
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



  : Corresponding author, Rouein. Halladj, halladj@aut.ac.ir 

  Tel number: 00982164543151. 

  Fax number: 00982166405847.                                                  1 

 

Modeling and Optimization of Catalytic Performance of SAPO-34 Nanocatalysts Synthesized 

Sonochemically Using a new hybrid of Non-dominated Sorting Genetic Algorithm-II based 

Artificial Neural Networks (NSGA-II – ANN) 

Sima Askari
1
; Rouein Halladj

1   ; 
Mohammad Javad Azarhoosh

1
 

1: Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 

P.O. Box 15875-4413, Hafez Ave., Tehran, Iran. 

Abstract 

Effects of ultrasound-related variables on catalytic properties of sonochemically prepared SAPO-34 

nanocatalyst in methanol to olefins (MTO) reactions were investigated. The different catalytic behaviors 

are observed which can be explained by the differences in the catalysts physicochemical properties 

affected by ultrasonic (US) power intensity, sonication temperature, irradiation time and sonotorode size. 

This result confirms that the activity of SAPO-34 catalysts improves with the rise in US power, time and 

temperature. In order to find a catalyst with maximum conversion of methanol, maximum light olefins 

content and maximum lifetime, the hybrid of non-dominated sorting genetic algorithm-II based artificial 

neural networks (NSGA-II – ANN) was used. The multilayer feed forward neural networks with back-

propagation structures were implemented using different training rules in the neural networks approach to 

relate the ultrasound-related variables and the catalytic performance of SAPO-34 catalysts. A comparison 

between experimental and artificial neural network (ANN) values indicates that the ANN model with a 3-

10-3 structure using the Bayesian regulation training rule has the best fit and can be used as a fitness 

evaluation inside the non-dominated sorting genetic algorithm-II (NSGA-II). Also, the multiple linear 

regressions (MLR) was used to predict these objective functions. The results indicate a poor fit for the 

objective functions with low coefficient of determination. This confirms the ANN technique is more 

effective than the traditional statistical-based prediction models. Finally, this ANN model was linked to 

the NSGA-II and Pareto-optimal solutions were determined by NSGA-II.  

 

Keywords: SAPO-34 nanocatalysts; sonochemical synthesis; ultrasound-related variables; MTO 

reaction; artificial neural network; Non-dominated Sorting Genetic Algorithm-II. 
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1. Introduction 

Because of the growing demand for light olefins and the shortage of petroleum resources in the 

future, the MTO technology, regarded as an alternative process for the production of light olefins from 

nonpetroleum sources without using a large amount of energy, has received strong significant academic 

and industrial attention. SAPO-34 catalyst shows an exceptional selectivity for lower olefins and the 

complete conversion of methanol in the MTO reaction, although it is rapidly deactivated by coke, which 

completely blocks the internal channels of the SAPO-34 crystals [1]. Using SAPO-34 catalyst with small 

crystallite size enhances the accessibility of methanol into its cages, resulting in better catalytic 

performance [2-4]. Since the diffusion of methanol in the SAPO-34 catalyst is limited by its small cages, 

only some cages near the external surface are active in the MTO reaction [5], therefore the effectiveness 

of the SAPO-34 catalyst is improved by reducing its crystallite size [4]. 

The importance of nanoparticles, especially nanocatalysis and their uses in different industries has 

attracted many researches. The materials in nano-scale show different characteristics in comparison with 

their bulk state [6, 7]. A great number of investigations about the effect of crystal size show that the best 

performance for SAPO-34 catalysts are of sizes less than 500 nm [2, 8]. Different techniques for 

improving the formation of SAPO-34 nanocrystals have been developed [9-12], but recently there has 

been a rapid increase in the application of unconventional methods [13, 14]. Sonochemical synthesis by 

US irradiation (20 kHz–10 MHz [15]) is a new method for synthesis of nanoparticles especially 

nanocatalysis. Contrary to conventional methods (mainly hydrothermal synthesis), this method is very 

simple, fast, and does not need any complicated facilities. In this method, the size of particles can be 

easily controlled by changing the ultrasound-related variables. Chemical effects of US waves are due to 

acoustic cavitation phenomena in the solution. Due to the collapse of bubbles, a temperature and pressure 

of about 5,000–25,000 K and 181.8 MPa [15] are produced. Collapsing of bubbles occurred in less than a 

nanosecond and so, a high rate of temperature decrease (10
11

 K/s) takes place, which prevents the 

organization and agglomeration of particles [6, 7].  

A lot of parameters affect the sonochemical synthesis and its products. Some of these effecting 

parameters are: frequency and power of US waves, time of irradiation, solution temperature, type of 

solution, reaction vessel diameter, the kind of noble gas used in the reaction environment and even 

geometrical characteristics of the US device (e.g. horn type size) [16–19].The US typically used in 

common crystallization media (mainly aqueous media) falls in the low-frequency range (namely, 15, 20, 

25 and 30 kHz) [20]. 

There are many references use Evolutionary Algorithm (EA) techniques in chemistry and catalysis 

includes Genetic Algorithm (GA), Evolutionary Strategy (ES), Genetic programming (GP), etc. 
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Evolutionary Strategy (ES) is used for selection and optimization of heterogeneous catalytic materials 

[21, 22]. Genetic Programming has been employed very few. Baumes et al. [23, 24] showed two 

examples of this very powerful technique. Genetic Algorithms (GA) have been done by various groups 

such as Pereira el al. [25] study. They reported a study of the effect of Genetic Algorithm (GA) 

configurations on the performance of heterogeneous catalyst optimization. Also, Gobin et al. [26, 27] 

used multi-objective experimental design of experiments based on a genetic algorithm to optimize the 

combinations and concentrations of solid catalyst systems. Moreover, genetic algorithm merges with 

knowledge based system [28] and has been boosted on a GPU hardware to solve a zeolite structure [29, 

30]. In addition, GA has been used for crystallography and XRD measurements [31, 32] and as an Active 

Learning method for effective sampling [33].  

2. Problem statement and objectives of the present study 

Recently, we prepared SAPO-34 nanocrystals with a crystal size of about 50 nm by means of an 

efficient US procedure [34] and effects of ultrasound-related variables on sonochemical synthesis of 

SAPO-34 nanocrystals were investigated [19]. The physicochemical characteristics of SAPO-34 catalysts, 

i.e. crystallinity, BET surface area, crystal size and shape are controlled by adjusting US power intensity, 

sonotrode size, US irradiation time and sonication temperature. In this study, first, the catalytic 

performance of the SAPO-34 nanocrystals synthesized sonochemically under various US conditions (US 

power intensity, sonication temperature, irradiation time and sonotorode size) in MTO reactions are 

studied. Afterwards, an artificial neural network and MLR model is applied for the prediction of catalytic 

performance. Finally, optimization of the catalytic performance is considered using the hybrid of NSGA-

II based ANN. The ANN is used as a fitness evaluation inside the NSGA-II. The main objectives of 

optimization were maximum conversion of methanol, maximum light olefins content and maximum 

lifetime. 

3. Experimental 

3.1. Catalyst preparation and characterization 

The SAPO-34 catalysts were synthesized by the sonochemical method as described elsewhere 

[19, 34] using precursor gel with molar ratio of 1.0Al2O3: 1.0P2O5: 0.6SiO2: 2.0 TEAOH: 70H2O. The 

sources for Al and P were Aluminum isopropoxide [98% Al (OPr
i
) 3, Merck] and H3PO4 [85 wt. % 

aqueous solution, Merck], respectively. Tetraethylammonium hydroxide [TEAOH, 20 wt %, Aldrich] was 

used as structure directing agent (SDA). Tetraethylorthosilicate [TEOS, Merck] was chosen as silica 

source for preparing primary gels. Aluminum isopropoxide was initially mixed with template (TEAOH) 

and deionized water at room temperature and stirred for an hour. Silica source (TEOS) was then added 

and stirred. Finally, with continuous stirring, phosphoric acid was added dropwise to the above solution. 
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The initial gel was irradiated with US waves at a frequency of 24 kHz. US irradiation was accomplished 

by means of US Processor UP200H (Hielscher) using titanium sonotrodes having tip diameters of 3, 7 

and 14 mm with different US power intensities. The amount of initial gel used for the sonication is 50 ml 

in each run .The sonication temperature was controlled at a temperature of 20, 30, 40 and 50°C. The 

duration of irradiation was from 5 to 30 min. After insonation, the initial gel was placed in a 30ml Teflon-

lined stainless steel autoclave and heated in an oven at 200 ºC for 1.5 h. The synthesis conditions of 

samples are given in Table 1.  

The solid product was recovered and washed three times by centrifuging with distilled water, and 

then dried at 110 ºC. The as-synthesized crystals were calcined at 560 ºC in air for 5h to remove the 

organic template molecules. Powder X-ray diffraction (XRD) patterns were recorded in step scanning on 

a Philips PW3050 X-ray diffractometer by using CuKα radiation (λ =1.54 ºA) operating at 40 kV and 40 

mA. The phase purity and the overall crystallinity were appointed by XRD. Crystallinity characterization 

of the samples was calculated by the following equation: 

 

where I is the line intensity of the sample and Ir is the line intensity of the reference sample, using the 

product having the highest crystallinity, as identified by XRD. The line intensities of the XRD pattern at 

2h equal to 9.5 and 20.5 were employed for these calculations. The crystal morphology was analyzed by 

scanning electron microscopy (SEM, Philips XL30). The mean crystal diameters of the SAPO-34 samples 

were estimated by measuring the particle size of 100 particles on SEM images using Microstructure 

Measurement software. From the results, the mean crystal size was calculated as d, by the formula 

mentioned below [19]: 

 
(1) 

 

d is a measure of volume/outer surface (di= size of particles). The BET surface areas of calcined 

samples were determined from isotherm data of nitrogen adsorption data in the relative pressure (P/P0) 

range of 0.05–0.30 obtained at 77.35 K using a Quantachrome Autosorb-1 analyzer. The surface acidity 

of the catalysts was measured by temperature programmed desorption of ammonia (NH3-TPD) using a 

Micrometrics TPD/TPR 2900 analyzer with a TCD detector. The amount of ammonia desorbed from the 

catalyst was measured by comparing the TPD areas with that for the standard sample. 
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3.2. Catalytic performance 

The conversion reactions of MTO over SAPO-34 catalysts were carried out in a fixed bed reactor made of 

quartz glass (id. 15mm) with a continuous-flow system containing a preheater and a catalyst bed under 

atmospheric pressure. The catalyst (0.6 g) charged in the catalyst bed at the center of the quartz reactor 

was activated at 500 °C in a nitrogen flow of 100 ml/min for 1 h before starting each reaction run and 

then cooled to the reaction temperature of 450 °C. A liquid mixture of methanol in water (20 vol %) was 

fed into the reactor. The feed rate was adjusted to 0.29 ml/min. The weight hourly space velocity 

(WHSV) was 4.5 h
−1

. In the preheating zone (upper part of the reactor), the temperature increased to 450 

°C in atmospheric pressure and the feed evaporates. In the catalyst bed at the center of the reactor, 

methanol vapor converted to light olefins. 

The analysis of the reaction products was performed using an on-line gas chromatograph Agilent GC 

(6890 N), equipped with a flame ionization detector (FID) and Plot-Q column. Methanol conversion 

(XCH3OH) and light olefins content (C2H4 – C3H6) are defined as below: 

 
(2) 

 
(3) 

 

3.3. ANN modeling 

ANNs are widely accepted as an information processing methodology inspired by the working 

process of the human brain. ANNs are efficient in handling the nonlinear relationship in data [35]. The 

empirical models and correlations developed by conventional methods such as different types of multiple 

regression are complex in nature, difficult to predict non-linear relationships, less accurate, and require 

long computing time. The ANN has numerous advantages, including accurate approximations of complex 

problems, greater efficiency than traditional statistical-based prediction models such as regression even 

for multiple response computations, and greater effectiveness even with incomplete and noisy input data 

[36]. 

ANN constitutes a branch of artificial intelligence which has recently undergone rapid evolution and 

progress [37]. ANN acts as a black box model, which is composed of interconnected processing units 

called artificial neurons or nodes [35]. The ANN approach has the ability to learn highly non-linear 

relationships and processes information by its dynamic system response to external inputs [36]. 
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There are several types of ANNs such as multilayer feed forward neural network (FFNN), recurrent, 

radial basis, function networks and self-organizing maps. The universal approximation theorem for neural 

networks states that every continuous function that maps intervals of real numbers to some output interval 

of real numbers can be approximated arbitrarily closely by a multi-layer perceptron with just one hidden 

layer. This result holds for a wide range of activation functions, e.g. for the sigmoidal functions. So in this 

study, a multilayer feed forward neural network is used. The multilayer feed forward neural network 

consists of an input layer, one or more hidden layers and an output layer [35, 38]. In this study, the input 

layer is composed of 3 nodes, which are the US intensity, US irradiation time and sonication temperature. 

The output layer has three nodes, which are maximum conversion of methanol, maximum light olefins 

content and nanocatalyst life time which is time on stream where methanol conversion is more than 73%. 

There is no general rule for the determination of the optimum number of nodes in the hidden layer and 

usually it is determined through trial and error [35, 38-40]. 

The nodes between each layer are connected with adaptable weights. The general working principle 

of the artificial neuron or node can be demonstrated as [35]: 

 

(4) 

where, is the input from the previous node j,  is the weight that connects node i and node j, n is the 

total number of previous nodes connecting with node i,  is bias of node i and f  is activation (transfer) 

function. Feed forward neural networks with one hidden layer can approximate virtually any linear or 

nonlinear function to an acceptable accuracy, if sufficient hidden layer nodes are provided with the 

sigmoid function as the hidden layer activation function and the linear function as the output layer 

activation function [35]. In this study, the tansig function and the purelin function are used as the 

activation functions in the hidden layer and the output layer, respectively. Therefore, a feed forward 

neural network with one hidden layer is applied to predict the experimental data in this study.  

Before using an artificial neural network, it is necessary to train the network. There are different kinds 

of training methods, in which back propagation is a common method [37]. In the current study, the back-

propagation structure is implemented using different learning rules in the neural network approach.  

Before using any method for training, an ANN has to normalize input and output. So input and output 

data are normalized between -1 and 1 by the following equation: 

 

 
(5) 
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The prediction performance of the network is assessed by using statistical coefficients, i.e. root mean 

square error (RMSE), mean square error (MSE), correlation coefficient (R
2
) and mean relative error 

(MRE) values [37, 40]. In this study, mean square error (MSE) and correlation coefficient (R
2
) which are 

calculated by the following expressions are used as the correlation performance indicators of the 

network: 

 

(6) 

 

(7) 

where  and  are arithmetic means of actual and calculated values, respectively. 

3.4. NSGA-II main process 

The genetic algorithm is an optimization tool based on Darwinian evolution [41-43]. The principles, 

on which the NSGA-II relies, are the same as those of the single-objective optimization. The strongest 

individuals (or chromosomes) are combined to create the offspring by crossover and mutation and this 

scheme is repeated over many generations. However, the multi-objective optimization algorithm must 

consider the fact that there are many ‘‘best solutions”, which modify the selection process. NSGA-II sorts 

individuals based on the non-domination rank and the crowding distance to ensure a high level of 

performance as well as good dispersion of results [44-48]. In this study, the ANN was used as a fitness 

evaluation inside the NSGA-II. The flowchart of the hybrid of non-dominated sorting genetic algorithm-II 

based artificial neural networks (NSGA-II – ANN) program is shown in Fig. 1. 

4. Results and discussion 

4.1. Catalytic performance of SAPO-34 nanocatalysts 

The methanol conversion and light olefins content (wt %) (C2=-C3=)over SAPO-34 catalysts 

synthesized by using the sonotrode having tip diameter of 7mm with different US power intensities are 

presented in Fig. 2. As indicated in Fig. 2, all SAPO-34 catalysts suffer activation in the first minutes of 

the process. The incomplete conversion of methanol in the early time on stream is due to the existence of 

an induction period [49] which can be explained by the hydrocarbon pool (HP) mechanism. Haw 

suggested that the MTO reaction proceeds by a HP mechanism with cyclic organic species such as 

Hexamethylbenzene (HMB) as reaction centers for light olefins production [49, 50]. The time for the 

formation of these cyclic organic species causes the induction period, i.e. an increase in activity before 

maximum conversion. Except for sample S1, all catalysts show a high conversion for a long time 

especially catalyst S4 which maintains its activity for 540 min. The S1 catalyst just shows a maximum 
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conversion of 81% after 60 min. A rapid fall for conversion is subsequently observed and it reaches 12% 

after 420 min. 

The nano-sized catalyst S4 shows a high content (wt %) toward light olefins (ethylene and 

propylene) for 180 min (Fig. 2) and the light olefins content decreases afterwards. Even after the reaction 

time of 540 min the light olefins content can remain at 10% over S4. The decrease in light olefins 

formation corresponds to an increase in the formation of DME which can be explained by the catalyst 

deactivation [51]. At this reaction time, DME is the main product (79 wt %) and other products are butene 

and the alkanes (C1–C5 alkanes) mainly methane.  

The catalysts S2 and S3 also show the same trend for light olefin but with lower amounts compared 

to the catalyst S4. In comparison, the content of light olefins over the SAPO-34 catalysts S1 is much 

lower than the others and it decreases rapidly (Supplementary information, Table I). 

These catalytic behaviors can be explained by the differences in catalysts physicochemical properties 

which are affected by US power intensity. According to the results obtained previously [19], the 

crystallinity changes markedly with US power intensity and higher crystallinity is obtained with 

increasing US intensity.  Therefore, the catalyst S1 synthesized at the lowest power intensity has the 

lowest crystallinity as shown in Table 1. Increasing the crystallinity results in the formation of more 

structural pores and it may enhance the diffusion rate and quantity of reactants into structure channels in 

crystallites [19]. Also, different US power intensities applied in the synthesis of SAPO-34 crystals alter 

the morphology and agglomeration of the products. It is clearly seen in Table 1 that with an increase in 

the US intensity the average crystal size of SAPO-34 crystals gradually decreases, as well as formation of 

uniform spherical nanocrystals (Supplementary information, Fig. I )instead of spherical aggregates of 

cube type SAPO-34 crystals seen previously [19]. By comparing the acidity of the SAPO-34 catalysts 

represented in Table 1, S2 and S1 samples have the highest and lowest concentration of strong acid site 

respectively, which could be active for MTO conversion, though the strength of their acid sites are 

similar. Therefore, the short lifetime of the catalyst S1 cannot be related to the strength and amount of 

acid sites but can be correlated with the crystallinity and crystal sizes of the catalyst. For larger crystals of 

the catalyst S1, the residence time in a crystal for the hydrocarbons is long because of the longer diffusion 

length. Saturated hydrocarbons and/or aromatic compounds cannot escape from the pores of SAPO-34, 

and successive polymerizations readily occur because of the long reaction time [2]. Therefore, the catalyst 

S4 possessing the higher crystallinity, smaller size and better dispersion [19] has less diffusion limitation 

and a longer lifetime[51]. Additionally, the formation of coke is inhibited over the smaller crystals of 

catalyst S4 as a result of the reduced resistance to diffusion, resulting in a much greater production of 

light olefins for longer reaction times. 
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Effects of the sonotrode size on the catalytic properties of SAPO-34 catalysts S4-S6 are shown in 

Fig.3. The catalyst S4 and S6 synthesized using the sonotrodes having tip diameters of 7, and 14 mm 

show a much higher conversion of methanol and maintain it for a longer time as well as a higher content 

toward light olefins compared to that synthesized with the sonotrode having tip diameters of 3 mm (S5). 

This can be explained by an increase in US power with increasing sonotrode size from 3 to 14 mm. 

Although the smallest sonotrode possesses the highest US intensity, i.e. 460 W.cm
-2

 (related to 100% 

amplitude setting) compared to 300 and 105 W.cm
-2

 (max intensities of sonotrodes having tip diameters 

of 7 and 14 mm, respectively), it has the smallest horn tip area, resulting in lower emitted US power. The 

increase in the US power results in the higher turbulence of the mixture and the satisfactory mixing can be 

achieved much more rapidly. The difference in US power results in different catalyst activities which can 

be attributed to the difference in the crystallinity and thus BET surface area of catalysts. It is clear from 

Table 1 that by increasing US power the crystallinity of samples increase (Supplementary information, 

Fig. II), resulting in the rise of BET surface areas. 

Fig. 4 shows the role of US irradiation time on the methanol conversion and light olefin production. 

The catalyst irradiated for 5 min (S7) shows the lowest methanol conversion and the lowest olefin content 

on account of the absence of the crystal phase. At short times, the US wave fails to blend the solution 

uniformly and only a few nuclei are formed. Some small crystal particles cannot grow further due to the 

shorter US time. Applying US for longer times produces more apparent crystals and no large crystals can 

grow, because more nuclei will occur continuously until the level of super-saturation becomes very low 

[19,20]. With the extension of US irradiation time from 5 to 15 min, the methanol conversion as well as 

the olefin content increases sharply, and the samples irradiated for 15 and 30 min show the highest olefin 

selectivity. This result confirms that the activity of SAPO-34 samples improves with the rise in 

crystallinity. 

Fig. 5 shows the catalytic performance of the products synthesized under different sonication 

temperatures of 20, 30, 40 and 50°C. With increasing the sonication temperature, the crystallinity of 

SAPO-34 products increases, smaller crystals with uniform size distribution are formed and the 

morphology of the product alters from cubic crystals to uniform nanocrystals since the temperature can 

affect the cavitation threshold. Generally, the cavitation threshold limit has been found to decrease with 

an increase in temperature. This means that cavitation bubbles are more easily produced as the 

temperature is raised. Therefore, higher sonication temperature leads to fast nucleation, which results in 

smaller particles in comparison to the lower sonication temperature [19]. According to Table 1, the 

catalysts S9 and S10 have the lowest amount of strong acid site concentration at 440–460°C and it falls in 

a narrow interval for samples S9 and S10, i.e., 0.69 and 0.60 respectively. Also, the acid strength of all 
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the samples is almost the same. Therefore, it can be concluded that the differences between the catalytic 

behaviors of samples could be more related to the crystal size and crystallinity of the catalyst. 

4.2. ANN results  

In this study, the multilayer feed forward neural networks with back-propagation structure are 

implemented using different learning rules in the neural network approach such as Bayesian regulation 

(BR), Levenberg-Marquardt (LM), Scaled conjugated gradient (SCG) and RPROP back propagation 

(RP). In the Bayesian regulation rule, the input data are divided into two parts; 70% and 30% of the data 

are used for training and test, respectively, but in other learning rules the input data are divided into three 

parts; 70%, 15% and 15% of the data are used for training, validation and test, respectively. The values of 

the training and test data are normalized between -1 and 1 by using Eq. (5). The number of data used in 

the network is 54. In this data set the sonotrode size is 7mm. The range of all experimental conditions 

used for modeling with ANN is shown in Table 2.  

The results of the network models for different neuron numbers in the hidden layer using different 

training algorithms are presented in Table 3. The correlation performance of the network is assessed by 

using mean square error (MSE) and correlation coefficient (R
2
) values. It can be seen that the Bayesian 

regulation back propagation algorithm with 10 neurons in the hidden layer is the best training procedure 

that achieved the highest R
2
 and lowest MSE. Thus, the optimum number of neurons is used to create the 

network topologies which were 3–10–3. Here, the numbers in the expressions of the network topologies 

represent the neuron numbers in the input layer, the hidden layer and the output layer, respectively. 

Fig. 6 explains comparison plots between network output and the corresponding experimental data of 

the catalytic performance of SAPO-34 nanocatalysts synthesized sonochemically, for training and test 

data using the BR training rule and 3-10-3 topology. This figure shows that there is a very good 

agreement between this ANN model and experimental values. The comparison between network 

predicted and experimental data can be seen in Table II of Supplementary information. Fig. 7 shows the 

performance graph. It is observed that the desired goal has been reached in 1000 epochs, and the ANN 

with ten hidden neurons could achieve the convergence. The errors of data attained by the optimum ANN 

model are plotted out versus the frequency of data in Fig. 8. A normal distribution of variation brings 

about a specific bell-shaped curve (Gaussian curve), with the highest point in the middle and smoothly 

curving symmetrical slopes on both sides of center. These figures illustrate an approximately normal 

distribution of errors produced by the model. The Gaussian curve reveals that our results are symmetrical 

[38].  

The methanol conversion, light olefins content and catalyst life time are illustrated versus US power 

intensity, sonication temperature and irradiation time in supplementary information (Figs III to V in 
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supplementary information). Also a Matlab user-friendly code is given as supplementary data for 

verification of ANN results (‘ANN.m', 'deNormalize FCN.m' and 'Normalize FCN.m' in supplementary 

information). 

The 3-fold cross-validation (3-CV) of model is used in this section because of the low number of 

points. The original sample is randomly partitioned into three equal size subsamples. Of the three 

subsamples, a single subsample is retained as the validation data for testing the model, and the remaining 

two subsamples are used as training data. The cross-validation process is then repeated three times (the 

folds), with each of the three subsamples used exactly once as the validation data. The three results from 

the folds are averaged to produce a single estimation. The results of the 3-CV models are presented in 

Table 4. This shows that this model is achieved the very high R
2
 and low MSE. The advantage of this 

method is that all observations are used for both training and validation, and each observation is used for 

validation exactly once.  

4.3. MLR model results  

In this section, the traditional models of objection functions includes methanol conversion, light olefins 

content and catalyst life time, obtained through liner regression analysis, are presented. These models 

used US power intensity, sonication temperature and irradiation time point as input variables. These 

models are shown in Equations 7-9 and comparison plots between the model output and its corresponding 

experimental data are given in Fig. 9.  

 (8) 

 (9) 

 (10) 

Where , , , ,  and T are methanol conversion (%), light olefins content (wt%), life time 

(min), US power intensity (W/cm
2
), sonication temperature ( ) and irradiation time (min) respectively. 

The results indicate a poor fit between experimental and predicted data with low coefficient of 

determination. Thus, the objective functions prediction of using these traditional models may not be 

reliable. Table 5 shows a comparison between ANN and MLR model results. This confirms the ANN 

technique is more effective in predicting the objective functions tested in this study than the traditional 

statistical-based prediction models. 

4.4. Optimization results using NSGA-II 
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In this section, the hybrid NSGA-II based ANN is used to optimize catalytic performance of SAPO-

34 nanocatalysts synthesized sonochemically in MTO reaction and obtains Pareto-optimal solutions. In 

other words, the ANN is used as a fitness evaluation inside the NSGA-II. A Pareto-optimal set is a series 

of solutions that are non-dominated with respect to each other. While moving from one Pareto solution to 

another, there is always a certain amount of sacrifice in one objective(s) to achieve a certain amount of 

gain in other(s).  

The objectives of optimization were minimum unreacted methanol, maximum light olefins content 

and maximum life time. Thus, the objectives included: 

The constraints were: 

The objective functions are optimized full filling the constraints given in Eqs. (14) – (16). The 

sonotrode size is 7mm. A population size of 100 is chosen with crossover probability of 0.7 and mutation 

probability of 0.1. Arithmetic crossover and gauss method were used as crossover and mutation methods, 

respectively.  

The optimum solutions have been listed in Table 6. This table shows that each of the solutions is 

better than the other in at least one of the objective functions. Thus, the user has to decide on the 

ultrasound-related variables based on the ease of operation, experience, the cost involved and also the 

quality of the product (Fig. VI in supplementary files). . Three samples of optimum solutions are 

validated experimentally Table 7 shows a comparison between experimental and predicted values. The 

results indicate that there is an acceptable agreement between experimental and predicted results by 

NSGAII–ANN. The methanol conversion, light olefins content and catalyst life time of optimum 

solutions are illustrated versus US power intensity, sonication temperature and irradiation time in 

supplementary information (Figs VII to IX in supplementary information.) 

Objective 1:  Maximizing OHCHX
3

 (11) 

Objective 2:  Maximizing light olefins content (wt %) (12) 

Objective 3: Maximizing Life time (min) (13) 

≤Co20 Sonication Temperature Co50≤  (14)

US Intensity=  12, 27, 48, 75, 108, 147, 192, 243, 300 W.cm
-2

   (15)

≤min5 US Irradiation time min30≤  (16)
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Conclusion 

MTO reaction was investigated over SAPO-34 nanocatalysts synthesized sonochemically under 

various US conditions. The sonochemically prepared catalysts were used to elucidate the effects of US 

power intensity, sonication temperature, irradiation time and sonotorode size on their catalytic 

performance, especially in terms of methanol conversion, light olefin content and catalyst lifetime. The 

catalysts synthesized with higher US power (adjusted by both the size of sonotrode or US power 

intensity) show a much higher conversion of methanol and maintain it for a long time as well as a high 

content toward light olefins. With increasing the sonication temperature and irradiation time, the 

methanol conversion as well as the light olefin content increases. Afterwards, the multilayer feed forward 

neural network with back-propagation structure was implemented using different learning rules in the 

neural network approach. The ANN with a 3-10-3 architecture and Bayesian regulation training rule has 

the best fit and was selected as the optimum ANN model for prediction. The tansig and purelin functions 

were used as the activation functions in the hidden and output layers, respectively. In the optimum model, 

the input data were divided into two parts; 70% and 30% of the data were used for training and test, 

respectively. The results indicate that there is a very good agreement between experimental and predicted 

results by ANN. Also, the multiple linear regressions (MLR) was used to predict these objective 

functions. The results indicate a poor fit for the objective functions with low coefficient of determination. 

This confirms the ANN technique is more effective than the traditional statistical-based prediction 

models. Finally, the hybrid NSGA-II based ANN was used and introduced the best catalytic performance 

of SAPO-34 nanocatalysts synthesized sonochemically under various US conditions in the MTO reaction 

and the ANN was used as a fitness evaluation inside the NSGA-II. . Such methodology (hybrid of ANN 

and NSGA-II) allowed the researchers to find a near optimum solution to their problem where multiple 

input and output variables are interacting. Despite the relative simplicity of the search space, human 

understanding and capture of the variables relationships still remains complicated. Therefore such 

approach shows how the use of both a modelling and an optimization strategy allow tackling this 

challenge. 
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Figure captions: 

Fig. 1. Flowchart of the NSGA-II – ANN program 

Fig. 2. Methanol conversion and light olefins content (C2H4 – C3H6) over SAPO-34 catalysts synthesized 

with different ultrasound power intensities; S1:48 W.cm
-2

, S2:108 W.cm
-2

, S3:192 W.cm
-2

, S4: 300 

W.cm
-2

. 

Fig. 3. Effects of the sonotrode size on the catalytic properties of SAPO-34 catalysts; (S5):3mm, 

(S4):7mm, (S6):14mm. 

Fig. 4. Effects of ultrasonic irradiation time on the methanol conversion and light olefin production over 

SAPO-34 catalysts; S7:5 min, S4:15 min, S8:30min. 

Fig. 5. Catalytic performance of the SAPO-34 products synthesized under different sonication 

temperature; S9:20°C, S10:30°C, S11:40°C, S4:50°C. 

Fig. 6. Comparison between experimental & ANN values (a) methanol conversion (%) (b) Light olefins 

content (wt %) (c) Lifetime. 

Fig. 7. Performance graph 

Fig. 8. Error histogram 

Fig. 9. Comparison between experimental & MLR model values (a) methanol conversion (%) (b) Light 

olefins content (wt %) (c) Lifetime. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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(a) 

 

(b) 

 

(c) 

Fig. 6. 
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Fig. 7.
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Fig. 8. 
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(c) 
 

Fig. 9. 
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Tables: 

Table 1. Sonochemical synthesis conditions and properties of the catalysts. 

Table 2.Range of all experimental conditions used for modeling with ANN. 

Table 3.Performance of different ANN methods for the prediction of catalytic performance of the SAPO-

34 products synthesized in MTO reaction. 

Table 4. The results of the 3-CV models 

Table 5. Comparison between optimum ANN & MLR model results 

Table 6.Pareto-optimal solution set after 200 generations. 

Table 7. Comparison between experimental & predicted values of optimum solutions 
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Table 1 

 

Nd: Not determined 

 

 

Sample 
Ultrasonic power 

intensity (W.cm-2) 

Ultrasonic 

irradiation 

time (min) 

Sonication 

temperature  

( ) 

Sonotrode    

diameter 

(mm) 

Relative 

crystallinity 

(%) 

Distribution of acid sites 

(mmol NH3/g) 

 

Weak              Strong 

    220-240°C      440–460 °C 

Mean  

crystal 

diameter  

 (nm) 

BET 

Surface 

area (m2g-1) 

S1 48 15 50 7 40 0.86 0.71 150 329 

S2 108 15 50 7 48 0.8 0.94 100 369 

S3 192 15 50 7 68 0.74 0.79 70 392 

S4 300 15 50 7 77 1.01 0.78 50 493 

   
 

  
   

 
S5 460 15 50 3 38 0.9 0.73 135 306 

S6 105 15 50 14 100 - - Nd 66 444 

   
 

  
   

 
S7 300 5 50 7 35 0.82 0.78 105 -Nd 

S8 300 30 50 7 88 - - Nd 58 429 

   
 

  
   

 

S9 300 15 20 7 52 0.97 0.69 120 - Nd 

S10 300 15 30 7 47 0.94 0.60 115 - Nd 

S11 300 15 40 7 71 1.08 0.89 79 388 
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Table 2 

Inputs:  

Sonication Temperature (  20-50 

Ultrasound Intensity (w.cm-2) 12, 27, 48, 75, 108, 147, 192, 243, 300 

Ultrasonic Irradiation time (min) 5-30 

Outputs:  

Methanol Conversion (%) 70-100 

Light Olefins Content (wt%) 36-84 

Life Time (min) 50-540 
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Table 3 

Learning 

rule 

No. of 

neurons 

R2 MSE 

Methanol 

conversion 

Light 

Olefins 

content 

Life 

time 
Mean 

Methanol 

conversion 

Light 

Olefins 

content 

Life 

time 
Mean 

LM 5 0.9808 0.9712 0.8308 0.9276 0.0045 0.0058 0.0204 0.0102 

 10 0.9932 0.9759 0.9839 0.9843 0.0017 0.0049 0.0020 0.0029 

 15 0.9957 0.9760 0.9929 0.9882 0.0010 0.0059 0.0009 0.0026 

BR 5 0.9907 0.9756 0.9917 0.9860 0.0022 0.0049 0.0009 0.0027 

 10 0.9957 0.9796 0.9922 0.9892 0.0010 0.0042 0.0009 0.0020 

 15 0.9949 0.9538 0.9523 0.9670 0.0013 0.0094 0.0080 0.0062 

SCG 5 0.9846 0.9673 0.9037 0.9519 0.0036 0.0065 0.0109 0.0070 

 10 0.9904 0.9751 0.9397 0.9684 0.0022 0.0049 0.0069 0.0047 

 15 0.9782 0.9606 0.8143 0.9177 0.0052 0.0080 0.0239 0.0123 

RP 5 0.7583 0.8336 0.7886 0.7935 0.0580 0.0332 0.0260 0.0391 

 10 0.8849 0.8121 0.7781 0.8250 0.0267 0.0377 0.0250 0.0298 

 15 0.8146 0.8671 0.713 0.7982 0.0450 0.0274 0.0327 0.0350 
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Table 4 

No. of 

Run 

R2 MSE 

Methanol 

conversion 

Light 

Olefins 

content 

Life 

time 
Mean 

Methanol 

conversion 

Light 

Olefins 

content 

Life 

time 
Mean 

1 0.9999 1.0000 1.0000 1.0000 0.0002 0.0009 0.0008 0.0006 

2 0.9998 0.9171 0.9564 0.9717 0.0001 0.0031 0.0010 0.0014 

3 0.9994 0.9983 0.9998 0.9992 0.0001 0.0008 0.0007 0.0005 

Mean 0.9997 0.9718 0.9854 0.9856 0.0001 0.0016 0.0008 0.0008 
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Table 5 

 

Method 

R2 MSE 

Methanol 

conversion 

Light 

Olefins 

content 

Life 

time 
Mean 

Methanol 

conversion 

Light 

Olefins 

content 

Life time Mean 

MLR 0.7005 0.7411 0.5121 0.6512 60.7065 68.1923 9207.9348 3112.2779 

ANN 0.9957 0.9796 0.9922 0.9892 0.0010 0.0042 0.0009 0.0020 
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Table 6 

No. 

Ultrasonic 

Intensity 

(W/cm2) 

Ultrasonic 

Irradiation 

time (min) 

Sonication 

Temperature 

( ) 

Methanol 

Conversion 

(%) 

Light Olefins 

content (wt %) 

Life time 

(min) 

1 300 25 29 100 92 486 

2 300 22 29 100 87 515 

3 300 22 30 100 90 496 

4 243 23 31 95 72 583 

5 243 23 30 93 68 668 

6 243 22 31 95 71 615 

7 243 21 30 90 63 706 

8 243 20 33 95 73 531 

9 243 14 48 97 70 521 

10 192 13 48 96 65 546 
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Table 7 

Test 

No. 

Ultrasonic 

Intensity 

(W/cm2) 

Ultrasonic 

Irradiation 

time 

(min) 

Sonication 

Temperature 

( ) 

Methanol Conversion 

(%) 

Light Olefins content 

(wt %) 
Life time (min) 

    Experimental Predicted Experimental Predicted Experimental Predicted 

1 300 25 29 100 100 86 92 495 486 

2 243 23 30 90 93 74 68 655 668 

3 243 14 48 98 97 76 70 535 521 
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