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Abstract 7 

The inhibition effect of L-Serine on the hydrogen evolution at the 8 

negative electrode of a lead-acid battery (Pb) in 5.0 M H2SO4 has been 9 

studied by hydrogen evolution and electrochemical methods. The surface 10 

of Pb is analyzed with scanning electron microscope (SEM) and energy-11 

dispersive X-ray (EDX). The results demonstrate that L-Serine is an 12 

adequate inhibitor, retarding the hydrogen evolution reaction. 13 

Polarization curves denote that L-Serine performs as the cathodic 14 

inhibitor. The inhibition efficiency boosts with increase in L-Serine 15 

concentration but decreases with upturn in temperature. The most 16 

efficient inhibitor concentration is 10 mM. Adsorption of L-Serine on the 17 

Pb surface is unprompted and complies with Langmuir’s isotherm. L-18 

Serine induces an energy barrier for the hydrogen evolution reaction and 19 

this barrier increases with increasing L-Serine concentration. 20 

Keywords: hydrogen evolution; lead-acid battery; inhibition; amino acid 21 
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1. Introduction     22 

    The lead–acid battery is the oldest type of rechargeable battery [1-2]. It 23 

consists of PbO2 as a positive electrode, Pb as a negative electrode and an 24 

electrolyte of aqueous H2SO4. The concentration of H2SO4 in a fully 25 

charged auto battery measures a specific gravity of 1.265 – 1.285 [2]. 26 

This is equivalent to a molar concentration of 4.5 – 6.0 M. As the battery 27 

discharges, PbO2 and Pb react with aqueous solution of H2SO4 to form 28 

PbSO4 and water. On recharge, PbSO4 converts back to PbO2 and Pb. In 29 

the same time, SO4
2- ions are driven back into the electrolyte solution to 30 

form H2SO4. The reactions can be presented as the following: 31 

At the negative electrode [3]: 32 

 Pb + H2SO4 = PbSO4 + 2H+ + 2e                       (1) 33 

2H+ + 2e  = H2                                                                                  (2) 34 

At the positive electrode: 35 

PbO2 + H2SO4 + 2H+ + 2e = PbSO4 + 2H2O        (3) 36 

H2O = 1/2O2 + 2H+ + 2e                                       (4) 37 

    Under normal conditions, gassing vented from a lead-acid battery is 38 

mainly oxygen and hydrogen gas [4-5]. 39 

    Hydrogen gas can collect at the top of a battery.  If this gas is exposed 40 

to a flame or spark, it can explode. Hydrogen gas evolution harm the 41 

valve regulated lead acid battery during charging and discharging 42 
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 3

processes [6]. In addition to the primary focus on human and system 43 

safety, hydrogen evolution also affects on the battery life and 44 

maintenance economics. Therefore the inhibition of hydrogen evolution 45 

during the charging of a lead-acid battery is an important part of the 46 

engineering for any battery system [7-10]. 47 

    The aim of this work is to explore the use of L-Serine to inhibit the 48 

hydrogen evolution during the reaction of Pb with 5.0 M H2SO4. 49 

     L-serine is a non essential amino acid. It is manufactured by 50 

fermentation from carbohydrate sources [11]. In contrast to most 51 

commercial acid corrosion inhibitors which are highly toxic, L-serine is 52 

an environmentally friendly corrosion inhibitor. However, there is no 53 

literature to date about the corrosion inhibitory effect of L-serine in acid 54 

solution. 55 

2. Experimental  56 

2.1. Materials 57 

     The working electrodes were made from pure lead (Pb) 99.99%.  58 

Specimens used for hydrogen evolution measurements were mechanically 59 

cut into 2.0 × 1.0 × 0.2 cm dimensions. For electrochemical 60 

measurements, the cylindrical rod of Pb with exposed surface area of 61 

0.452 cm2 was allowed to contact the test solutions. The working 62 

electrodes were abraded with different grads of emery papers up to 1200 63 
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 4

grad. Then they were cleaned by using acetone and distilled water before 64 

the tests. 65 

     Experiments were done in 5.0 M H2SO4 in the absence and presence 66 

of L-Serine. L-Serine was obtained commercially from Sigma-Aldrich 67 

Co. 68 

      All solutions were prepared from analytical grade chemicals and 69 

distilled water. The temperature of the solutions was controlled by a 70 

thermostat. 71 

2.2. Hydrogen evolution rate measurements 72 

The schematic diagram of the hydrogen evolution measurements was 73 

reported in previous paper [12]. The volume of H2 gas evolved (∆V) 74 

during the reaction of Pb specimens in 100 ml of 5.0 M H2SO4 was 75 

measured at specified time intervals (t). The hydrogen evolution rate (HR) 76 

was expressed using the following correlation [13]: 77 

HR= (∆V) / (t)              (5) 78 

2.3. Electrochemical measurements 79 

    Electrochemical experiments (Potentiodynamic polarization) were 80 

performed in a regular three-electrode cell. A platinum coil was used as 81 

the counter electrode and potentials were measured relative to Hg/Hg2SO4 82 

reference electrode. Electrochemical experiments were conducted using 83 

Potentiostat/Galvanostat (Gill AC model no. 947, ACM instruments). 84 
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 5

Before electrochemical measurements, the Pb electrode was immersed in 85 

freshly prepared solutions at open circuit potential (OCP) for 2 h, to attain 86 

a steady case. The potential of polarization curves was done from - 200 87 

mV to + 200 mV versus OCP with 1.0 mV s-1 sweep rate. 88 

2.4. SEM-EDX analysis 89 

The surface morphology of the metal specimen was evaluated by SEM-90 

EDX analysis using JOEL-JEM-1200 EX II ELETRON MICROSCOPE 91 

and a Traktor TN-2000 energy dispersive spectrometer. 92 

3. Results and discussion 93 

3.1. Effect of L-Serine concentration on the hydrogen evolution  94 

    The effect of the addition of various concentrations of L-Serine (0.1-20 95 

mM) on the HR during the reaction of Pb in 5.0 M H2SO4 at 303 K is 96 

shown in Fig. 1. It should be noted that the presence of L-Serine in 5.0 M 97 

H2SO4 has a considerable influence on the inhibition of the hydrogen 98 

evolution rates HR. Furthermore, increasing the concentration of L-Serine 99 

from 0.1 to 20 mM causes a noticeable decrease in hydrogen evolution 100 

rates HR. 101 

     The efficiency of L-Serine (IH %) to inhibit the hydrogen evolution is 102 

calculated according to [13] : 103 

1001%H ×







−=

Ro

R

H

H
I       (6) 104 
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 6

where HR0 and HR are the hydrogen evolution rates without and with L-105 

Serine, respectively. 106 

    Fig. 2 shows variations of the efficiency of L-Serine IH % as a function 107 

of the logarithmic of L-Serine concentration. The plot of Fig. 2 exhibits 108 

S-shaped adsorption isotherm. This suggests, but does not prove, that L-109 

Serine inhibits the hydrogen evolution during the reaction of Pb in 5.0 M 110 

H2SO4 by adsorption at the Pb/ H2SO4 solution interface [14]. It is evident 111 

from Fig. 2 that upon increasing L-Serine concentration to 10 mM, IH % 112 

values significantly increases reaching a maximum value (IH % = 88).  113 

However, a further increase in L-Serine concentration to 20 mM does not 114 

lead to a change in IH % values. This may be due to the adsorption of L-115 

Serine on the surface of Pb have reached the state of equilibrium at 10 116 

mM and consequently, any further addition will not yield any increase in 117 

the inhibition efficiency [15] 118 

3.2. Effect of temperature and activation energy calculation 119 

   The rate of the chemical reactions inside the lead-acid battery depends 120 

on the temperature. In general, the increase of the temperature causes the 121 

acceleration in the reaction rate of the internal processes, e.g. corrosion 122 

(aging), self discharge and the corresponding hydrogen and oxygen gas 123 

evolution rates [16-17]. 124 
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 7

    To assess the influence of temperature on the hydrogen evolution rate 125 

and the hydrogen evolution inhibition process, the hydrogen evolution 126 

rates HR are performed at different temperatures (303 and 323 K) without 127 

and with different concentrations of L-Serine. The results are recorded in 128 

Table 1. The results obtained indicate that the rates of the hydrogen 129 

evolution rate in all cases increased with temperature while IH % 130 

decreased. The increase in the HR in the absence of L-Serine with the rise 131 

of temperature may be arises from an increase in PbSO4 solubility with 132 

temperature [18]. In the same time, the raise in temperature accelerates 133 

both of the diffusion and migration rates for the reactant and product 134 

species. This drives to an increase in the rate of hydrogen evolution 135 

reaction. On the other hand, the increase in the HR and the decrease in the 136 

IH % in the presence of L-Serine with the rise of temperature may be 137 

assign to the partial desorption of L-Serine molecules from Pb surface 138 

with temperature [19]. 139 

    The activation energy (Ea) for the process responsible for hydrogen 140 

generation (diffusion of both protons and uncharged hydrogen in 141 

solution) was computed using the Arrhenius relation [13]: 142 









−










=

21

1R

2R

11

log

303.2a

TT

H
H

RE                (7) 143 
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 8

where R is the ideal gas constant, HR1 and HR2 are the hydrogen evolution 144 

rates at the absolute temperatures T1 and T2, respectively. 145 

The calculated values of Ea are recorded in Table 1. 146 

    The data examination shows that the activation energy is higher in the 147 

presence of L-Serine than in its absence. The higher Ea value in the 148 

presence of L-Serine, implies that physical adsorption exists between L-149 

Serine molecules and the charged surface. Moreover, the values of Ea 150 

increase with increasing L-Serine concentration. This means that, the 151 

presence of L-Serine induces an energy barrier for the hydrogen evolution 152 

reaction and this barrier increases with increasing concentration of L-153 

Serine [20]. 154 

3.3. Electrochemical measurements 155 

    Fig. 3 shows anodic and cathodic polarization plots (Tafel plots) 156 

recorded on Pb electrode in 5.0 M H2SO4 containing different 157 

concentrations of L-Serine at 303 K.  158 

    It can be noticed that the addition of L-Serine causes a remarkable 159 

decrease in the corrosion rate.  160 

It is clear that, the presence of L-Serine shifts cathodic curves to lower 161 

values of current densities. Whereas the anodic curves are slightly 162 

retarded by L-Serine.  This result suggests that the addition of L-Serine 163 

retards the hydrogen evolution reaction [21]. 164 
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 9

    Table 2 displays the kinetic parameters for corrosion process, i.e., 165 

corrosion potential (Ecorr) and corrosion current density (jcorr) [22]. 166 

    Comparing with blank solution, Ecorr shifts to negative side more than 167 

85 mV in the presence of L-Serine; this elucidates that L-Serine works as 168 

cathodic-type inhibitor [23].  Evidently, jcorr decreases frequently in the 169 

presence of L-Serine and decreases with L-Serine concentration. The 170 

corrosion current density jcorr values can be used to calculate the inhibition 171 

performances of L-Serine (ηj %) from the following equation [24] : 172 

100%
corr(0)

corrcorr(0)

j ×
−

=η
j

jj
    (8) 173 

where jcorr(0) and jcorr are uninhibited and inhibited current densities, 174 

respectively.  175 

    From results given in Table 2, an increase of ηj% with L-Serine 176 

concentration, reaching a maximum value (91%) at 10 mM, was 177 

observed. A slight a change in ηj% values was found above the 10 mM. 178 

This phenomenon is consistent with results obtained form hydrogen 179 

evolution measurements. 180 

3.4. Study of the adsorption phenomenon 181 

    The adsorption isotherms can supply helpful information about the 182 

mechanism of corrosion inhibition [25-26]. 183 

Page 9 of 32 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 10

     The degree of surface coverage (θ) of L-Serine from hydrogen 184 

evolution and electrochemical measurements can be calculated using the 185 

following equations [27]: 186 









−=

Ro

R

H

H
1θ           (9) 187 

corr(0)

corrcorr(0)

j

jj −
=θ        (10) 188 

    The surface coverage values θ were fitted to different adsorption 189 

isotherm models and best results judged by the correlation coefficient 190 

(R2) were obtained with Langmuir adsorption isotherm as follows [28]: 191 

inh

ads

inh 1
C

K

C
+=

θ
                 (11) 192 

where Cinh is L-Serine concentration and Kads is Langmuir isotherm 193 

constant. 194 

    The plot of Cinh / θ versus Cinh (Fig. 4) yields a straight lines with a 195 

correlation coefficients (R2) are close to one (Table 3). This supports the 196 

assumption that the adsorption of L-Serine from 5.0 M H2SO4 solution on 197 

the Pb surface at the studied temperatures comply with the Langmuir 198 

adsorption isotherm [29]. The high values of Kads (Table 3) reflect the 199 

high adsorption efficiency of L-Serine on Pb surface [30]. Kads can be 200 

used to determine the free Gibbs energy of adsorption (∆G
0

ads) using the 201 

following equation [31]: 202 
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 11

                             ∆G
0

ads = -RT ln (55.5 Kads)            (12) 203 

    The calculated ∆G
0

ads values obtained from hydrogen evolution and 204 

electrochemical data were given in Table 3. The data clearly show that 205 

∆G
0

ads values were negative. In essence, this means that the adsorption of 206 

L-Serine molecules on Pb surface will be favored and will release energy. 207 

Furthermore, the values ∆G
0

ads of less than -40 kJ mol-1 indicate physical 208 

adsorption [32].  209 

    The heat of adsorption (Qads) of L-Serine on Pb surface has been 210 

determined as a function of the surface coverage (θ) and temperature as 211 

follows [33]:  212 










−
×








−
−

−
=

12

21

1

1

2

2
ads 1

log
1

log303.2
TT

TT
RQ

θ
θ

θ
θ

         (13) 213 

where θ1 and θ2 are the degrees of surface coverage (θ1 and θ2 values were 214 

calculated using equation 9) at T1 and T2, respectively. 215 

     The calculated values for Qads are presented in Table 4. The negative 216 

value of Qads assumes that the adsorption process is exothermic and 217 

physisorption [33]. 218 

3.5. SEM-EDX examinations 219 

      The aim of SEM-EDX examinations was to confirm the results 220 

obtained from the hydrogen evolution and electrochemical measurements 221 

that a protective surface film of L-Serine molecules is formed on the Pb 222 
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 12

surface. To attain this aim, SEM-EDX examinations of the Pb surface 223 

were performed in 5.0 M H2SO4 in the absence and presence of 20 mM of 224 

L-Serine. 225 

     As it is shown in Fig. 5a, the Pb surface was strongly damaged in the 226 

absence of L-Serine due to Pb corrosion in 5.0 M H2SO4. However, less 227 

corrosion attack was found for the sample exposed to H2SO4 solution 228 

containing L-Serine (Fig.5b). A smoother surface is seen in the presence 229 

of 20 mM L-Serine in comparison to that observed in Fig.5a. 230 

     Fig. 6 presents EDX survey spectra recorded for Pb surface exposed 231 

for 5.0 M H2SO4 in the absence and presence of 20 mM L-Serine. In 232 

H2SO4 solution free solution, the EDX spectra (Fig. 6a) show the 233 

characteristics peaks of Pb element. In addition, PbSO4 is present, as 234 

indicated by the Pb, S and O signals. In solution contain 20 mM L-Serine 235 

(Fig. 6b), the EDX spectra showed an additional line characteristic for the 236 

existence of N and C. In addition, the intensity of S signal decreased. The 237 

appearance of the N and C signals is due to the N and C atoms of the 238 

adsorbed L-Serine molecules.  239 

      These data confirm the adsorption of L-Serine molecules on the Pb 240 

surface and formulation a protective surface film.  241 

3.6. Explanation for inhibition 242 
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 13

    The effectiveness of organic inhibitor may be due to the adsorption of 243 

inhibitor molecules on the metal surface [34-35]. Adsorption process 244 

occurs through the electrostatic attractive forces between dipoles and/or 245 

ionic charges on the adsorbed molecules and the electric charge on the 246 

metal surface. The presence of heteroatoms with loosely bound electrons 247 

or π-electron systems or aromatic rings in molecular structure of the 248 

inhibitor enhance the adsorption efficiency process [36-37].  249 

     In acidic solutions the anodic reaction produces metal ions, and the 250 

principal cathodic reaction produces hydrogen gas. An inhibitor may 251 

decrease the metal dissolution, hydrogen gas evolution, or both processes. 252 

The shift of the corrosion potential to the positive direction indicates 253 

mainly inhibition of the metal dissolution process (anodic inhibitor), 254 

whereas the shift to the negative direction indicates mainly inhibition of 255 

the hydrogen gas evolution (cathodic inhibitor) [38]. 256 

     In the present work, the essential step in the inhibition of hydrogen 257 

evolution during the reaction of Pb in 5.0 M H2SO4 is the adsorption of L-258 

Serine on cathodic sites on the Pb surface.  L-Serine has three polar 259 

groups, namely, NH2, COOH, and OH groups. It can coordinate with Pb 260 

surface through the nitrogen atom and oxygen atom of the polar groups 261 

[39]. In neutral solutions, L-Serine molecules are presented usually as 262 
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 14

Zwitter ions. Whereas in acidic solutions, L-Serine molecules are 263 

presented in protonated form as the following:  264 

 265 

This means that in acidic medium, L-Serine molecules are adsorbed 266 

through the +NH3 on the electrode surface (cathodic sites) and decrease 267 

the rate of the cathodic reaction, thus the rate of hydrogen evolution will 268 

be decreased. 269 

4. Conclusion 270 

The inhibition performance of L-Serine on the hydrogen evolution at the 271 

negative electrode of a lead-acid battery (Pb) in 5.0 M H2SO4 solution 272 

was evaluated using hydrogen evolution and electrochemical methods. 273 

The results show that L-Serine works as an adequate inhibitor for the 274 

hydrogen evolution at Pb electrode in 5.0 M H2SO4. The inhibition 275 

efficiency of L-Serine depends on its concentration and solution 276 

temperature. The results of electrochemical measurements demonstrate 277 

that L-Serine behaves as a cathodic-type inhibitor. The adsorption of L-278 

Serine on Pb surface complies with Langmuir’s isotherm. SEM and EDX 279 

analysis clearly show that the inhibitor molecules form a good protective 280 

film on the Pb surface. 281 
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Table 1: The values of hydrogen evolution rates (HR) at 303 and 323K, 

and activation energy (Ea) for Pb in 5.0 M H2SO4 in the absence and 

presence of various concentrations of L-Serine. 

 

 

Ea (kJ mol
-1
) HR2 (ml/h) 

323 K 

HR1 (ml/h) 

303 K 

L-Serine (mM)  

16.92 

18.09 

18.68 

27.99 

32.75 

39.61 

34.22 

34.22 

38 

36 

27 

14 

9 

8 

7 

7 

25 

23 

17 

7 

4 

3 

3 

3 

Blank 

0.1 

0.5 

1 

5 

10 

15 

20 
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Table 2 Polarization parameters for Pb in 5.0 M H2SO4 without and with 

various concentrations of of L-Serine. 

 

L-Serine  

(mM) 

Ecorr 

(mV vs. Hg/Hg2SO4) 

jcorr 

(mA cm
-2
) 

ηj % 

Blank 

0.1 

0.5 

1 

5 

10 

15 

20 

-940 

-1030 

-1045 

-1071 

-1087 

-1112 

-1123 

-1130 

5.12 

4.60 

3.35 

1.25 

0.696 

0.460 

0.452 

0.450 

- 

10.15 

34.57 

75.58 

86.40 

91.01 

91.17 

91.21 
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Table 3 Adsorption parameters for L-Serine adsorption on Pb surface in 

5.0 H2SO4 at 303 K. 

 

Method R
2
 Kads (M

-1
) ∆G

o
ads (kJ mol

-1
) 

Hydrogen evolution  0.9985 1428 -28.36 

Electrochemical 0.9991 1666 -28.75 
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Table 4: The heat of adsorption (Qads) of L-Serine on Pb surface in 5.0 M 

H2SO4 at various concentrations of L-Serine  

 

 

Qads (kJ mol
-1
) θ2 

323 K 

θ1 

303 K 

L-Serine (mM)  

-18.64 

-6.51 

-16.57 

-19.93 

-27.43 

-20.67 

-20.67 

0.052 

0.289 

0.631 

0.763 

0.789 

0.815 

0.815 

0.080 

0.320 

0.720 

0.840 

0.880 

0.880 

0.880 

0.1 

0.5 

1 

5 

10 

15 

20 
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Fig. 1 
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Fig.2 
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Fig. 3 
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Fig .4  
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Fig.5 
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Fig.6 
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