,

in the considered approximation, the averaged Hamiltonian terms (4) are zero and, for

correct description of processes, one should consider next approximations. In experiments,

parameter ζ can vary in the wide range from 0.01 to 100, however, the main peculiarities

of the relaxation time on ζ lie near the point ζ = 1 (Figs. 7b and 7d). At ζ >> 1, the

relaxation time increases proportionally to this parameter, but does not exceed the value

at ζ << 1. The relaxation time T1e decreases as ζ increases and attains its minimum at

ζ ∼ 1. For a gas, the relaxation time increases with the cavity volume as V 2 and decreases

with spin number as ∼ 1/N (Figs. 7c and 7d). It is interesting that for liquid, when the

spin density is constant, the relaxation time is independent of the spin number and linearly

increases with the cavity volume. Usually in experiments tc ' 10−5s [24, 25] and from our

results T1e is estimated to be from 0.05 s up to 30 s (Fig. 7) .

At uniform distribution of directions of the cavity axes over angle θ (Fig. 1a), to compare

the experimental relaxation data and theoretical results, it is necessary to perform averaging

of the magnetization over θ:

〈Me (t)〉θ =
1

2

∫ π

0

dθ sin θMe (T2) e
− t
T1e (38)

The integral in (38) cannot be solved in quadratures, the results of the numerical calculation

are shown in Figs 8 and 9. Fig. 8 presents the averaged normalized magnetization as a

function of N and V (a) at t = 5 s and (b) t = 50 s. Figure 9 shows the time dependence

of the normalized magnetization. This dependence is substantially non-exponential (Fig.

9b). In the initial stage of relaxation at t >> T2, the magnetization decays with the

characteristic relaxation time 〈T1e〉θ ' 5 s (Fig. 9c) while in the last stage the characteristic

time is 〈T1e〉θ ' 286 s (Fig. 9d). This can be explained by the following. The relaxation in

the cavities oriented along and opposite the external magnetic field occurs faster than the

relaxation in the cavities with the axes oriented near magic angles: θ = 54. 74 ◦ and 125.26 ◦

(Fig. 7). The value of the spin-lattice relaxation times 〈T1e〉θ well agree with thoses obtained
in the case of continuous spin locking, while the time dependence of the magnetization is

non-exponential [15].
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V. CONCLUSION

Our study has shown that the spin locking state can be realized in gases and fluids confined

in nanocavities. We have obtained analytical expressions that describe the dependence of

the magnetization on the structural parameters of a nanocavity and the characteristics

of a gas or a liquid. It was shown that the relaxation measurements can also be used

to determine the volume and shape of a nanocavity, for both the ordered and disordered

isotropic orientations of nanocavities. The theoretical models we considered in this work

touch upon various soft matter and biological systems. This model can be used for the

description the relaxation processes in liquid crystals and other anisotropic liquids under the

condition that intramolecular dipole—dipole couplings are not averaged completely. The most

obvious connection comes from the physics of molecules dissolved in complex fluids. Our

approach can be used to characterize complex fluids confined on the nanoscale. Our results

are also relevant in the situation when nanoconfining is provided by a vesicle, in particular,

in biological systems. Finally, we would like to point out an advantage of the proposed

multiple-pulse spin locking measurement method of the magnetization and relaxation time

over the NMR cryoporometry technique [14, 44, 45]: the measurements of Me (ordered)

and 〈Me〉θ (isotropically disordered), along with the information about the cavity size, allow
determining the shape and orientation of the cavity.
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Caption figures

Fig. 1 Oriented (a) and disoriented (b) nanocavities containing water molecules (c ). θ

is the angle between the external magnetic field ( ~H0 ‖ ~z) and the principal axis a of the
nanocavity.

Fig. 2 Local dipolar field (ωloc) as a function of: (a) angle θ and volume V (nm3) at

N=500 and F=2, (b) angle θ and number of spins N in cavity at V= 20 nm3 and F=2, (c)

angle θ and form factor F at V= 20 nm3 and N=500, (d) volume V and form factor F at

θ = 0 and N=500.

Fig. 3 Normalized steady-state magnetization as a function of: (a) angle θ and ϕ at

V=50 nm3, N=500 and F=2, (b) angle θ and number of spins N at V=50 nm3, ϕ =π/2

and F=2, (c) ϕ and N at V=50 nm3, θ =0 and F=2, (d) volume V and number of spins

N at ϕ= π/2, θ =0 and F=2, (e) ϕ and V at N=500, θ = π/2 and F=2, (f) θ and V at

N=500, ϕ = π/2 and F=2. Here and in the figures below ωe=1000 G.
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Fig.4 Normalized steady-state magnetization as a function of: (a) ϕ and form factor F

for V=20 nm3, N=500 and θ = π/2, (b) θ and F at V=20 nm3, ϕ =π/2 and N=500, (c) V

and F at θ = π/2, ϕ= π/2 and N=500, (d) N and F at ϕ= π/2, θ = π/2 and V=20 nm3.

Fig. 5 Averaged normalized steady-state magnetization as a function of: (a) ϕ and V at

N=500 and F=2, (b) ϕ and N at V=20 nm3 and F=2, (c) V and N at ϕ= π/2 and F=2.

Fig. 6 Averaged normalized steady-state magnetization as a function of: (a) N and F

(a, ϕ= π/2, V=20 nm3); V and F (b, N=500, ϕ= π/2); ϕ and F (c, V=20 nm3, N=500).

Fig. 7 T1etc as a function of: (a) θ and ϕ at V=50 nm3, N=500, F=2 and ζ=1, (b) θ

and ζ at V=50 nm3, N=500, F=2 and ϕ= π/2, (c) V and N at θ =0, F=2, ϕ= π/2 and

ζ=1, (d) V and ζ at θ =0, F=2, ϕ= π/2, ζ=1 and N=500.

Fig. 8 Averaged normalized magnetization as a function of N and V : (a) t =5 s, (b) t =

50 s ( F = 2, ϕ = π/2, ζ = 1, tc =10−5 s).

Fig. 9 Time dependence of the averaged normalized magnetization (a) and of ln < Me

M0
>

(b). (c) and (d) demonstrate different time constants of the dependence of ln < Me

M0
> in

different stages of the relaxation: (c) 0 < t < 2 s and (d) 50s < t < 100s. Here N=500,

V=50 nm3, F=2, ϕ = π/2, ζ=1, tc=10−5 s.
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Fig. 2 Local dipolar field (ωloc) as a function of: (a) angle θ and volume V (nm3) at N=500 and
F=2, (b) angle θ and number of spins N in cavity at V= 20 nm3 and F=2, (c) angle θ and form
factor F at V= 20 nm3 and N=500, (d) volume V and form factor F at θ = 0 and N=500.

Fig. 3 Normalized steady-state magnetization as a function of: (a) angle θ and ϕ at V=50 nm3,
N=500 and F=2, (b) angle θ and number of spins N at V=50 nm3, ϕ =π/2 and F=2, (c) ϕ and N at
V=50 nm3, θ =0 and F=2, (d) volume V and number of spins N at ϕ= π/2, θ =0 and F=2, (e) ϕ
and V at N=500, θ = π/2 and F=2, (f) θ and V at N=500, ϕ = π/2 and F=2. Here and in the figures
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below ωe=1000 G.
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Fig.4 Normalized steady-state magnetization as a function of: (a) ϕ and form factor F for V=20
nm3, N=500 and θ = π/2, (b) θ and F at V=20 nm3, ϕ =π/2 and N=500, (c) V and F at θ = π/2, ϕ=
π/2 and N=500, (d) N and F at ϕ= π/2, θ = π/2 and V=20 nm3.
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Fig. 5 Averaged normalized steady-state magnetization as a function of: (a) ϕ and V at N=500
and F=2, (b) ϕ and N at V=20 nm3 and F=2, (c) V and N at ϕ= π/2 and F=2.
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Fig. 6 Averaged normalized steady-state magnetization as a function of: (a) N and F (a, ϕ=
π/2, V=20 nm3); V and F (b, N=500, ϕ= π/2); ϕ and F (c, V=20 nm3, N=500).
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Fig. 7 T1etc as a function of: (a) θ and ϕ at V=50 nm3, N=500, F=2 and ζ=1, (b) θ and ζ at
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V=50 nm3, N=500, F=2 and ϕ= π/2, (c) V and N at θ =0, F=2, ϕ= π/2 and ζ=1, (d) V and ζ at θ
=0, F=2, ϕ= π/2, ζ=1 and N=500.
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Fig. 8 Averaged normalized magnetization as a function of N and V: (a) t =5 s, (b) t = 50 s ( F
= 2, ϕ = π/2, ζ = 1, tc =10−5 s).
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Fig. 9 Time dependence of the averaged normalized magnetization (a) and of ln < Me

M0
> (b).

(c) and (d) demonstrate different time constants of the dependence of ln < Me

M0
> in different

stages of the relaxation: (c) 0 < t < 2 s and (d) 50s < t < 100s. Here N=500, V=50 nm3, F=2, ϕ
= π/2, ζ=1, tc=10−5 s.
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