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Carbon dioxide, an energy waste by-product with significant environmental consequences can be utilized and converted 

into useful chemical products such as formic acid, formaldehyde, methanol or methane, but more energy and cost 

efficient catalytic processes are required. Here we develop the methodology for the intelligent selection of porous zeolites 

for dual-adsorption of hydrogen and carbon dioxide as templates for preparing the optimal catalytic environment for 

carbon dioxide reduction. Useful zeolite catalysts were computationally screened from over 300 thousand zeolite 

structures using a combination of molecular simulation and machine-learning techniques. Several of the top candidates 

were very promising energy-efficient templates for catalysis with the potential to perform at 50 % above conventional 

reactors. It is also found that an optimal cavity size of around 6 Å is required to maximize the change in entropy-enthalpy 

upon adsorption with a maximum void space > 30 % to boost product formation per volume of material. 

 

Introduction 

The environmental impact of global CO2 levels is well 

documented.3, 4 For the past decade the focus of atmospheric 

remediation has been on long term storage of CO2 via 

geosequestration to mitigate the effect of societies use of 

fossil fuels. Increasingly, there is a move away from the energy 

intensive process of carbon capture and storage (CCS) to 

carbon capture and utilization (CCU).3 Approaches to CCU may 

be as simple as new large scale uses for supercritical CO2, or 

application of CO2 as growth medium for algal growth. An 

increasingly attractive alternative utilization method is the 

catalyzed chemical transformation of CO2 into useful and 

saleable chemical feedstocks and fuels such as formic acid, 

formaldehyde, methanol and methane.2, 5-8 Hydrogen is a 

promising fuel but it lacks the energy density for practical use. 

Conversion of CO2 and hydrogen into liquid fuels such as 

methane or methanol is more desirable from a convenience 

and energy density perspective. However, significant 

improvement in catalyst technology for CO2 conversion is 

required for CCU to become an economically viable 

alternative. Recent advances in catalytic include the direct 

synthesis of formic acid from carbon dioxide by hydrogenation 

using a ruthenium catalyst by Moret et al.
9 and the 

photothermal reduction of CO2 to methane in the gas phase 

over nanocatalysts by Meng et al.
10 Moreover, Graciani et al.

11 

recently reported methanol synthesis from CO2 with novel 

composites. While these studies demonstrate advances in CO2 

conversion, the discovery procedure is limited to a small set of 

materials through experimental trial and error. 

 Virtual screening is a method that broadly combines 

computational algorithms for selecting promising candidates 

from a large library of materials.12 In many fields of materials 

science, there are an unlimited number of possible structures 

to choose from for a particular application. Combinatorial 

methods, in combination with high-throughput synthesis and 

characterization methods, have attempted to address this 

challenge by increasing the number of candidates that can be 

tested, but this requires large amounts of time and 

resources.13 Increasing recognition of the enormity of 

materials compositional and property space is also driving 

alternative methods for materials discovery, such as 

computational design, virtual screening, and materials 

evolutionary methods. Virtual screening or high-throughput 

computational screening provides an inexpensive and rapid 

method to pre-screen candidates before pursuing synthesis. 

Successful examples of virtual screening include:  

- the selection of porous adsorbents for the separation of 

linear, mono-branched, and di-branched isomers of 

alkanes for petrochemical applications.14  

- the selection of zeolitic imidazolate framework (ZIF)-

based membranes for clean energy applications including 
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land fill gas purification, post-combustion CO2 separation 

and pre-combustion H2 separation.15  

- the selection of zeolites and ZIFs for carbon dioxide 

capture.16  

- the selection of metal-organic frameworks (MOFs) for 

carbon dioxide separation.17 

- the selection of MOF analogues for water adsorption.18 

- the selection of compounds for molecular docking in 

proteins for pharmaceutical inhibitors.19 

- the selection of MOFs for methane storage.20  

 We have modified the methology of virtual screening and 

applied it to predict the dual-adsorption of gases for catalyzed 

reactions in this study, depicted in Figure 1. Porous catalysts 

such as zeolites offer large surface areas and active sites 

available for CO2 conversion and they can be ‘tuned’ to 

optimize their performance. There are ca. 200 known ideal 

silica zeolites21 and over a billion hypothetical zeolites22 

developed from the bonding principles between silicon and 

oxygen. With an abundant database of structures there is an 

opportunity and a computational challenge to select the 

promising candidates that could act as excellent templates for 

porous catalysts. An important step in heterogeneous catalysis 

is the adsorption step before catalysis. The methodology for 

predicting gas adsorption within nanoporous materials is well 

established.18, 23-25 Therefore we predict the gas stoichiometric 

adsorption properties within zeolite candidates and use this 

information to select the most promising zeolite for catalysis.      

 Finally, machine learning methods based on Quantitative 

Structure-Property Relationships (QSPR) models offer a useful 

framework for interpreting the screening results and targeting 

the most important structural characteristics for further 

discovery.26, 27 QSPR models were utilized by Fernandez et al.
27 

to investigate MOFs for methane storage, which revealed an 

optimal range of, pore sizes and void fraction. With a growing 

dataset of structures, QSPR models are needed to explore 

regions of the materials landscape unreachable by more 

computationally-intensive methods such as molecular 

dynamics and quantum chemistry. Other examples of QSPR 

modelling include the prediction of C60 solubility in various 

solvents, thermal conductivity of nanomaterials, operating 

conditions for optimal catalysis and bio-compatibility of 

polymeric materials.26, 28-32 Here the QSPR method is applied to 

a relatively simple system to predict the gas adsorption and 

thermodynamic properties of zeolites based on a few 

structural descriptors. 

Methodology 

Virtual screening studies require a number of key components, 

such as the atomic structures, the structural descriptors (void 

fraction, surface area, heat of adsorption etc.), and the 

materials properties predicted from simulation. Here we 

describe the zeolite structures, the method for calculating 

descriptors, and the method for simulating material 

properties.  

 

Zeolite Database 

There are approximately 200 experimental zeolite 

frameworks33 and over a billion hypothetical zeolite structures 

constructed from the simple oxygen-silicon-oxygen bond 

repeated over all 230 space groups.22, 34 Although many of the 

hypothetical structures are energetically inaccessible, there 

remains an enormous number of structures with a diverse 

range of pore morphology worthy of exploring. Previous 

screening work has narrowed the dataset down to around 

300,000-500,000 energetically accessible structures, 

depending on the force field16 used. Computational resource 

demands mean that it is impractical to simulate adsorption 

isotherms for the entire dataset; therefore a subset must be 

chosen to adequately represent the entire dataset. Martin et 

al. developed a similarity descriptor for zeolite structures that 

captures the shape and geometrical characteristics of pores.35 

Based on this, we selected a subset of 164 structures with 

maximal dissimilarity, i.e. with the most diverse set of pore 

characteristics. Overall, we analyze 167 ideal silica zeolites 

(after removing incomplete and energetically unfavourable 

frameworks), 164 hypothetical silica zeolites plus an additional 

‘smart’ set of 60 zeolites chosen from the QSPR model 

described below. 

 

Material Properties 

Overall we are interested in the catalytic properties of each 

candidate material. Catalysis is a difficult phenomenon to 

predict because of the multiple steps and levels of theory 

involved. To reduce the problem, we begin with the adsorption 

step of feed gas mixture. There are four main steps in the 

catalytic process:  

1. the diffusion of the reactant gases to the active sites 

within the material from the feed stock,  

2. the adsorption of the reactant gases at the active sites,  

3. the catalytic conversion of the reactant gases into 

products, and,  

4. the desorption and diffusion of the products out of  the 

material.  

 Each step contributes a thermodynamic and kinetic 

component to the overall efficiency. Here we focus on the 

 

 
Fig. 1 Virtual screening workflow for predicting stoichiometric adsorption 
properties in preparation for catalysis. 
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thermodynamics of the second step whereby the reactants, H2 

and CO2, co-adsorb within the pores of the catalyst in 

preparation for the third step of catalytic conversion. The dual-

adsorption ratios, or the stoichiometric adsorption properties 

of the material, play a critical role in the conversion efficiency. 

Upon adsorption there is a change in entropy and enthalpy 

that promotes the succeeding conversion steps. A large change 

in entropy and enthalpy upon adsorption will cause the 

reactants to bind into position and their internal bonds to 

become strained in preparation for reaction. In addition, the 

difference in adsorption between CO2 and H2 will determine 

the likely product to form due to stoichiometric 

considerations. Feed compositions can be tuned to optimize 

the adsorbed composition for the target product. Finally, the 

amount of pore volume and surface area will also govern the 

amount of product formation per volume of material. 

Therefore, optimization of CO2 conversion lies in the choice of 

a porous catalyst with optimized structural features to 

maximize both the thermodynamics and production 

capacity.36, 37 

 

Single Component Adsorption. Grand canonical Monte-Carlo 

simulations are utilized to predict the equilibrium gas 

concentration of carbon dioxide and hydrogen at typical 

catalytic operating conditions of 300 K and 500 K up to 100 

bar. The zeolite structures are assumed rigid with the 

interactions between the gas and the structure described by 

the Lennard-Jones potential with additional partial charges. 

The force field parameters for CO2 and H2 within zeolites are 

well described and have delivered close correlations with 

experimental data demonstrated by Garcia-Perez et al.
38, 

Babarao et al.
39, Lin et al.

16, Deeg et al.
40 and many others. A 

summary of the force field parameter values is given in Tables 

S1 and S2 in Supporting Information. The simulations were 

performed using the RASPA package.41 

 

Mixed Component Adsorption. Competitive adsorption is 

difficult to simulate because of the complex gas-gas 

interactions and lack of experimental data. By considering 

solution thermodynamics the Ideal Adsorbed Solution Theory 

(IAST) was developed by Myers and Prausnitz to predict the 

adsorption equilibria of binary mixtures.42, 43 Perez-Carbajo et 

al.
44 recently demonstrated that IAST could reasonably 

describe the mixed adsorption of a five-component mixture 

(CO2, CH4, CO, N2 and H2) within a range of zeolites (FAU, MFI, 

MOR and DDR) up to 100 bar. In this study we also consider 

light gas adsorption within zeolites with minimal surface 

heterogeneity where IAST is applicable. For more complex 

adsorbents (especially liquids) and adsorbents where the are 

adsorbate-specific adsorption sites and non-ideal adsorbate-

adsorbate interactions, then the real adsorbed solution theory 

is necessary, as shown by Erto et al.
45 

 IAST is typically used to predict the adsorbed ratio of the 

components given the feed ratio.46, 47 In our study, we are 

interested in the inverse problem of predicting the feed ratio 

necessary to achieve an adsorbed ratio close to the 

stoichiometry of the reaction of interest. Therefore we have 

rearranged the model to develop an inverse IAST, see 

Supporting Information for the mathematical solution. 

 

Enthalpy and Entropy of Adsorption. During adsorption the 

gas transitions from the bulk gas phase to the adsorbed phase 

with a corresponding change in enthalpy (ΔH) and entropy 

(ΔS), and consequently the Gibbs free energy (ΔG = ΔH – ΔS.T). 

A larger change in Gibbs free energy is a closer step towards 

catalytic conversion. Therefore ΔG will be used as a scoring 

factor along with the amount of adsorbed reactants when 

selecting the most promising candidates. The change in 

enthalpy is related to the adsorption energy (U0) as follows, ΔH 

= U0  ̶  RT, where R is the universal gas constant and T is 

temperature.48, 49 The change in entropy can be expressed as, 

 ∆� =
∆�

�
+�	 	


���



, 

where KH is the Henry’s constant, P is pressure and M is the 

saturation loading. Henry’s constant is calculated from the 

simulation of Widom insertions within the unit cell.50 While 

the saturation loading is approximated as the product of the 

helium pore volume and the liquid density of hydrogen.48, 51  

 The change in enthalpy and entropy upon adsorption is 

considered a necessary step leading to the full catalytic 

conversion of carbon dioxide. In this study, we are interested 

in the catalytic activity of the materials for the reactions listed 

in Table 1. Thermodynamic data each reaction indicates the 

changes of enthalpy and entropy when the reaction occurs in 

the gas and liquid phase.1 It is important to note that the 

reactions are all exothermic when carried out in the liquid 

phase and less input energy is required because of the reduced 

enthalpy and entropy compared with the gas phase.  

Considering that the adsorbed phase is a similar state to the 

liquid phase with an even further reduction in enthalpy and 

entropy, this is a promising attribute to consider when 

selecting a zeolite. 

 

Quantitative Structure-Property Relationships 

Table 1 Thermodynamic reaction data for CO2 conversion scenarios in gas and liquid 

phase. 
1
 

Reaction 

Gas Phase Liquid Phase 

ΔHgas 

(kJ/mol) 

ΔSgas 

(J/mol) 

ΔHliquid 

(kJ/mol) 

ΔSliquid 

(J/mol) 

Formic Acid: 

	��� +�� → �����  
15 -87 -31 -195 

Formaldehyde: 

 ��� + ��� →

����+��� 

36 -64 -8 -201 

Methanol: 

 ��� + ��� →

�����+��� 

-53 -161 -130 -380 

Methane: 

 ��� + ��� → ��� +

���� 

-165 -337 -253 -552 
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We also employed statistical and machine learning (QSPR) 

modelling techniques to identify quantitative relationships 

between the zeolite structural characteristics and the 

simulated adsorption properties. The modelling methods 

employ Bayesian methods to optimize the complexity of any 

nonlinear models, and to therefore optimize the quantitative 

prediction power of the models. Bayesian methods with sparse 

priors can also identify the most relevant subsets of structural 

parameters that have the largest impact on the gas adsorption 

properties of the zeolites. A complete explanation of these 

modelling techniques is beyond the scope of this paper, as 

they have been extensively described in previous 

publications.26, 52 In brief, we used a Bayesian regularized feed-

forward neural network with three layers, the input nodes, 

hidden nodes, and output nodes. The input and output nodes 

employ linear transfer functions, effectively generating a 

weighted sum of the contributions from the descriptors, or 

hidden layer nodes respectively. The hidden nodes use a 

nonlinear sigmoidal transfer function to generate nonlinear 

models. Bayesian regularization is used to control the degree 

of nonlinearity of the model to find the best balance between 

bias (model too simple to capture underlying structure-

property relationships) and variance (model overly complex 

and over fitting). The hidden layer used a small number of 

nodes (usually 2-3) as the regularization ensures that the 

number of effective weights (fitted parameters) in the model is 

relatively independent of the number of hidden layer nodes 

(and fully connected neural network weights). Models were 

trained until the Bayesian evidence for the model reached 

maximum, obviating the need for a validation set to stop 

neural network training. This machine learning method can 

model structure-property relationships of arbitrary complexity 

given sufficient training data. Validation of the predictive 

power of QSPR models is very important.  We held aside 20 % 

of the data set as an independent test set never used for 

model development.  The models derived from the remaining 

80 % of the data were used to predict the performance of 

zeolites in the test set. In addition, a diverse set of 

hypothetical structures was used as a training set that was 

tested on the IZA (International Zeolite Association) set, and 

vice-versa. The former approach proved more accurate which 

means that the diverse hypothetical set is a reasonable 

representation of the complete IZA set. Finally, the 

combination of the diverse hypothetical set and the IZA set 

was used as the training set to select a secondary ‘smart’ set 

based on an optimal combination of structural features that 

maximize dual-adsorption properties. 

 The descriptors for the QSPR model include the maximum 

pore size, surface area, void fraction, density and heat of 

adsorption. Heat of adsorption is the isosteric heat of 

 

 
 
Fig. 2 Simulated CO2 adsorption uptake in zeolites versus three structural features. Green symbols represent the known zeolites from IZA database and 
blue symbols represent a diverse subset of the hypothetical zeolite database. Correlation between uptake and void fraction becomes stronger with 
increasing pressure, and an optimal pore diameter appears at low pressures.
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adsorption calculated from the simulation data using ΔH = ΔU 

– RT, where ΔU is the energy of adsorption, R  is the universal 

gas constant and T is temperature. Maximum pore size was 

calculated using the Zeo++ analyzer based on the Voronoi 

decomposition of the atomic coordinates.53, 54 Void fraction 

was calculated using Widom insertions of helium at 300 K 

based on the Rosenbluth factor described by Smit and 

Frenkel.50 While surface area is the accessible surface area 

based geometrically on a the spherical probe size of nitrogen 

(3.681 Å), shown to compare well with experimental BET 

surface areas.55 In addition to guiding the choice of a ‘smart’ 

set, the machine learning method also provides insight into the 

most important structural parameters. 

Results and Discussion 

Simulated single component adsorption is viewed as a function 

of structural descriptors in Figures 2 and 3 for CO2 and H2, 

respectively. The relationships between CO2 uptake and the 

structural features depend on pressure. There is a strong linear 

correlation between CO2 uptake and void fraction at high 

pressures (20 bar) while at lower pressures (1 bar) there is a 

more complex relationship between uptake and pore diameter 

indicating an optimal pore size that maximizes uptake.  The 

correlations for H2 on the other hand, do not depend on 

pressure. There is a strong relationship with void fraction and 

surface area at all pressures. Similar trends are also observed 

for volumetric uptake, see Figure S1 and S2 in Supporting 

Information.   

 A QSPR model is developed using the following input 

parameters: temperature, pressure, pore diameter, density, 

surface area, void fraction and heat of adsorption. The 

hypothetical dataset is used to train the model which is then 

tested on the IZA dataset. The model predictions for both CO2 

and H2 uptake were excellent, with R2 values of 0.93 and 0.97, 

respectively shown in Figure 4. The models could predict the 

gas adsorption with standard errors of 9.5 cm3 STP/cm3 (CO2), 

and 1.3 cm3 STP/cm3 (H2). We conclude that the hypothetical 

set with high diversity in pore characteristics is an excellent 

training set for predicting uptake in all-silica zeolites at a range 

of temperatures and pressures. When sparse feature selection 

was imposed, the results indicated that temperature, pressure, 

density, surface area, and void fraction were the most relevant 

contributors to the CO2 and H2 uptake models. The heat of 

adsorption was found to be less important for predicting 

uptake using the QSPR models. However, as will be shown 

further in the article that heat of adsorption plays a critical role 

in contributing to the thermodynamics of reaction. 

 

 
 
Fig. 3 Simulated H2 adsorption uptake in zeolites versus three structural features. Green symbols represent the known zeolites from IZA database and blue 
symbols represent a diverse subset of the hypothetical zeolite database. Correlation between uptake and void fraction becomes stronger with increasing 
pressure. Correlations do not depend on pressure.

 
 

0.2 0.4 0.6

Void Fraction (-)
0 500 1000 1500 2000 2500

Surface Area (m2/g)

5 10 15
0

50

100

150

200

C
O
2
 (
cm

3
 S
T
P
/c
m
3
)

3
0
0
 K
 a
n
d
 2
0
 b
a
r

Dominant Pore Diameter (Å)

0

50

100

150

C
O
2
 (
cm

3
 S
T
P
/c
m
3
)

3
0
0
 K
 a
n
d
 1
0
 b
a
r

 

 

0

20

40

60

C
O
2
 (
cm

3
 S
T
P
/c
m
3
)

3
0
0
 K
 a
n
d
 1
 b
a
r

 

 

IZA

Hypothetical

Page 5 of 11 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE RSC Advances 

6 | RSC Adv., 2015, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 The simulated pure gas adsorption data is used to predict 

the dual-adsorption of the mixture through the IAST model. 

Assuming 100 % yield, the dual-adsorbed mixture converts to a 

quantity of product. With a 1:1 (CO2:H2) stoichiometry, we plot 

the quantity of formic acid produced at 1 and 10 bar with the 

corresponding pure gas uptake, see Figure 5. Interestingly, the 

production of formic acid is hydrogen limited at low pressures 

and dual-gas limited at higher pressures. This is because at low 

pressures there is a sufficient amount of CO2 adsorbed while 

there is insufficient H2 adsorption. At high pressures on the 

other hand, there is sufficient uptake of both gases and a more 

linear dependence is observed.  

 In a similar manner, the quantity of product is generated 

for each stoichiometry including formic acid, formaldehyde, 

methanol and methane that require the stoichiometric 

adsorption ratios 1:1, 1:2, 1:3 and 1:4 (CO2:H2), respectively, 

see Figure 6a. There is a lot less methane produced than 

formic acid because methane requires four H2 molecules per 

CO2 rather than a 1:1 ratio. As discussed earlier, hydrogen 

adsorption is the limiting factor in dual-adsorption for 

catalysis. As shown from the QSPR model there are many 

factors that affect the dual-adsorbed quantity including 

surface area, void fraction and density.  

 The QSPR neural network model is utilized to select a 

secondary “smart” set from the 300,000 hypothetical zeolite 

set with structural features likely to further maximize the 

adsorption uptake. The neural network-based smart set is 

shown in Figure 6b, indicating that new structures are 

discovered with a marginally higher potential for product 

 

 
 
Fig. 4 QSPR nonlinear neural network model predictions for a) CO2 

uptake b) H2 uptake and c)  total dual uptake of CO2 and H2 (at 1:4 ratio 

leading to CH4 mol produced per m3 of material) with structural 

features. Training sets are based on the hypothetical structures and the 

test sets are based on the IZA structures. The test sets were predicted 

with high accuracy, R2 = 0.93 (CO2), 0.97 (H2). The total dual uptake is 

predicted for all 300 thousand based on QSPR extrapolation from 

structural descriptors. 
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Fig. 5 Stoichiometric dual-adsorption (1:1, CO2:H2) as a function of pure CO2 and 

H2 single-adsorption at a) 1 and b) 10 bar, at room temperature for all zeolites. 

Contour scale is the converted formic acid production (mol/m3) assuming 100 % 

yield. Production is hydrogen limited at low pressures and dual-gas limited at 

higher pressures. 
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formation above the conventional Sabatier reactors that run at 

a range of operating conditions 10-20 bar and 300-500 K.2 

Note that these estimates are assuming 100 % conversion of 

all adsorbed gases. In reality this is not the case and the actual 

conversion efficiency also depends on the energetic landscape, 

which will be explored using the enthalpy and entropy of 

adsorption.   

 The enthalpy and entropy of methane production via the 

Sabatier reaction (the methanation of CO2) is measured 

experimentally to be 165 kJ/mol and 172 J/mol.K, respectively. 

Here in Figure 7a we plot the predicted change in enthalpy and 

entropy upon adsorption of the required CO2 and H2 ratio. The 

ulitimate conversion efficienct will depend on the free energy 

barrier at the transition step which can be different for each 

zeolite, shown in Figure 7b. However, the adsorbed state does 

boost the free energy of the system towards the transition 

state in all cases. Therefore the thermodynamics of physical 

adsorption is a critical step before the chemical conversion, 

and materials with a greater change in both entropy and 

enthalpy of adsorption are more promising candidates for 

efficient catalysis.  

 Finally we combine the thermodynamic factors with the 

degree of production to score the zeolites, see Figure 8. The 

score factor is the product of the change in Gibbs free energy 

with quantity of product formation. The top candidates will 

have a maximum dual-adsorption capacity for the required 

stoichiometry as well as the large change in enthalpy and 

entropy in preparation for the catalysis step. When plotted 

against the structural characteristics void fraction and 

maximum cavity size, it is evident that there is an optimal 

range of cavity sizes (~6 Å). It is likely that these cavities offer 

the correct energetic environment for strong dual-adsorption. 

Those materials with many of these cavities, characterized by 

void fraction, will also offer a high production output. Once 

again, the neural network-based smart set performs higher on 

the score factor than the randomly chosen set. Theoretically, 

the neural network model could be retrained with the new 

data and used to choose a third smart set, a fourth etc. in an 

 

 

 
 
Fig. 6 Distribution of predicted product formation (mol of product/m3 of zeolite) 

assuming 100% conversion of all adsorbed reactants. a) Formic acid, 

formaldehyde, methanol and methane that require the stoichiometric 

adsorption ratios 1:1, 1:2, 1:3 and 1:4 (CO2:H2), respectively. b) Methane 

formation with IZA and diverse hypothetical set with neural network-based 

smart set. Grey section represents conventional product formation from 

Sabatier Reactors.
2
 

a)

 

 

 
 
Fig. 7 a) Enthalpy and entropy of reactant adsorption for all zeolites (red dots) 

compared with experimental enthalpy and entropy of methane production via 

the Sabatier reaction2 (black horizontal and vertical lines, respectively). b) 

Schematic of the reduced energy barrier for reaction as a consequence of 

adsorption. 
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iterative manner. Here we only demonstrate that one round of 

neural network selection is sufficient to discover more 

promising structures.          

 From this score, five top candidates are chosen and listed 

in Table 2 for methane production at ambient conditions, 

while Supporting Information lists candidates for other 

product formation. The five top candidates provide a diversity 

in pore shapes and topology. Interestingly there are two ideal 

silica frameworks, namely PUN and STW, which perform as 

well as the hypothetical structures. PUN, originally named 

PKU-9, was first discovered by Peking University with 10-ring 

and 8-ring channels running in parallel.56 STW (or SU-32) was 

synthesized as part of the first family of chiral structures, a 

useful properties for sorption/separation and catalytic 

processes.57 The window size of 3.8 Å is used as a cut-off for 

methane transport, eliminating structures that would not be 

capable of exporting the converted product. We observe that 

the top candidates all have a dominant pore size of ~6 Å with 

high amounts of void space >30 %. 

 Thermodynamics play a critical role in determining the 

optimal catalyst however kinetics is also an important factor  

that includes reaction, desorption and diffusion rates. We have 

shown that there is an optimal cavity size to maximize the dual 

adsorption properties but the optimal pore size for diffusion is 

yet to be determined. During operation the reactants will 

adsorb within the catalyst, react into products and exit by 

diffusion. The molecular diameter of the products considered 

here are larger than the reactants and therefore the diffusion 

of the product could be the rate-limiting determinant. The 

screening procedure presented here has discarded those 

structures that would not allow the products to diffuse 

through due to the restrictive window size. Other factors to 

consider include tortuosity that could increase the resistance 

of product diffusion unnecessarily, pore shape that could be 

unfavourable for product orientation and pore uniformity 

where fluctuations in pore diameter could present multiple 

energy barriers that could further inhibit product flow. An 

ideal zeolitic structure for catalyst would consist of a stable 

and highly connected network of pores with maximum 

porosity and optimal pore size (or range of sizes) for 

adsorption, reaction and diffusion. Overall, it is very difficult to 

consider all factors when determining the optimal catalyst but 

this preliminary screening procudure is a reasonable step 

forward.        

 Future work includes the incorporation of ions to further 

encourage catalytic activity. The porosity templates 

investigated here are a good basis for this future work. The 

interaction between gases and ions have been modelled well 

by Garcia-Sanchez et al.
58,  Kim et al.

59 and Darkrim et al.
60, 

establishing the ground-work for the next stage of screening. 

The addition of by-product water must also be considered 

which could hinder the transport of products, adsorption of 

pre-cursors and reaction kinetics. In addition, quantum-based 

calculations could accurately predict the activation energy for 

catalysis, adding an additional layer to the screening 

procedure. This concept has been discussed in other virtual 

screening studies to optimize the computational time for large 

amounts of materials by hierarchically laying the different 

computational routines with varying accuracy and 

computational time.12, 61 In these procedures, less accurate but 

fast calculations are performed first to narrow the scope of 

structures, followed by more accurate but slower calculations 

to further narrow the amount of promising candidates to a 

synthesizable number. Ultimately, neural network-based 

decision-making can play a role in scaling this screening 

process to an indefinite amount of materials where structural 

descriptors are calculated almost instantaneously. Given the 

continually growing databases of new materials through 

programs such as the Materials Genome Initiative, a scalable 

screening strategy is necessary to manage large amounts of 

data. In this work, the first procedure steps are mapped and 

demonstrated for choosing promising catalysis templates for 

carbon dioxide utilization.   

Conclusions 

A virtual screening procedure is mapped and utilized to 

discover the optimal zeolite templates for conversion of 

carbon dioxide into useful products. Over 300 thousand 

structures with varying porosity features are screened using a 

combination of GCMC adsorption simulations, IAST dual-

adsorption models, energy-entropy calculations and neural 

network-based QSPR models. Top candidates are listed for the 

production of methane, methanol, formic acid and 

formaldehyde, all requiring different stoichiometric adsorption 

ratios of carbon dioxide and hydrogen.   

 Robust structure-property relationships are found between 

structural descriptors such as pore size, surface area and void 

fraction, and zeolite performance. Neural network-based QSPR 

models were valuable in identifying more promising 

 

 
 
Fig. 8 Catalysis score according to thermodynamics and magnitude of adsorption 

for methane production (change in Gibbs free energy multiplied by product 

quantity), plotted with two structural characteristics void fraction and maximum 

cavity size. Smart set chosen by neural network model is highlighted with black 

circles. Inset emphasizes the smart set selection of optimal cavity size with 

population density of cavity sizes for diverse set and smart set. 
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candidates from a growing set of zeolite frameworks. Top 

candidates have a common cavity size of around 6 Å, which 

maximizes the strength of dual-adsorption with a maximum 

void space greater than 30 % to increase product quantity.   

 Future work includes the incorporation of water (by-

product), ions to enhance catalytic activity and quantum 

mechanics-based calculations to accurately determine reaction 

kinetics and finally synthetic trial.  
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Table 1 Top candidates with the overall performance in formation quantity and favourable energetics for methane production at ambient conditions. 

Details Side View Front View 

h8315435 

Density (g/cm3) = 1.44 

Restricting Window Size (Å) = 3.90 

Max Cavity Size (Å) = 7.50 

Void Fraction (-) = 0.33 

Surface Area (m2/g) = 924 

CO2 Heat of Adsorption (kJ/mol) = 38.7 

H2 Heat of Adsorption (kJ/mol) = 6.79 

 

 
 

h8287217 

Density (g/cm3) = 1.38 

Restricting Window Size (Å) = 7.78 

Max Cavity Size (Å) = 8.44 

Void Fraction (-) = 0.53 

Surface Area (m2/g) = 882 

CO2 Heat of Adsorption (kJ/mol) = 23.0 

H2 Heat of Adsorption (kJ/mol) = 5.5 
 

 

 

PUN 

Density (g/cm3) = 1.49 

Restricting Window Size (Å) = 3.95 

Max Cavity Size (Å) = 4.98 

Void Fraction (-) = 0.44 

Surface Area (m2/g) = 780 

CO2 Heat of Adsorption (kJ/mol) = 22.9 

H2 Heat of Adsorption (kJ/mol) = 6.2 
 

 

 

STW 

Density (g/cm3) = 1.64 

Restricting Window Size (Å) = 4.82 

Max Cavity Size (Å) = 5.37 

Void Fraction (-) = 0.42 

Surface Area (m2/g) = 1040 

CO2 Heat of Adsorption (kJ/mol) = 14.1 

H2 Heat of Adsorption (kJ/mol) = 1.57 

 

 

 

h8123219 

Density (g/cm3) = 1.41 

Restricting Window Size (Å) = 4.42 

Max Cavity Size (Å) = 6.91 

Void Fraction (-) = 0.34 

Surface Area (m2/g) = 1022 

CO2 Heat of Adsorption (kJ/mol) = 19.0 

H2 Heat of Adsorption (kJ/mol) = 5.5 
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