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Abstract 

 

A series of new derivatives of the natural β-carboline alkaloid harmine, introducing 

hydrophobic substituents into positions 7 and 9 were synthetized as potential anticancer 

agents. Their binding affinities for human serum albumin (HSA) and α1-acid-glycoprotein 

(AAG) were investigated by affinity chromatography combined with fluorescence, circular 

dichroism (CD) and UV absorption spectroscopy. The weak binding of harmine to both 

proteins (Ka ~ 3 × 104 M-1) was highly increased by aromatic substitutions (Ka ~ 105-106 M-1). 

Derivatives having a substituted benzyl group in the N9-position of the β-carboline nucleus 

showed about tenfold and hundred fold affinity enhancement for HSA and AAG, respectively. 

Such a strong plasma protein interaction would be of pharmacokinetic relevance for these 

potential drug candidates. Induced CD spectra indicated the variant selective, dimeric binding 

of the 7-pyridylethoxy derivative to AAG. Absorbance and fluorescence spectra refer to the 

binding preference of the neutral form of the studied β-carbolines for both proteins. 
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Introduction 

 

Harmine possessing a tricyclic pyrido[3,4-b]indole ring structure is a representative member 

of the naturally occurring β-carboline alkaloids. It was originally isolated from the seed of 

Peganum harmala and widely utilized for hundreds of years in the traditional Chinese 

medicine to treat alimentary tract cancer and malaria.1 This herbal substance is of great 

interest due to its diverse biochemical activities including DNA intercalation,1,2 inhibition of 

topoisomerase1 and cyclin-dependent kinases.1,3 Several studies demonstrated that it inhibits 

selectively monoamine oxidases,4 which play a key role in psychiatric and neurological 

disorders5 (depression and Parkinson’s diseases). Harmine was also identified as a potential 

inhibitor of the kinase Dyrk1A that is implicated in the pathogenesis of Down syndrome,6 a 

common hereditary disorder.  

In the past, numerous studies investigated the effect of harmine on the central nervous system 

such as its interaction with benzodiazepine, 5-HT2A, 5HT2C and imidazoline receptors. 

Recently, however, harmine and its ring-substituted derivatives attracted attention as potential 

cancer drugs. Ishida et al. evaluated7  the change in the antitumor activity of this alkaloid on 

the introduction of various substituents onto the β-carboline skeleton at positions 1, 2, 6, 7, 

and 9. Structure-activity relationship studies indicated that upon incorporation of appropriate 

alkyl and aralkyl groups in position 9, the antitumor effect of harmine against Lewis lung 

cancer and sarcoma 180 was dramatically enhanced. It was also proved8,9  that the neurotoxic 

side effect of these compounds can be decreased by replacing methoxy group at position 7. 

We performed the synthesis of a series of 7- and 9-substituted harmine derivatives (Scheme 1) 

in order to study their interaction with human serum proteins. 

Binding of drugs10 and natural products11,12 to blood plasma proteins influences their 

pharmacokinetic and pharmacodynamic action. Among human serum proteins, the most 

abundant albumin component (HSA) is of the highest importance13,14 , but no data are 
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available on the harmine-HSA interaction. HSA binding of the related β-carboline compound 

harmane (R7: H) was found to be weak15 (Ka ~ 2.4 × 104 M-1), while the binding of 

norharmane, lacking 1-methyl substitution, is much more pronounced (Ka ~ 1.7 × 105 M-1). 

Besides HSA, α1-acid glycoprotein (AAG) also plays a decisive role in the binding and 

transportation of a broad array of basic and neutral drug molecules.16,17 AAG association of β-

carbolines has not been evaluated though these molecules exist as a mixture of neutral and 

cationic forms at physiological pH. Thus, in this work we studied the binding of harmine and 

its derivatives to HSA and AAG. Since plasma AAG is a mixture of two main genetic variants 

with different drug binding abilities,18-21
 the separated ‘F1/S’ and ‘A’ genetic variants were 

tested as well. The applied experimental methodologies include affinity chromatography, as 

well as fluorescence, circular dichroism, and UV absorption spectroscopic techniques. 
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Experimental details 

 

1. General methods 

1H, 13C and 19F NMR spectra were recorded on a Bruker Avance III 500 instrument. Chemical 

shifts are given in parts per million (ppm) and spectra are obtained as DMSO-d6 or CDCl3 

solutions, using chloroform (7.26 ppm) or DMSO-d6 (2.50 ppm) as the reference standard. 

The following abbreviations are used to denote signal multiplicities: s = singlet, d = doublet, t 

= triplet, m = multiplet, and br = broadened. All coupling constants (J) are given in hertz (Hz). 

Analytical HPLC was performed on Agilent 1200 Series utilizing Waters Acquity UPLC 

BEH C18, 2.1 × 30 mm, 1.7 µm column (solvent A: 100:2:0.1 H2O/ACN/MeSO3H, solvent 

B: 100:2:0.1 ACN/H2O/MeSO3H, gradient: 0 min 0% B, 6 min 100%, 7 min 100%, 7.5 min 

0%, 9 min 0%, flow: 0,8 mL/min.) and UV detection at 210 nm. High resolution mass 

spectrometric identification of compounds was performed using SHIMADZU LCMS-IT-TOF 

ESI, WATERS SUNFIRE C18, 2.1 × 50 mm, 2.5 µm column (solvent A: 100:3 H2O/2-PrOH 

+ 0.05% HCOOH, solvent B: 95:5:3 H2O/ACN/2-PrOH + 0.05% HCOOH, gradient: 0 min 

0% B, 9 min 100%, 11 min 100%, 11.1 min 0%, 15 min 0%, flow: 0.7 mL/min.). Flash 

chromatography was performed on Teledyne ISCO CombiFlashRF instrument, using 

RediSept RF pre-packed silica gel columns and UV detection at 254 or 210 nm. Reagents and 

solvents were used as obtained from commercial suppliers without further purification. Yields 

refer to purified products and are not optimized. All tested compounds were >95% pure as 

assessed by LCMS and 1H NMR. 

 

2. Synthesis of compounds 

General procedure A [1-4] 

99 mg harmol (0.5 mmol) and 2 mmol of the appropriate alcohol were dissolved in 2 mL dry 

tetrahydrofuran, then 0.50 g triphenylphosphine on polymer (3.0 mmol/g, 1.5 mmol) was 
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added to the solution. After 10 minuntes 653 mg diethyl azodicarboxylate (1.5 mmol, 653 µL, 

~40% in toluene) was added. The mixture was stirred at r.t. under nitrogen until no further 

conversion was observed. The mixture was filtered, the polymer was washed with 

tetrahydrofuran, and the combined organic phases were evaporated under reduced pressure. 

The residue was purified via flash chromatography using hydrophilic interaction liquid 

chromatography.22 

[1]: 7-isopropoxy-1-methyl-9H-pyrido[3,4-b]indole 

Using 120 mg 2-propanol 44 mg 1 (37%) was obtained. 1H NMR (500 MHz, DMSO-d6) δ 

11.35 (s, 1H), 8.13 (d, J = 5.3 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 5.3 Hz, 1H), 6.98 

(d, J = 2.2 Hz, 1H) 6.81 (dd, J = 8.5, 2.2 Hz, 1h), 4.27 (sp, J = 6.0 Hz, 1H), 2.71 (s, 3H), 1.33 

(d, J = 6.0 Hz, 6H); 13C NMR (125 MHz, DMSO-d6) δ 158.6, 142.4, 141.7, 138.2, 135.0, 

127.7, 123.1, 115.2, 112.4, 110.7, 97.1, 70.0, 23.3, 20.8; HRMS calculated for C15H16N2O: 

240.1263; found 241.1329 (M+H). 

[2]: 1-methyl-7-(1-phenylethoxy)-9H-pyrido[3,4-b]indole  

Using 244 mg rac-1-phenylethanol and 3 eqivalent cyanomethylenetributylphosphorane 

instead of PPh3 and diethyl azodicarboxylate 91 mg 2 (60%) was obtained. 50 mg of the 

racemate was separated via chiral chromatography using Chiralpak AD column and 

ethanol/heptane (5:95) eluent. 2a refers to the earlier eluting enantiomer. 

2a: 24 mg; retention time: 76 min; 1H NMR (500 MHz, DMSO-d6) δ 11.30 (s, 1H), 8.11 (d, J 

= 5.3 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.75 (d, J = 5.3 Hz, 1H), 7.46 (d, J = 8.3 Hz, 2H), 

7.36 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.3 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 6.87 (dd, J = 8.5, 

2.1 Hz, 1H), 5.60 (q, J = 6.4 Hz, 1H), 2.66 (s, 3H), 1.61 (d, J = 6.4 Hz, 3H); 13C NMR (125 

MHz, DMSO-d6) δ 158.6, 143.6, 142.0, 141.7, 138.2, 134.9, 129.1, 127.9, 127.5, 126.1, 

123.0, 115.3, 112.4, 110.8, 97.5, 75.7, 25.0, 20.7. 
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2b: 23 mg; retention time: 112 min; 1H NMR (500 MHz, DMSO-d6) δ 11.30 (s, 1H), 8.11 (d, 

J = 5.3 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.75 (d, J = 5.3 Hz, 1H), 7.46 (d, J = 8.3 Hz, 2H), 

7.36 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.3 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 6.87 (dd, J = 8.5, 

2.1 Hz, 1H), 5.60 (q, J = 6.4 Hz, 1H), 2.66 (s, 3H), 1.61 (d, J = 6.4 Hz, 3H); 13C NMR (125 

MHz, DMSO-d6) δ 158.6, 143.6, 142.0, 141.7, 138.2, 134.9, 129.1, 127.9, 127.5, 126.1, 

123.0, 115.3, 112.4, 110.8, 97.5, 75.7, 25.0, 20.7. 

[3]: 1-methyl-7-(2-pyridylmethoxy)-9H-pyrido[3,4-b]indole 

Using 218 mg 2-pyridinemethanol 120 mg 3 (92%) was obtained. 1H NMR (500 MHz, 

DMSO-d6) δ 11.40 (s, 1H), 8.60 (d, J = 4.6 Hz, 1H), 8.13 (d, J = 5.3 Hz, 1H), 8.06 (d, J = 8.7 

Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.79 (d, J = 5.3 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.35 (t, J 

= 6.2 Hz, 1H), 7.06 (d, J = 1.6 Hz, 1H), 6.94 (dd, J = 8.7, 1.6 Hz, 1H), 5.30 (s, 2H), 2.69 (s, 

3H); 13C NMR (125 MHz, DMSO-d6) δ 159.3, 157.2, 149.6, 142.2, 141.8, 138.2, 137.5, 135, 

127.6, 123.5, 123.2, 122.1, 115.6, 112.5, 110.1, 96.3, 71.0, 20.7; HRMS calculated for 

C18H15N3O: 289.1215; found 290.1287 (M+H). 

[4]: 1-methyl-7-[2-(2-pyridyl)ethoxy]-9H-pyrido[3,4-b]indole 

Using 244 mg 2-(2-hydroxyethyl)pyridine 121 mg 4 (79%) was obtained. 1H NMR (500 

MHz, DMSO-d6) δ 11.36 (s, 1H), 8.52 (d, J = 4.7 Hz, 1H), 8.22 (m, 1H), 8.12 (d, J = 5.3 Hz, 

1H), 8.01 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 5.3 Hz, 1H), 7.74 (td, J = 7.6, 1.7 Hz, 1H), 7.40 (d, 

J = 7.6 Hz, 1H), 7.25 (dd, J = 7.3, 5.3 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 6.80 (dd, J = 8.6, 2.1 

Hz, 1H), 4.47 (t, J = 6.5 Hz, 2H), 3.25 (t, J = 6.5 Hz, 2H), 2.70 (s, 3H). 13C NMR (125 MHz, 

DMSO-d6) δ 159.6, 149.6, 142.3, 141.7, 138.2, 137.0, 135.0, 127.6, 124.1, 123.1, 122.2, 

115.4, 112.4, 109.8, 95.8, 67.4, 37.6, 20.8; HRMS calculated for C19H17N3O: 303.1372; found 

304.1437  (M+H). 

 

General procedure B [5-8]  
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106 mg harmine (0.5 mmol) was dissolved in 2 mL dry DMF at 0 °C. 13.2 mg NaH (0.55 

mmol) was added to the solution in small portions and the mixture was stirred at 0 °C until it 

became clear. Then 0.55 mmol of the appropriate halide was added to the solution and the 

mixture was stirred further at same temperature until no further conversion was observed. The 

mixture was poured onto water, extracted with ethyl acetate, and the combined organic layers 

were dried over Na2SO4, filtered and concentrated under reduced pressure and the residue was 

purified via preparative reversed phase chromatography using 5 mM aqueous NH4HCO3 

solution and acetonitrile as eluents. 

[5]: 9-benzyl-7-methoxy-1-methyl-pyrido[3,4-b]indole 

Using 94 mg benzyl bromide 110 mg 5 (73%)was obtained; 1H NMR (500 MHz, DMSO-d6) 

δ 8.18 (d, J = 5.1 Hz, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 5.1 Hz, 1H), 7.28 (t, J = 7.4 

Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 2.1 Hz, 1H), 6.92 (d, J = 7.4 Hz, 2H), 6.90 (dd, 

J = 8.6, 2.1 Hz, 1H), 5.89 (s, 2H), 3.82 (s, 3H), 2.73 (s, 3H); 13C NMR (125 MHz, DMSO-d6) 

δ 161.2, 143.8, 141.3, 139.5, 138.6, 135.4, 129.3, 129.0, 127.6, 125.8, 123.0, 114.7, 112.8, 

109.9, 94.2, 56.1, 47.7, 23.2. HRMS calculated for C20H18N2O: 302.1419; found 303.1487 

(M+H). 

[6]: 7-methoxy-9-[(3-methoxyphenyl)methyl]-1-methyl-pyrido[3,4-b]indole 

Using 111 mg 3-methoxybenzyl bromide 107 mg 6 (64%)was obtained; 1H NMR (500 MHz, 

DMSO-d6) δ 8.18 (d, J = 5.2 Hz, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 5.2 Hz, 1H), 7.18 

(d, J = 2.1 Hz, 1H), 7.18 (m, 1H), 6.90 (dd, J = 8.6, 2.1 Hz, 1H), 6.80 (m, 1H), 6.51 (m, 1H), 

6.41 (m, 1H), 5.85 (s, 2H), 3.83 (s, 3H), 3.65 (s, 3H), 2.74 (s, 3H); ); 13C NMR (125 MHz, 

DMSO-d6) δ 161.2, 160.0, 143.8, 141.3, 141.2, 138.6, 135.4, 130.5, 129.0, 123.0, 117.8, 

114.6, 112.8, 112.4, 112.0, 109.9, 94.2, 56.1, 55.4, 47.6, 23.2; HRMS calculated for 

C21H20N2O2: 332.1525; found 333.1583 (M+H). 

[7]: 7-methoxy-1-methyl-9-[[4-(trifluoromethyl)phenyl]methyl]pyrido[3,4-b]indole 
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Using 131 mg 4-(trifluoromethyl)benzyl bromide 153 mg 7 (83%) was obtained; 1H NMR 

(500 MHz, DMSO-d6) δ 8.20 (d, J = 5.2 Hz, 1H), 8.17 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 5.2 

Hz, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 6.92 (dd, 

J = 8.6, 2.1 Hz, 1H), 6.01 (s, 2H), 3.82 (s, 3H), 2.70 (s, 3H); 13C NMR (125 MHz, DMSO-d6) 

δ 161.3, 144.5, 143.7, 141.2, 138.8, 135.2, 129.2, 128.2, 126.7, 126.3, 124.7, 123.1, 114.7, 

112.9, 110.1, 94.1, 56.1, 47.4, 23.1; HRMS calculated for C21H17F3N2O: 370.1293; found 

371.1362 (M+H). 

[8]: 7-methoxy-1-methyl-9-[1-[4-(trifluoromethyl)phenyl]ethyl]pyrido[3,4-b]indole 

Using 139 mg rac-1-(1-bromoethyl)-4-(trifluoromethyl)benzene 180 mg 8 was obtained. 

HRMS calculated for C22H19F3N2O: 384.1449; found 385.1513 (M+H). The racemate was 

separated via chiral chromatography using Chiralcel OK column and EtOH/Heptane (30:70) 

eluent. 8a was isolated as the first eluting enantiomer. 

8a: 85 mg (44%); retention time: 32 min; 1H NMR (500 MHz, DMSO-d6) δ 8.26 (d, J = 5.2 

Hz, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 5.2 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.52 (d, J 

= 8.2 Hz, 2H), 6.84 (dd, J = 8.7, 2.1 Hz, 1H), 6.65 (q, J = 7.0 Hz, 1H), 6.4 (br, 1H), 3.62 (s, 

3H), 2.91 (br, 3H), 2.01 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ 160.0, 146.5, 

141.2, 140.9, 138.7, 135.9, 129.2, 128.3, 127.8, 126.0, 123.1, 116.1, 112.9, 109.2, 96.9, 55.6, 

53.6, 24.7, 18.1; 

8b: 87 mg (45%); retention time: 42 min; 1H NMR (500 MHz, DMSO-d6) δ 8.26 (d, J = 5.2 

Hz, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 5.2 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.52 (d, J 

= 8.2 Hz, 2H), 6.84 (dd, J = 8.7, 2.1 Hz, 1H), 6.65 (q, J = 7.0 Hz, 1H), 6.4 (br, 1H), 3.62 (s, 

3H), 2.91 (br, 3H), 2.01 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ 160.0, 146.5, 

141.2, 140.9, 138.7, 135.9, 129.2, 128.3, 127.8, 126.0, 123.1, 116.1, 112.9, 109.2, 96.9, 55.6, 

53.6, 24.7, 18.1; 

[9]: 7-methoxy-1-methyl-9-[2-[4-(trifluoromethyl)phenyl]ethyl]pyrido[3,4-b]indole 
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106 mg harmine (0.50 mmol), 85 mg 4’-trifluoromethyphenyl acetylene (0.50 mmol) and 3 

mg (0.05 mmol) KOH were dissolved in 1 mL dry dimethyl sulfoxide. The solution was 

stirred at 130 °C until no further conversion was observed. After the completion of the 

reaction the product was purified via preparative reversed phase chromatography using 5 mM 

aqueous NH4HCO3 solution and acetonitrile as eluents. The obtained intermediate (117 mg) 

was dissolved in ethanol and 10w/w% Pd/C was added. The reaction was run until completion 

in a pressure-boiler under 5 bar H2 at rt. The mixture was filtered and the filtrate evaporated to 

give 77 mg 9 (40% for 2 steps) in sufficient purity.1H NMR (500 MHz, DMSO-d6) δ 8.19 (d, 

J = 5.3 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 5.3 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 

7.43 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 2.1 Hz, 1H), 6.84 (dd, J = 8.2, 2.1 Hz, 1H), 4.84 (t, J = 

7.4 Hz, 2H), 3.84 (s, 3H), 3.17 (t, J = 7.4 Hz, 2H), 2.97 (s, 3H); 13C NMR (125 MHz, DMSO-

d6) δ 161.1, 143.8, 143.3, 140.9, 137.8, 134.9, 130.4, 129.3, 127.7, 125.6, 122.9, 114.5, 

112.9, 110.1, 94.1, 55.9, 45.6, 36.3, 23.3; HRMS calculated for C22H19F3N2O: 384.1449; 

found 385.1520 (M+H). 

 

3. Preparation of ligand and protein sample solutions 

The 2 mM stock solutions of β-carbolines were prepared freshly before each measurement in 

dimethyl sulfoxide (DMSO). The volume of DMSO added into sample solutions never 

exceeded 5% (v/v) and caused negligible effects on the CD or fluorescence spectra. HSA 

(Sigma, 97%, essentially fatty acid-free) and AAG (Sigma) samples were dissolved in pH 7.4 

Ringer buffer solution (8.1 mM Na2HPO4·12H2O, 1.5 mM KH2PO4, 137 mM NaCl, 2.7 mM 

KCl, 0.8 mM CaCl2, 1.1 mM MgCl2). Genetic variants of AAG were separated following the 

chromatographic method of Hervé et al. as described previously.18 

 

4. HSA binding test by affinity chromatography 
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Chromatographic experiments on HSA-Sepharose gel were performed as described 

previously, using oxazepam acetate, lorazepam acetate enantiomers and diazepam as 

reference compounds.23 Elution volume of harmine and its derivatives were detected at 280 

nm. Control experiments were performed on a gel containing no HSA. Compounds 2 and 7-9 

showed some non-specific adsorption. 

 

5. Fluorescence spectroscopic measurements 

Fluorescence measurements were carried out in a JASCO FP 8300 spectrofluorimeter at 23 ± 

1 °C, using a quartz cuvette with 1 cm optical path length; both excitation and emission 

bandwidths were set at 5 nm. The β-carbolines were excited at 320 nm. Intensities were 

corrected for the inner filter effect according to the absorbance of the added alkaloids at both 

the excitation and the emission wavelengths. The association binding constants at 1:1 

stoichiometry were calculated from the fluorescence emission increase of the protein bound 

alkaloids using the following equation (non-linear regression analysis with Microcal Origin 

ver. 8.6): 

 

where [P]t ,[L]t are the total concentration of the protein and ligand; fp, fl, fpl are the specific 

fluorescence of the protein, ligand and complex.24 

 

6. Circular dichroism and UV absorption spectroscopy measurements 

CD and UV absorption spectra were recorded on a JASCO J-715 spectropolarimeter at 25 ± 

0.2 °C. Temperature control was provided by a Peltier thermostat equipped with magnetic 

stirring. Rectangular quartz cells of a 1 cm optical path length (Hellma, USA) were used. 

Each spectrum represents the average of three scans obtained by collecting data at a scan 

speed of 100 nm/min. Absorption spectra were obtained by conversion of the high voltage 
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(HT) values of the photomultiplier tube of the CD equipment into absorbance units. CD and 

absorption curves of ligand-protein mixtures were corrected by subtracting the spectra of 

ligand-free protein solutions. JASCO CD spectropolarimeters record CD data as ellipticity 

(Θ) in units of millidegrees (mdeg). Details of the estimation of the association constant (Ka) 

and the number of binding sites (n) using CD spectroscopic data have been described 

elsewhere.25 Non-linear regression analysis of the induced CD values measured at increasing 

[ligand]/[protein] molar ratios was performed by Microcal Origin 8.6 Pro (OriginLab 

Corporation, Northhampton, MA). 

 

7. Molecular docking calculations 

All calculations were performed using DockingServer.26 PM6 semi-empirical method 

(MOPAC2009) was used for energy minimization and partial charges calculation to the 

neutral form of compound 4. X-ray structure of the “A” variant of AAG (PDB code 3APU) 

was selected. All water molecules were removed from the protein coordinates prior to 

docking calculations. Hydrogen atoms were added to the PDB structure using 

AutoDockTools. The total charge of AAG and partial charges of the atoms were calculated by 

the Mozyme function of MOPAC2009 software. The calculated partial charges were applied 

for further calculations. Sequential ligand docking was carried out, initial position and 

orientation of compound 4 were set randomly. The first molecule was docked using a pre-

evaluated interaction grid based on interactions with atoms in the protein alone. The second 

ligand was then docked employing an interaction grid including interactions with the protein 

and bound configurations of the first ligand. Affinity (grid) maps of 25 × 25 × 25 Å grid 

points were generated using the Autogrid program. AutoDock parameter set- and distance-

dependent dielectric functions were used in the calculation of the van der Waals and the 

electrostatic terms, respectively. Docking simulations were performed using the Lamarckian 
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genetic algorithm and the Solis & Wets local search method. Each docking experiment was 

derived from 100 different runs which were set to terminate after a maximum of 2500000 

energy evaluations. The population size was set to 150. During the search, a translational step 

of 0.2 Å, and quaternions and torsion steps of 5 were applied. The outputs of docking 

calculations were rendered with PyMOL (The PyMOL Molecular Graphics System, DeLano 

Scientific LLC, Palo Alto, CA, USA. http://www.pymol.org). 

 

8. pKa Prediction 

Calculator Plugin of the software MarvinSketch version 6.3.0 (2014, ChemAxon, 

http://www.chemaxon.com) was used to estimate the pKa values of harmine and its synthetic 

derivatives. 
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Results and discussion 

 

HSA binding studies by affinity chromatography 

HSA interaction of harmine and its nine synthetic analogues were evaluated from their 

retentions on a HSA-Sepharose column, where the elution volume is characteristic of the 

overall binding affinity (ΣnKa). Results showed that harmine binds weakly to HSA (Ka ~ 2.5 × 

104 M-1) and the methoxy-isopropyloxy group replacement (compound 1) caused only a slight 

affinity increase (Table 1). A similar result (Ka ~ 2.4 × 104 M-1) was found for the HSA 

binding of harmane15 which lacks a methoxy substituent of harmine. For harmine-bovine 

serum albumin interaction also weak binding was reported (Ka ~ 2.0 × 104 M-1).27 Introducing 

aromatic substituents in position 7, however, resulted in considerably enhanced albumin 

binding affinities. Compound 2 showed about ten times stronger association compared to 

harmine, without significant enantioselectivity. In case of compounds 3 and 4 having a 

pyridine ring in their R7 substituent, the Ka values are only about four times higher than that of 

harmine. Aromatic substitution on the pyrrole nitrogen provoked even stronger enhancement, 

association constant values of compounds 5-9 are about 4.0 × 105 M-1. The enantiomers of 

compound 8 showed no stereospecific binding, either. The enhanced HSA affinity of the more 

hydrophobic harmine derivatives may be beneficial since the overall solubility of the drugs in 

plasma will increase. Furthermore, tight albumin association may improve the chemical as 

well as the metabolic stability of the alkaloids28 and can facilitate their uptake in growing 

tumor tissues where albumin molecules are increasingly taken up by cancer cells.29 However, 

the efficacy of drugs can be compromised by extensive HSA binding since only the unbound 

fraction exhibits pharmacologic effects. The highest HSA affinity constants obtained in this 

study predict no serious limitation for the pharmacological activity of the harmine derivates 

that is also impacted by other factors such as tissue binding, stability, and clearance.30,31   
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Protein binding studies by fluorescence spectroscopy 

Harmine and its derivatives, like other β-carbolines, are highly fluorescent compounds. 

Fluorescence properties of the cationic and neutral forms are different, and this phenomenon 

can be utilized in protein binding studies, as shown previously for the HSA association of 

harmane and norharmane. 15,28 The cationic species fluoresces strongly with a peak maximum 

centred ~430 nm while the blue shifted emission of the neutral molecules is much weaker 

centered around 350 nm. The experimentally determined pKa of harmine is 7.45.32 The use of 

this value in the Henderson-Hasselbalch equation at pH 7.4 gives rise to 53 and 47 per cent 

for the neutral and cationic form of harmine. Since the protonation constants of the synthetic 

derivatives are unknown, calculated pKa values are shown in the Supplementary Information. 

As expected, the substitutions made in the 7 and 9 positions do not alter significantly the 

basicity of the pyridine nitrogen in relation to that of harmine suggesting very similar neutral-

cationic equilibrium for the derivatives. The fluorescence approach was employed to 

investigate the AAG binding properties of harmine and its derivatives. Figure 1 shows the 

change of the fluorescence emission of harmine upon addition of AAG. The ligand solution at 

pH 7.4 displays a single, unstructured band at 421.5 nm, assigned to the emission of the 

cationic form due to the well-studied excited state pKa shift of β-carbolines.33 Increasing 

concentration of AAG induces intensity decrease with simultaneous development of a new 

band with a maximum around 349 nm, indicating the bound neutral form of harmine. An 

isoemission point appears around 379 nm suggesting the co-existence of the bound and free 

species at equilibrium. Based on the emission data at 349 nm, a value of Ka ~ 3.3 × 104 M-1 

could be calculated, which is close to that measured for HSA binding of harmine (Table 1).  

Similar experiments, comparing the binding of compound 7 to AAG and HSA can be seen in 

Fig. 2. Analysis of the low intensity emission data of the HSA bound neutral species at 366 

nm yielded a Ka value of 3.1 × 105 M-1 for HSA, which is in good agreement with the affinity 
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constant obtained on the HSA column. The fluorescence changes measured with AAG, 

however, prove about eight times stronger AAG binding (Ka ~ 2.4 × 106 M-1). It is to be noted 

that the satisfactory concordance between the HSA affinity constants of additional harmine 

derivatives estimated by affinity chromatography method as well as from fluorescence 

emission of the protein bound neutral species (Table 1) refers to the decisive contribution of 

the neutral form in the binding process. 

Due to genetic polymorphism, AAG isolated for is a 70:30 mixture of two genetic variants, 

called F1/S and A, having different drug binding properties. The binding of compounds 7 and 

4 to the separated F1/S and A variants was examined, too. In case of 7 we observed (Fig. 3) 

that addition of the F1/S variant to the ligand solution gave rise to more pronounced 

fluorescence changes than the same amount of the A variant, corresponding to ten times 

higher affinity on the F1/S variant compared to the A (Table 1). By monitoring the 

fluorescence spectral changes of 4 upon addition of the genetic variants, the descending 

emission of the peak at 422 nm could be observed, however, the short-wavelength band 

corresponding to the neutral form evolved only in presence of the F1/S variant (Fig. 3). 

Therefore, in case of the A variant the fluorescence method was not adequate to calculate the 

association constant, but it demonstrates different affinity of is ligand for the genetic variants 

of AAG. 

AAG affinity data derived for harmine and its derivatives are summarized in Table 1. The 

binding of harmine is weak, similarly to its HSA binding. Substitution in position 9 with 

aralkyl groups, besides enhancing their cytotoxic activity in general, also increased the 

interaction with plasma proteins. The replacement of the methoxy group by alkoxy and 

(het)aryl alkoxy substituents in position 7 has a similar effect. Compared to harmine, this 

modification resulted in a four to ten times higher AAG affinity (Table 1). It is to be noted, 

that the HSA interaction of compounds possessing a pyridine moiety was weaker. The 
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configuration of the stereocenter of 2 or 8 had negligible effect on protein binding. The AAG 

affinity of compounds 5-9 bearing a benzyl-type substituent on the indole nitrogen (R9) was 

high (Ka ~ 106 M-1). The substitution of the phenyl ring had only minor influence on the 

binding. The highest affinities were measured for the 4-trifluoromethyl substituted analogues, 

while the 3-methoxy group reduced the binding. 

 

Circular dichroism and UV absorption spectroscopic investigation on the binding of 

derivatives 4 and 7 to AAG 

HSA binding of the optically inactive β-carboline derivatives studied in this work induced no 

or poor quality CD bands in the respective light absorption region of the ligands (data not 

shown). Therefore, the induced CD spectroscopic approach15,34,35 could not be employed for 

estimation of the HSA association constants. In contrast to this, entrapment of some alkaloids 

within the central drug binding pocket of AAG induced salient CD activity. Addition of the 7-

pyridylethoxy derivative of harmine (4) to the A genetic variant of AAG induced several CD 

signals between 240 and 400 nm (Fig. 4). Two weaker, opposite signals can be seen at 303 

and 360 nm which are allied to the broad absorption band displayed above 280 nm. In the 

short-wavelength region a more intense, negative-positive CD band pair was resolved with a 

zero cross-over point around 253 nm. Magnitudes of these induced CD peaks increased 

proportionally with the increasing concentration of the ligand but neither their shape nor their 

position showed variations during the titration. Comparison of the UV spectra of the free and 

AAG bound form of 4 recorded at the same concentration indicates large intensity reduction 

of the absorption values (green and black curves in Fig. 5). This phenomenon, called 

hypochromism, suggests the π-π stacking of two carboline rings at the binding site of AAG. 

Due to the asymmetry of the protein environment, the stacked, planar aromatic moieties 

cannot be arranged in a completely parallel fashion but their long axis are rotated relative to 
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each other, forming a helical array. This situation results in a chiral intermolecular exciton 

coupling between the π-π* transition moments of the proximal carboline chromophores 

generating two intense, opposite CD bands associated to the respective UV absorption peak 

(Fig. 4). As it follows from the exciton chirality rule,36 the negative-positive order of these 

signals predicts the M-helicity of the stacked dimer accommodated within the central cavity of 

AAG. The less intense ellipticity bands of 4 measured above 290 nm may also be of excitonic 

origin. The dimeric binding mode of 4 inferred from the spectroscopic results is supported by 

the analysis of the CD titration data. The best fit on the experimental values was obtained 

using 2:1 ligand:protein binding stoichiometry. The estimated affinity constants refer to tight 

interaction of 4 with both genetic variants of AAG (Table 1). 

It is to be noted that apart from the hypochromism, the overall UV absorption profile of 

compound 4 measured with the A variant of AAG shows the relative dominance of the neutral 

species but binding in the charged form also occurs (Fig. 5). Binding preference for the 

unprotonated ligand is more pronounced in the presence of the F1/S variant, where the UV 

profile of the bound ligand is very similar to the observed in alkaline solution (Fig. 5). The 

weaker hypochromism and the less intense induced CD bands (data not shown) suggest that 

the F1/S protein also binds two alkaloid molecules but with a larger intermolecular distance 

between them. 

Taking into consideration these data, the very low fluorescence emission of the neutral 

species of compound 4 obtained with the A variant (Fig. 3) might in part be attributed to its 

mixed, neutral-cationic binding and also to a dimerization caused self-quenching 

mechanism.37 

Interestingly, the AAG binding behaviour of 4 is highly reminiscent to that of acridine orange, 

the association of which to the A variant also occurs in a dimeric form inducing a 

characteristic biphasic CD pattern.19 Similarly to compound 4, F1/S binding of the acridine 
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orange results in much weaker exciton signals. Comparison of the crystal structures of the 

genetic variants revealed that the central drug binding pocket is narrower in the A form.38 

Instead of the three sub-chambers present in F1/S, the A variant possesses only two binding 

lobes. It follows that due to steric restrictions, co-binding of two molecules of compound 4 

can occur only in a tightly stacked, dimeric configuration while the larger cleft of the F1/S 

variant allows greater room and separation of the carboline moieties. The pyridine side chain 

seems to be important for the dimeric binding mode since the harmine-AAG interaction did 

not produce the above spectroscopic features (hypochromism, exciton CD coupling). 

As the fluorescence measurements showed, compound 7 bearing a trifluorophenyl substituent 

attached to the indole nitrogen also exhibits selective AAG binding in favour of the F1/S 

variant (Fig. 3). This behaviour is reflected in the distinct CD and absorption spectroscopic 

changes obtained with the genetic variants, too (Fig. 6). The F1/S form binds preferentially 

the neutral species of the molecule which is attested by the great similarity between the UV 

curves recorded in 0.1 M NaOH and in pH 7.4 buffer solution of the protein. In relation to the 

absorption spectrum measured in buffer, the A variant provoked limited changes only 

suggesting that its cationic-neutral discrimination ability is much weaker than that of the F1/S 

form. Due to the more uniform, tighter association of compound 7 to the F1/S variant, higher 

intensity ellipticity signals were induced than that measured with the A form (Fig. 6). 

Distinctly from 4, the bulky trifluoromethyl-phenyl moiety sterically restricts the dimeric 

binding of 7. Similarly to various AAG ligands having a rigid, planar ring system, the 

observed CD activity of 7 may be induced through non-degenerate exciton coupling with 

high-energy π-π* transitions of adjacent aromatic side chains of the binding pocket.39,40  

 

Sequential molecular docking of compound 4 to the A variant of AAG 
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Computational docking calculation was also performed to obtain insight into the molecular 

details of the AAG association of compound 4. Taking into account the CD and UV 

spectroscopic results, two molecules of compound 4 were docked sequentially into the 

binding room of AAG. The most frequent and best energy result shows a pair of partially π-

stacked ligand molecules in the binding crevice stabilized by four intermolecular H-bonds 

(Fig. 7). The interplanar distance between the β-carboline skeletons is about 4 Å and their 

long axes close a counterclockwise, left-handed angle. This binding geometry is favourable 

for dipole-dipole coupling between the π-π* transitions of the β-carboline chromophores, 

which is consistent with the induced CD exciton couplet and the UV hypochromism of the 

AAG bound species (Fig. 4). Considering the exciton chirality rule,36 the left-handed 

orientation of the ligand molecules predicts a longer-wavelength negative and a shorter-

wavelength positive CD band pair which is in full accordance with the measured 

spectroscopic data. 

Page 20 of 34RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



21 

 

Conclusions 

 

In the present study, the synthesis of a series of novel harmine derivatives bearing an arylated 

alkoxy substituent in position 7, or a modified benzyl moiety in position 9 was described. 

Plasma protein binding of these β-carboline analogues was found to be substituent-dependent. 

Incorporation of the aromatic pharmacophore group into the positions 7 or 9 of the carboline 

skeleton brought about considerably enhanced affinity to both HSA and AAG. These results 

imply that the pharmacologically active, free serum levels of these potential therapeutic 

agents are supposed to be very low that should be taken into consideration during further drug 

development phases. In contrast to the well documented cationic drug binding preference of 

AAG, the spectroscopic results proved that the AAG association of β-carbolines possessing 

basic pyridine nitrogen takes place mainly in non-protonated form. Moreover, the 7-

pyridylethoxy derivative of harmine exhibited π-stacked, dimeric binding to the A but not to 

the F1/S variant of AAG that is related to the distinct architecture of the internal cavity of 

their β-barrels. 
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Compound 
Substituent                    Ka (M

-1
) 

–R7 –R9 HSA (ac) AAG(fl) 

Harmine Me H 2.5 × 104
 3.3 × 104 

 

1  H 3.5 × 104
 n.d. 

2a* 

 

H 2.2 × 105
 1.3 × 105 

 

2b* 

 

H 2.7 × 105
 1.3 × 105 

 

3 
 

H 
9.0 × 104 

8.4 × 104 (fl) 
3.3 × 105 

4 
 

H 
9.0 × 104 

9.4 × 104 (fl) 
4.1 × 105  (F1/S) (cd) 

3.4 × 105 (A) (cd) 

5 Me  
4.0 × 105 

7.2× 105 (fl) 
1.6 × 106

 

6 Me 

 

4.3 × 105 
4.0 × 105 (fl) 

8.0 × 105 
 

7 Me  
4.0 × 105

 

3.1 × 105 (fl) 
4.1 × 106  (F1/S) 

3.9 × 105 (A) 

8a* Me  
3.9 × 105 

2.1 × 105 (fl) 
1.2 × 106

 

8b* Me  3.5 × 105 7.0 × 105  
 

9 Me 
 

3.2 × 105 
1.1 × 105 (fl) 

2.8 × 106   
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*The assignment of the chirality is arbitrary and it is only used to denote the stereochemical 

relationship of compounds 2a-2b and 8a-8b. 

 

Table 1 

HSA and AAG association constants of harmine and its synthetic derivatives estimated by 

affinity chromatography (ac), fluorescence (fl), and circular dichorism (cd) spectroscopy 

methods. n.d: not determined. 
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Scheme 1.  
General chemical structure of harmine (R7: CH3- and R9: H) and itsd derivatives  showing the equilibrium 
between the protonated and nonprotonated forms (the pKa of harmine is 7.45). The R7 and R9 notations 

represent the frequently substituted positions.  
886x213mm (72 x 72 DPI)  
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Figure 1.  
Emission spectra of harmine measured in AAG solution at increasing protein/ligand molar ratios (2 mL of 
harmine solution was titrated with 200 µM AAG dissolved in the ligand solution). Fluorescence intensities 

plotted against the AAG concentration of the sample solution. The solid line is the result of non-linear fitting 
analysis.  

278x186mm (300 x 300 DPI)  
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Figure 2.  
Fluorescence emission spectral changes of compound 7 as a function of HSA and AAG concentration (2 mL 

of 2 µM ligand solution was titrated with aliquots of 80 µM HSA and AAG dissolved in the ligand stock 

solution).  
287x201mm (300 x 300 DPI)  
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Figure 3.  
Comparison of the emission spectral changes of compounds 7 and 4 in the presence of the F1/S and A 
genetic variant of AAG (2 mL of ligand solutions were titrated with 80 µM AAG variants dissolved in the 

ligand stock solution).  
287x201mm (300 x 300 DPI)  
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Figure 4.  
Difference CD and UV absorption spectra of compound 4 added to 25 µM buffer solution of the A genetic 

variant of AAG.  

599x814mm (72 x 72 DPI)  
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Figure 5.  
Comparison of the UV absorption spectra of compound 4 measured in protein-free solutions at different pH 

values and in the presence of the A and F1/S genetic variant of AAG (Ringer buffer).  
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Figure 6.  
Difference CD and UV absorption spectra of compound 7 measured with the F1/S and A genetic variant of 

AAG. UV curves of the ligand recorded in protein-free solutions at different pH values are also shown.  
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Figure 7.  
Two compound 4 molecules docked sequentially into the binding cavity of the “A” variant of AAG. Dotted 

lines indicate intermolecular H-bonds.  
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