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Sequentially palladium catalyzed coupling-
cyclocondensation-coupling (C3) four-component 
synthesis of intensively blue luminescent 
biarylsubstituted pyrazoles 

Melanie Denißen,a Jan Nordmann,a Julian Dziambor,a Bernhard Mayer,a Walter 
Frank,b and Thomas J. J. Müller*,a  

1-, 3-, and 5-biarylsubstituted pyrazoles can be efficiently prepared by a microwave-assisted 
consecutive four-component synthesis based upon a sequentially Pd-catalyzed coupling-
condensation-coupling (C3), a one-pot sequence which concatenates Sonogashira alkynylation 
and Suzuki arylation intercepted by pyrazole forming cyclocondensation of the ynone 
intermediate. This diversity-oriented approach enables tailoring, fine-tuning and optimization 
of absorption and emission properties towards high fluorescence quantum yields in solution up 
to f = 0.97. The increased luminescence intensity stemming from biaryl substitution can be 
rationalized by ground and excited state computations on the DFT level of theory, which nicely 
reproduce the experimental data of absorption and emission. 
 

Introduction 

Pyrazoles are omnipresent in many fields of science and 
technology. Although they are rarely found in nature,1 they 
have application as pesticides in crop protection2 and their 
biological activities encompass analgesic, anti-inflammatory, 
sedative, antipyretic, and antispasmodic activity.3 In addition, 
these heterocycles are known as pluripotent ligands4 in 
coordination chemistry. Furthermore, pyrazoles have also 
aroused interest due their photophysical properties and 
applications such as optical brighteners as additives in 
detergents,5 UV-stabilizer for polystyrene,6 and highly selective 
fluorescence sensors.7 Quite some derivatives display large 
Stokes shifts and emission at short wavelength, i.e. blue 
luminescence, which remains an ongoing challenge in OLED 
technologies.8 Hence, novel syntheses of pyrazoles are highly 
attractive evergreens for organic chemists. 

The interesting photophysical properties of pyrazoles as 
fluorophores and the challenge to access tailor-made -systems 
by diversity-oriented syntheses (DOS)9 such as multicomponent 
reactions (MCR) have prompted us to develop a regioselective 
consecutive three-component Sonogashira coupling-
cyclocondensation (C2) synthesis of 1,3,5-substitued pyrazoles 
in a one-pot fashion (Scheme 1).10 All 1,3,5-substituted 
pyrazoles are highly fluorescent dyes with large Stokes shifts 
and moderate quantum yields. 
It is known that biphenyl is essentially coplanar in the first 
excited state S1, while the phenyl rings are distorted from 
coplanarity by ~44° in the electronic ground state S0.

11,12 This 
peculiar aspect was successfully considered for designing 
fluorescent chemosensors.13 For increasing fluorescence 
quantum yields we envisioned the implementation of extended 

delocalization by employing a DOS approach to biaryl 
pyrazoles. Therefore, biaryl substitution on the pyrazole core in 
1-, 3-, and 5-position (Figure 1) could guide the way for 
combining the photophysical characteristics of biaryls with 
pyrazole based emitters supported by systematic quantitative 
structure-activity relationship (QSAR) studies. 

 
Scheme 1. Regioselective coupling-cyclocondensation (C2) 
synthesis of 1,3,5-substituted pyrazoles.  

 
Figure 1. Biaryl substitution pattern of 1,3,5-substituted 
pyrazoles.  
Modular, flexible and reactivity-based procedures are currently 
highly topical methodologies in one-pot syntheses of 
heterocycles.14 Conceptually, instead of applying biaryl starting 
materials to the ynone strategy we considered a DOS approach 
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based upon sequential catalysis.15 In the sense of a self-relay 
catalysis16 the initially employed catalyst source should 
catalyze a subsequent catalytic step without further addition of 
the metal complexes. As a consequence a straightforward one-
pot process furnishing diversely functionalized molecules can 
be envisioned. In addition, the combined advantages of MCR 
and sequential catalysis enhance the synthetic and catalytic 
efficiency and efficacy.17 In this context sequential Pd-
catalyzed processes15 should pave the way to expanded 
pyrazoles in the sense of de novo generation-functionalization 
of the pyrazole core. Therefore, the concatenation of the C2 
sequence with a concluding Suzuki-Miyaura coupling in a one-
pot fashion promises a highly modular access to intensely 
fluorescent biarylsubstituted pyrazoles (Scheme 2). 

 
Scheme 2. Retrosynthetic analysis of biarylsubstituted 
substituted pyrazoles via coupling-condensation-coupling (C3) 
one-pot transforms.  
Here, we report a novel sequentially Pd-catalyzed C3-synthesis 
of biarylsubstituted pyrazoles in a consecutive four-component 
fashion. In addition, the photophysical properties in solution are 
reported and discussed in the light of DFT-computational 
studies. 
 
Results and discussion 

Synthesis 

For establishing the sequentially Pd(0)-catalyzed microwave-
assisted C3-four-component synthesis of 1,3,5-substituted 
pyrazoles containing biaryl units we first set out to place the 
dormant bromine functionality in the alkynyl part. Based upon 
previous studies on one-pot sequences with terminal Suzuki 

coupling9b the addition of 20 mol% of triphenylphosphane is 
necessary to stabilize the catalytically active Pd(0) species. 
Therefore, upon coupling various (hetero)aroyl chlorides 1 with 
p-bromophenyl acetylene (2a) the expected alkynones are 
formed that were subsequently cyclocondensed with hydrazines 
3 and then, still within the same reaction vessel and without 
further addition of metal complexes, different boronic acids 4 
were coupled to give the desired 5-biarylsubstituted pyrazoles 5 
in moderate to good yields (Scheme 3, Table 1).The structures 
of the compounds 5 were unambiguously assigned by 1H and 
13C NMR spectroscopy and mass spectrometry. 

 
Scheme 3. Consecutive C3-four-component synthesis of 5-
biarylsubstituted pyrazoles 5.  
 
Table 1. Consecutive C3-four-component synthesis of 5-
biarylsubstituted pyrazoles 5. 

Entry
Acid 

chloride 1 
Hydrazine 

3
Boronic 
acid 4 

5-Biarylsubstituted pyrazoles 
5 (yield) 

1 
R1 = C6H5 

(1a) 
R 3= CH3 

(3a) 

R4 = 4-
MeC6H4 

(4a)    
5a (67%) 

2 1a 3a 
R4 = C6H5 

(4b) 
      

5b (76%) 

3 1a 3a 
R4 = 2-
Me-4-

FC6H3 (4c) 
     

5c (66%) 

4 
R1 = 2-
FC6H4 
(1b) 

3a 4a 

 5d (29%) 

5 
R1 = 2-
thienyl 

(1c) 
3a  4a 

 
5e (68%) 

6 1c 3a 
R4 = 4-

MeOC6H4 
(4d) 

 5f (43%) 

7 1a 
R3 = H 
(3b)a 

4a 
     

5g (45%) 
aEmployed as N2H4·H2O. 
 
However, these optimized reaction conditions (Scheme 3) 
cannot be directly transposed to the synthesis of 3-substituted 
pyrazoles starting from 4-bromo benzoyl chloride (1d). The 
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model reaction with acid chloride 1d, phenyl acetylene (2b), 
methyl hydrazine (3a), and phenyl boronic acid (4b) in THF 
gives rise to the formation of the desired 3-substituted pyrazole 
6a only in 26 % (2 h for the Sonogashira coupling step) and 39 
% (17.5 h for the Sonogashira coupling step). However, 
changing the solvent to 1,4-dioxane considerably improves the 
overall yield of product 6a with a Sonogashira coupling time of 
2 h. 
When applying these conditions to the C3-four-component 
sequence of 4-bromo benzoyl chloride (1d), alkynes 2, methyl 
hydrazine (3a), and arylboronic acids 4 3-biarylsubstituted 
pyrazoles 6 can be obtained in good yields (Scheme 4, Table 2). 
The structures of the compounds 6 were unambiguously 
assigned by 1H and 13C NMR spectroscopy and mass 
spectrometry. 

 
Scheme 4. Consecutive C3-four-component synthesis of 3-
biarylsubstituted pyrazoles 6.  
 
Table 2. Consecutive C3-four-component synthesis 3-
biarylsubstituted pyrazoles 6. 

Entry Alkyne 2 
Boronic 
acid 4 

3-Biarylsubstituted pyrazoles 6
(yield) 

1 
R2 = C6H5 

(2b) 4b 

         
6a (66%) 

2 
R2 = 4-

MeC6H4 (2c) 4c 

 
6b (51%) 

3 
R2 = n-C4H9 

(2d) 
4b 

        
6c (61%) 

4 2b 
R4 = 4-

NCC6H5 

(4e) 

    
6d (59%) 

 
The substitution pattern of the pyrazole core can be varied by 
the choice of different alkynes 2 and boronic acids 4. In 

addition to aryl substituents a butyl substituent can be 
uneventfully introduced in the 5-position (Table 2, entry 3). 
Electron neutral and electron withdrawing aryl boronic acids 
(Table 2, entry 4) are well tolerated in the reaction sequence. 
Sterically hindered boronic acids can also be coupled (Table 2, 
entry 2). 
In the sense of a consecutive C3-pseudo-five-component 
synthesis starting from 4-bromo benzoyl chloride (1d), p-
bromophenyl acetylene (2a), methyl hydrazine (3a), and phenyl 
boronic acid (4b) the 3,5-bis(biphenyl) 1-methyl pyrazole (7) 
was obtained in 37 % yield, i. e. an average yield of 72 % per 
step in this three-step one-pot process (Scheme 5). The 
structure of compound 7 was unambiguously assigned by 1H 
and 13C NMR spectroscopy and mass spectrometry. 

 
Scheme 5. Consecutive C3-pseudo-five-component synthesis of 
3,5-bis(biphenyl) 1-methyl pyrazole (7). 
   
Finally, we also planned to couple a bromophenyl substituent in 
the 1-position. However, the standard conditions for the 
synthesis of 3- and 5-biphenylic substituted pyrazoles 5 and 6 
were found to be unsuitable for accessing this substitution 
pattern. The problem already arose in the pyrazole formation 
step. Careful optimization of these first two steps revealed 
dichloromethane as a solvent with a reaction time of 16 h at 
room temperature for the Sonogashira step and subsequent 
cyclocondensation with dielectric heating at 100 °C for 40 min 
gave 1-p-bromophenyl-3,5-diphenylpyrazole in 61 % yield. 
These modifications were then employed in the consecutive 
four-component synthesis to give 1-biarylsubstituted pyrazoles 
8 in moderate to good yields (Scheme 6, Table 3). The 
structures of the compounds 8 were unambiguously assigned by 
1H and 13C NMR spectroscopy and mass spectrometry, and 
later by an X-ray crystal structure analysis of compound 8b 
(Figure 2). Although, in the cases of the pyrazoles 5, 6, and 7 
exclusively the regioisomers arising from the Michael addition 
of the inner nitrogen atom of the hydrazines were formed, the 
regioselectivity for aryl hydrazines was inverted giving 
preferentially the products arising from the Michael addition of 
the outer nitrogen atom. For compounds 8e-h the minor 
regioisomer could be identified and quantified by 1H NMR 
spectroscopy. The regioselectivity in these cases lies between 
6:1 and 22:1 in favor of the depicted regioisomers. 

 
Scheme 6. Consecutive C3-four-component synthesis of 1-
biarylsubstituted pyrazoles 8.   
 
This sequence also allows the use of boronic acid esters (Table 
3, entry 4) besides the usually employed boronic acids without 
changing the reaction conditions. Besides structural elucidation 
by spectroscopy the solid state structure of the pyrazole 8b was 
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additionally corroborated by single crystal X-ray analysis 
(Figure 2).18 

 

 
Table 3. Consecutive C3-four-component synthesis of 1-biarylsubstituted pyrazoles 8. 
Entry Acid chloride 1 Alkyne 2 Boronic acid 4 1-Biarylsubstituted pyrazoles 8 (yield) 

1 1a 2b 4b 

 8a (57%) 

2 1a 2b 4a 

 8b (59%) 

3 1a 2b 4e 

 8c (62%) 

4 1a 2b 2-Bpin-5-methyl-thio-phene (4f) 

 8d (55%) 

5 R1 = 4-MeOC6H4 (1e) 2b 4a 

 8e (44%, rr 14:1)a 

6 R1 = 2-ClC6H4 (1f) 2b 4a 

 8f (19%, rr 10:1)a 

7 1c 2b 4a 

 8g (55%, rr 22:1)a 

8 1a 2d 4a 

 8h (60%, rr 6:1)a 
aThe ratio of regioisomers, rr, was determined by intergration of the characteristic proton signal of the methine group.
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this behavior the oscillatory strength of the first ten excited 
states of 8b were compared. The inspection reveals that the 
absorption at lower wavelengths not only consists of one but 
also of two different excited states, in particular, the excited 
states S3 and S4 are apparently superimposed.   
 
Table 6. TD-DFT calculations (CAM-B3LYP 6-311G(d,p)) of 
the absorption maxima for the pyrazoles 5c, 6d and 8b. 

Structure 
Experimental 
max,abs [nm] 

Computed max,abs [nm] (most dominant 
contributions) 

5c 263 
256 (HOMO-1→LUMO (45 %), 
(HOMO→LUMO (39 %)) 

6d 307 298 (HOMO→LUMO (86 %)) 
8b 257 

 
296 

243 (HOMO→LUMO+1 (20 %)) 
245 (HOMO→LUMO +2 (32 %)) 
278 (HOMO→LUMO (85%)) 

 
In addition the geometry of the vibrationally relaxed excited 
state (S1)

31 of structure 6d was optimized by a gas phase DFT 
calculation using the program package Turbomole32,33 with the 
B3LYP functional and the TZVP basis set.34 COSMO 
(Conductor-like Screening Model)35 has not been implemented 
for excited state calculations so far, thus, no solvent model 
computations were performed. It is also noteworthy to mention 
that the vibrationally relaxed S1 state possess a coplanar 
geometry of the central pyrazole core. This is different with 
respect to simple substituted and annellated pyrazoles where 
butterfly and kite conformations are considered to be the origin 
of large Stokes shifts.19 The vibrationally relaxed ground state 
(S0) geometry, optimized with Gaussian09 with a similar basis 
set employing dichloromethane as a solvent, differs at first 
glance from the geometry of the excited state only in the 
dihedral angle between the two rings of the biaryl substituent. 
As a consequence of excitation the biphenyl moiety planarizes 
with a torsional angle calc.,exc = 13° (calc.,ground = 36°). A closer 
inspection of the optimized vibrationally relaxed S1 state 
structure reveals far more distinct geometry changes. In the 
pyrazole core the nitrogen-nitrogen bond N4-N5 is contracted, 
whereas the nitrogen-carbon bonds C1-N5 and C3-N4 are 
elongated upon excitation (Figure 9, Table 7). 
  
Table 7. Selected computed bond lengths [Å] for 6d in the 
vibrationally relaxed S0 (Gaussian09/B3LYP/6-311G(d,p)) and 
S1 states (Turbomole/B3LYP/def-TZVP). 
Bonds S0 S1 

C1-C2 1.39 1.37 
C1-N5 1.37 1.39 
N4-N5 1.34 1.32 
C3-N4 1.34 1.37 
C3-C8 1.47 1.43 
C8-C18 1.40 1.42 
C17-C18 1.39 1.37 
C16-C17 1.40 1.43 
C16-C19 1.48 1.44 
C19-C20 1.41 1.43 
C20-C21 1.39 1.37 
C21-C22 1.40 1.42 
C22-C25 1.43 1.41 
C25-N26 1.16 1.16 
 
In addition, the carbon-carbon bonds in the biaryl residue 
indicate rather bond length alternation between single and 
double bonds than typical aromatic bond lengths. This also 
plausibly rationalizes the biphenyl planarization upon 
excitation. Also the carbon-carbon bond C22-C25 ligating the 
nitrile group to the phenylene moiety is slightly contracted to 

1.41 Å. While the pyrazole nitrogen atom N5 bears a partial 
charge of -0.30 in the ground state, it is slightly positively 
charged (0.08) in the excited state. However, nitrogen atom N4 
is obviously not affected by this charge transfer. Yet, adjacent 
carbon atoms to the nitrogen atoms reveal an inverse behavior. 
In the nitrile group with nitrogen atom N26 receives a lower 
negative partial charge in the excited state whereas the partial 
charge of the nitrile carbon atom C25 alters from positive to 
negative. In conclusion the dipolar nature of the first excited 
state of 6d is evident (Figure 9). 

 
Figure 9. Non polar ground state (S0) structure (bottom) and 
dipolar structure of vibrationally relaxed first excited state (S1) 
structure (top) of pyrazole derivative 6d with partial charges 
(positive: blue, negative: red).   
 
The calculation of the emission maximum of 6d of λem,calc = 374 
nm, performed with Turbomole with TZVP on the geometry 
optimized structure of the excited state as confirmed by a 
numerical frequency analysis,36 reproduces the experimental 
value of λem,exp = 385 nm in good agreement. The measured and 
the computed absorption maximum of pyrazole 5d are 
representative for this class of pyrazoles. In this case the 
dominant contribution arises from the HOMO→LUMO 
transition (Table 8). 
 
Table 8. Experimental data and TD-DFT calculations (CAM-
B3LYP 6-311G(d,p)) of the absorption and emission maxima 
for pyrazole 5d in dichloromethane. 

 
experimental 

[nm] 
computed [nm] 

transition 
dipole 

moment 

max,abs (5d) 281 
256 (HOMO→LUMO 

(50%)) 
10.6 

max,em (5d) 352 340 20.6 
 
In addition the geometry of the vibrationally relaxed excited 
state (S1)

31 of structure 5d was optimized with Gaussian09 with 
a similar basis set employing dichloromethane as a solvent. The 
calculation of the emission maximum of pyrazole 5d of λem,calc 
= 340 nm, reproduces the experimental value of λem,exp = 352 
nm in good agreement. Figure 10 summarizes the results of the 
theoretical analysis. The transition dipole moment after 
excitation from the electronic ground state S0 to the Franck-
Condon state S1

FC1 ( = 10.6 SI) differs extremely from the 
transition dipole moment from the electronic relaxed excited 
state S1 to the Franck-Condon state S0

FC2 ( = 20.1 SI). 
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Table 8. Experimental details for the one-pot synthesis of 5-biarylsubstituted pyrazoles 5. 
Entry Acid chloride 1 Alkyne 2a Hydrazine 3 Boronic acid 4 5-Biarylsubstituted pyrazoles 5 

 mg (mmol) mg (mmol) mg (mmol) mg (mmol) mg (%) 
1 142 (1.00) of 1a 182 (1.05) of 2a 51.9 (1.10) of 3a 204 (1.50) of 4a 217 (67) of 5a 
2 141 (1.00) of 1a 182 (1.05) of 2a 50.9 (1.10) of 3a 183 (1.50) of 4b 229 (76) of 5b
3a 281 (2.00) of 1a 362 (2.00) of 2a 101.4 (2.20) of 3a 464 (3.00) of 4c 451 (66) of 5c
4 160 (1.00) of 1b 182 (1.05) of 2a 51.4 (1.10) of 3a 205 (1.50) of 4a 100 (29) of 5d
5 148 (1.00) of 1c 181 (1.05) of 2a 53.0 (1.10) of 3a 205 (1.50) of 4a 227 (69) of 5e
6 150 (1.00) of 1c 183 (1.05) of 2a 52.4 (1.10) of 3a 229 (1.50) of 4d 147 (43) of 5f
7 141 (1.00) of 1a 181 (1.05) of 2a 56.1 (1.10) of 3b 205 (1.50) of 4a 140 (45) of 5g

aPdCl2(PPh3)2 (28.0 mg, 0.04 mmol), CuI (15.4 mg, 0.08 mmol), Et3N (207.4 mg, 2.05 mmol), Cs2CO3 (1.95 g, 4.50 mmol), PPh3 
(104.1 mg, 0.40 mmol). 
 
1-Methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-
pyrazole (5a) 
According to GP1 217 mg (67%) of compound 5a were 
obtained as a yellow solid; Mp 122 °C. 1H NMR (300 MHz, 
CDCl3)  = 2.43 (s, 3 H), 3.99 (s, 3 H), 6.66 (s, 1 H), 7.28-7.34 
(m, 3 H), 7.42 (t, J = 7.4 Hz, 2 H), 7.50-7.59 (m, 4 H), 7.70 (d, 
J = 8.5 Hz, 2 H), 7.85 (d, J = 7.0 Hz, 2 H). 13C NMR (75 MHz, 
CDCl3)  = 21.3 (CH3), 37.8 (CH3), 103.4 (CH), 125.7 (CH), 
127.1 (CH), 127.3 (CH), 127.8 (CH), 128.8 (CH), 129.2 (CH), 
129.4 (Cquat), 129.8 (CH), 133.6 (Cquat), 137.5 (Cquat), 137.8 
(Cquat), 141.5 (Cquat), 145.0 (Cquat), 150.7 (Cquat). IR (ATR): 
̃[cm-1] 3024 (w), 2980 (w), 2918 (w), 1601 (w), 1485 (m), 
1460 (m), 1438 (w), 1358 (w), 1290 (w), 1188 (w), 1115 (w), 
1002 (m), 954 (m), 912 (w), 853 (m), 814 (s), 793 (s), 762 (s), 
739 (m), 687 (s), 671 (m). GC-MS (m/z(%)): 326 (2), 325 (25), 
324 ([M+], 100), 321 (2), 320 (3), 294 (2), 239 (2), 215 (4), 194 
(4), 193 (7), 192 (3), 171 (3), 162 (15), 161 (4), 154 (4), 153 
(3), 130 (3), 118 (3), 117 (3), 104 (3), 89 (3), 77 (5). UV/Vis 
(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 273.5 (40100). 
Emission (CH2Cl2): max [nm] (f) = 357.0 (0.77). Stokes shift 
[cm-1] = 9400. Anal. calcd. for C23H20N2 (324.4): C 85.15, H 
6.21, N 8.63; Found C 85.23, H 6.17, N 8.75. 
 
5-([1,1'-Biphenyl]-4-yl)-1-methyl-3-phenyl-1H-pyrazole (5b) 
According to GP1 229 mg (76%) of compound 5b were 
obtained as a yellow solid; Mp 112 °C. 1H NMR (600 MHz, 
CDCl3)  = 3.99 (s, 3 H), 6.67 (s, 1 H), 7.33 (t, J = 7.4 Hz, 1 
H), 7.39-7.44 (m, 3 H), 7.49 (t, J = 7.7 Hz, 2 H), 7.56 (d, J = 
8.3 Hz, 2 H), 7.66 (d, J = 7.2 Hz, 2 H), 7.72 (d, J = 8.3 Hz, 2 
H), 7.87 (d, J = 7.2 Hz, 2 H). 13C NMR (151 MHz, CDCl3)  = 
37.9 (CH3), 103.4 (CH), 125.7 (CH), 127.2 (CH), 127.5 (CH), 
127.8 (CH), 127.9 (CH), 128.8 (CH), 129.1 (CH), 129.2 (CH), 
129.6 (Cquat), 133.5 (Cquat), 140.4 (Cquat), 141.5 (Cquat), 144.9 
(Cquat), 150.7 (Cquat). IR (ATR):  ̃ [cm-1] 3028 (w), 2936 (w), 
1601 (w), 1483 (m), 1460 (m), 1439 (w), 1360 (w), 1279 (w), 
1186 (w), 1113 (w), 1003 (m), 957 (w), 918 (w), 849 (m), 799 
(m), 766 (s), 737 (m), 694 (s), 675 (m). EI-MS (m/z (%)): 311.1 
(31), 310 ([M+], 100), 273 (3), 232 (5), 179 (6), 155 (9), 135 
(7), 116 (3), 77 (5). UV/Vis (CH2Cl2): max [nm] ([Lcm-1mol-

1]) = 268.5 (36700). Emission (CH2Cl2): max [nm] (f) = 359.0 
(0.77). Stokes shift [cm-1] = 8600. Anal.calcd. for C22H18N2 
(310.4): C 85.13, H 5.85, N 9.03; Found C 84.92, H 5.88, N 
8.77. 
 
5-(4'-Fluoro-2'-methyl-[1,1'-biphenyl]-4-yl)-1-methyl-3-
phenyl-1H-pyrazole (5c) 
According to GP1 451 mg (66%) of compound 5c were 
obtained as a light yellow solid; Mp 124 °C. 1H NMR (300 
MHz, CDCl3)  = 2.32 (s, 3 H), 4.00 (s, 3 H), 6.67 (s, 1 H), 
6.93 - 7.05 (m, 2 H), 7.23 (dd, J = 8.4, 6.0 Hz, 1 H), 7.33 (d, J = 

7.4 Hz, 1 H), 7.38-7.46 (m, 4 H), 7.47-7.54 (m, 2 H), 7.82-7.89 
(m, 2 H). 13C NMR (75 MHz, CDCl3)  = 20.8 (CH3, d, J = 1.4 
Hz), 37.9 (CH3), 103.5 (CH), 112.9 (CH, d, J = 21.1 Hz), 117.1 
(CH, d, J = 21.0 Hz), 125.7 (CH), 127.79 (CH), 128.6 (CH), 
128.8 (CH), 129.4 (Cquat), 129.8 (CH), 131.3 (Cquat, d, J = 8.3 
Hz), 133.5 (Cquat), 137.2 (Cquat, d, J = 3.1 Hz), 137.9 (d, J = 7.8 
Hz), 141.4 (Cquat), 144.9 (Cquat), 150.7 (Cquat), 162.3 (Cquat, d, J 
= 246.0 Hz). IR (ATR):  ̃[cm-1] 3026 (w), 2940 (w), 1609 (w), 
1481 (m), 1460 (m), 1439 (w), 1360 (w), 1269 (m), 1223 (m), 
1192 (w), 1150 (m), 1119 (w), 1003 (m), 955 (m), 909 (w), 850 
(m), 799 (m), 766 (s), 685 (s), 683 (m). GC-MS (m/z(%)): 343 
([M+ + H], 25),342 ([M+], 100), 183 ([C13H10F

+], 13), 157 
([C10H9N2

.], 7), 118 ([C8H5F
+], 22), 91 ([C7H7

+], 9), 
77([C6H5

+], 19), 65 ([C5H5
+], 2), 51 ([C4H3

+], 4). UV/Vis 
(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 263.0 (38400). 
Emission (CH2Cl2): max [nm] (f) = 344.5 (0.67). Stokes shift 
[cm-1] = 9000. Anal. calcd. for C23H19N2F (342.4): C 80.68, H 
5.59, N 8.18; Found C 80.58, H 5.52, N 7.9. 
 
3-(2-Fluorophenyl)-1-methyl-5-(4'-methyl-[1,1'-biphenyl]-4-
yl)-1H-pyrazole (5d) 
According to GP1 100 mg (29%) of compound 5d were 
obtained as a light yellow solid; Mp 132 °C. 1H NMR (300 
MHz, CDCl3)  = 2.42 (s, 3 H), 4.00 (s, 3 H), 6.81 (d, JH-F = 3.9 
Hz, 1 H), 7.08-7.24 (m, 2 H), 7.29 (d, J = 8.3 Hz, 3 H), 7.55 (d, 
J = 6.7 Hz, 4 H), 7.69 (d, J = 8.5 Hz, 2 H), 8.04 (td, J = 7.7 Hz, 
1.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3)  = 21.3 (CH3), 37.9 
(CH3), 106.9 (CH, d, J = 9.6 Hz), 116.2 (CH, d, J = 22.3 Hz), 
121.3 (Cquat), 121.5 (Cquat), 124.4 (CH, d, J = 3.4 Hz), 127.1 
(CH), 127.3 (CH), 128.4 (CH, d, J = 3.8 Hz), 129.0 (CH, d, J = 
8.3 Hz), 129.3 (CH), 129.8 (CH), 137.5 (Cquat), 137.7 (Cquat), 
141.5 (Cquat), 144.6 (Cquat), 145.2 (Cquat), 160.2 (Cquat, d, J = 
249.2 Hz). IR (ATR):  ̃[cm-1] 3022 (w), 2345 (w), 1481 (m), 
1468 (m), 1433 (w), 1354 (w), 1258 (w), 1206 (w), 1190 (w), 
1043 (w), 961 (w), 854 (m), 808 (s), 756 (s), 737 (m), 692 (m). 
GC-MS (m/z (%)): 343 ([M+ + H], 25), 342 ([M+], 100), 299 
([C23H17N2F

+], 4), 206 (2), 193 (4), 181 (3), 178 (3), 171 (15), 
165 (4), 152 (3), 148 (2), 136 (2), 122 (4), 102 (3). UV/Vis 
(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 281.0 (34200). 
Emission (CH2Cl2): max [nm] (f) = 351.5 (0.97). Stokes shift 
[cm-1] = 7100. Anal. calcd. for C23H19N2F (342.4): C 80.68, H 
5.59, N 8.18; Found C 79.08, H 5.43, N 8.01. 
 
1-Methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-(thiophen-2-
yl)-1H-pyrazole (5e) 
According to GP1 227 mg (69%) of compound 5e were 
obtained as a colorless light yellow solid; Mp 130°C. 1H NMR 
(600 MHz, CDCl3)  = 2.43 (s, 3 H), 3.95 (s, 3 H), 6.57 (s, 1 
H), 7.05-7.10 (m, 1 H), 7.26 (d, J = 4.3 Hz, 1 H), 7.30 (d, J = 
7.8 Hz, 2 H), 7.36 (d, J = 3.5 Hz, 1 H), 7.52 (d, J = 8.3 Hz, 2 
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H), 7.55 (d, J = 8.0 Hz, 2 H), 7.69 (d, J = 8.2 Hz, 2 H). 13C 
NMR (151 MHz, CDCl3)  = 21.3 (CH3), 37.8 (CH3), 103.3 
(CH), 123.6 (CH), 124.4 (CH), 127.0 (CH), 127.6 (CH), 127.3 
(CH), 129.0 (CH), 129.2 (CH), 129.8 (Cquat), 136.8 (Cquat), 
137.4 (Cquat), 137.8 (Cquat), 141.6 (Cquat), 144.9 (Cquat), 146.0 
(Cquat). IR (ATR):  ̃[cm-1] 3019 (w), 2930 (w), 1489 (m), 1477 
(m) 1439 (m), 1396 (m), 1375 (m), 1285 (m), 1221 (m, C-S), 
1180 (w) 1105 (w) 1005 (m), 843 (m), 795 (s), 741 (m), 694 
(s), 681 (m). GC-MS (m/z (%)): 330 ([M+], 100), 287 (7), 239 
([C14H11N2S

+], 2), 165 ([C13H9
+], 18), 91 ([C7H7

+], 8), 
77([C6H5

+], 2), 65 ([C5H5
+], 4), 51 ([C4H3

+], 3). UV/Vis 
(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 285.0 (44000). 
Emission (CH2Cl2): max [nm] (f) = 382.0 (0.35). Stokes shift 
[cm-1] = 8900. Anal. calcd. for C21H18N2S (330.5): C 76.33, H 
5.49, N 8.48; Found C 76.11, H 5.35, N 8.47. 
 
5-(4'-Methoxy-[1,1'-biphenyl]-4-yl)-1-methyl-3-(thiophen-2-
yl)-1H-pyrazole (5f) 
According to GP1 147 mg (43%) of compound 5f were 
obtained as a light yellow solid; Mp 117 °C. 1H NMR (300 
MHz, CDCl3)  = 3.87 (s, 3 H), 3.94 (s, 3 H), 6.55 (s, 1 H), 
7.01 (d, J = 8.8 Hz, 2 H), 7.07 (dd, J = 5.1 Hz, 3.6, 1 H), 7.25 
(dd, J = 4.9 Hz, 1.2, 1 H), 7.35 (dd, J = 3.5, 1.1 Hz, 1 H), 7.50 
(d, J = 8.4 Hz, 2 H), 7.58 (d, J = 8.8 Hz, 2 H), 7.66 (d, J = 8.4 
Hz, 2 H). 13C NMR (75 MHz, CDCl3)  = 37.8 (CH3), 55.5 
(CH3), 103.3 (CH), 114.5 (CH), 123.6 (CH), 124.4 (CH), 127.0 
(CH), 127.6 (CH), 128.3 (CH), 128.7 (Cquat), 129.2 (CH), 132.8 
(Cquat), 136.8 (Cquat), 141.2 (Cquat), 145.0 (Cquat), 146.0 (Cquat), 
159.7 (Cquat). IR (ATR):  ̃[cm-1] 3030 (w), 2938 (w), 2839 (w), 
1603 (m), 1516 (m), 1487 (m), 1443 (m), 1369 (w), 1285 (m), 
1261 (m), 1248 (m), 1178 (m), 1117 (w), 1026 (m), 1001 (m), 
920 (m), 849 (m), 810 (s), 779 (s), 752 (w), 700 (s), 642 (m). 
GC-MS (m/z (%)): 348 (8). 347 (24), 346 (100), 332 (5), 331 
(23), 304 (3), 303 (15), 258 (2), 174 (2), 173 (16), 152 (19), 139 
(4), 130 (3), 117 (3), 110 (2). UV/Vis (CH2Cl2): max [nm] 
([Lcm-1mol-1]) = 289.0 (43300). Emission (CH2Cl2): max 
[nm] (f) = 363.0 (0.80). Stokes shift [cm-1] = 7100. Anal. 
calcd. for C21H18N2OS (346.5): C 72.80, H 5.24, N 8.09; Found 
C 72.62, H 5.01, N 7.86. 
 
5-(4'-Methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole 
(5g) 

According to GP1 140 mg (45%) of compound 5g were 
obtained as a colorless solid; Mp 189 °C. 1H NMR (300 MHz, 
acetone-d6)  = 2.37 (s, 3 H), 7.17 (s, 1 H), 7.29 (d, J = 7.9 Hz, 
2 H), 7.36 (d, J = 7.3 Hz, 1 H), 7.46 (t, J = 7.5 Hz, 2 H), 7.61 
(d, J = 8.2 Hz, 2 H), 7.73 (d, J = 8.4 Hz, 2 H), 7.90 (d, J = 7.2 
Hz, 2 H), 7.96 (d, J = 8.4 Hz, 2 H), 12.59 (s, 1 H). 13C NMR 
(75 MHz, acetone-d6)  = 21.1 (CH3), 100.4 (CH), 126.2 (CH), 
126.6 (CH), 127.4 (CH), 127.8 (CH), 128.7 (CH), 129.7 (CH), 
130.4 (CH), 138.0 (3 Cquat), 138.4 (2 Cquat), 141.1 (2 Cquat). IR 
(ATR):  ̃[cm-1] 3030 (w), 2940 (w), 2859 (w), 1605 (w), 1489 
(m), 1458 (m), 1377 (w), 1290 (w), 1180 (m), 1115 (w), 1005 
(w), 968 (m), 849 (m), 814 (s), 795 (s), 762 (s), 741 (w), 689 
(s). EI-MS (m/z (%)): 311 (M+, 21), 310 (100), 298 (6), 281 (6), 
265 (6), 189 (4), 165 (7), 155 (9), 154 (5), 140 (3), 104 (2), 89 
(2), 77 (2). UV/Vis (CH2Cl2): max [nm] ([Lcm-1mol-1]) = 
285.0 (42000). Emission (CH2Cl2): max [nm] (f) = 343.5 
(0.86). Stokes shift [cm-1] = 6000. HRMS calcd. for 
C22H18N2+H+: 311.1543; Found 311.1546. 
 
General Procedure for the One-pot Synthesis of 3-
Biarylsubstituted Pyrazoles 6 (GP2). In a 10 mL microwave 
tube PdCl2(PPh3)2 (14.0 mg, 0.02 mmol) and CuI (7.62 mg, 
0.04 mmol) were dissolved in 1,4-dioxane (4 mL) under 
nitrogen. To the yellow solution acid chloride (1d) (226 mg, 
1.00 mmol) and the alkyne 2 (1.0 mmol) were added (for 
experimental details see Table 9). Finally triethylamine (106 
mg, 1.05 mmol) was added. The reaction mixture turned from 
yellow to light brown and was stirred at room temperature for 2 
h. Then methylhydrazine (3a) (51.3 mg, 1.10mmol) was added 
and the reaction mixture was stirred under continuous 
microwave irradiation at 150°C for 20 min. After cooling to 
room temperature the boronic acid 4 (1.5 mmol), Cs2CO3 (978 
mg, 3.00 mmol) dissolved in deionized water (1.0 mL) and 
PPh3 (53 mg, 0.2 mmol) were added. The reaction mixture was 
stirred under continuous microwave irradiation at 120°C for 1 
h. After cooling to room temperature the reaction mixture was 
extracted with dichloromethane (3 x 20 mL) and then washed 
with a saturated aqueous solution of ammonium chloride and 
brine. The combined organic layers were dried with anhydrous 
magnesium sulfate. The crude products were purified by flash 
chromatography (n-hexane/ethyl acetate 10:1 (v/v)) to give the 
desired pyrazoles 6. 

 
Table 9. Experimental details for the one-pot synthesis of 3-biarylsubstituted pyrazoles 6. 
Entry Acid chloride 1d Alkyne 2 Methylhydrazine 3a Boronic acid 4 3-Biarylsubstituted pyrazoles 6 

 mg (mmol) mg (mmol) mg (mmol) mg (mmol) mg (%)
1 226 (1.00) of 1d 106.4 (1.00) of 2b 51.3 (1.10) 183 (1.50) of 4b 207 (66) of 6a
2a 330 (1.50) of 1d 179 (1.50) of 2c 77.1 (1.70) 325 (2.10) of 4c 274 (51) of 6b
3b 444 (2.00) of 1d 170 (2.00) of 2d 104 (2.20) 367(3.00) of 4b 356 (61) of 6c
4b 439 (2.00) of 1d 205 (2.00) of 2b 101 (2.20) 407 (2.80) of 4e 395 (59) of 6d

aPdCl2(PPh3)2 (21.0 mg, 0.03 mmol), CuI (11.4 mg, 0.06 mmol), Et3N (159 mg, 1.57 mmol), Cs2CO3 (1.47 g, 4.50 mmol), PPh3 
(79.1 mg, 0.30 mmol). bPdCl2(PPh3)2 (28.0 mg, 0.04 mmol), CuI (15.2 mg,0.08 mmol), Et3N (212 mg, 2.10 mmol), Cs2CO3 (1.96 
mg, 6.0 mmol), PPh3 (105 mg, 0.40 mmol). 
 
3-([1,1'-Biphenyl]-4-yl)-1-methyl-5-phenyl-1H-pyrazole (6a) 
According to GP2 207 mg (66%) of compound 6a were 
obtained as a light yellow solid; Mp 101 °C. 1H NMR (300 
MHz, CDCl3)  = 3.96 (s, 3 H), 6.66 (s, 1 H), 7.29-7.54 (m, 8 
H), 7.66 (d, J = 8.5 Hz, 4 H), 7.92 (d, J = 8.5 Hz, 2 H). 13C 
NMR (75 MHz, CDCl3)  = 37.8 (CH3), 103.4 (CH), 126.0 
(CH), 127.1 (CH), 127.4 (CH), 127.5 (CH), 128.7 (CH), 128.87 
(CH), 128.90 (4 CH), 130.8 (Cquat), 132.6 (Cquat), 140.4 (Cquat), 
141.0 (Cquat), 145.3 (Cquat), 150.3 (Cquat). IR (ATR):  ̃[cm-1] 
3030 (w), 2926 (w), 1598 (w), 1578 (w), 1481 (m), 1460 (m), 

1352 (w), 1279 (w), 1188 (w), 1119 (w), 1007 (m), 957 (m), 
918 (w), 847 (m), 791 (m), 768 (s), 760 (s), 694 (s). GC-MS 
(m/z %): 311 (25), 310 ([M+], 100), 265 (3), 179 (3), 178 (2), 
155 (13), 152 (5), 130 (3), 118 (10), 103 (5), 91 (4), 77 (9). 
UV/Vis (CH2Cl2): max [nm] ([Lcm-1mol-1]) = 283.5 (35600). 
Emission (CH2Cl2): max [nm] (f) = 344.5 (0.49). Stokes shift 
[cm-1] = 6300. Anal. calcd. for C22H18N2 (310.4): C 85.13, H 
5.85, N 9.03; Found C 84.92, H 5.88, N 8.77. 
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3-(4'-Fluoro-2'-methyl-[1,1'-biphenyl]-4-yl)-1-methyl-5-(p-
tolyl)-1H-pyrazole (6b) 
According to GP2 274.3 mg (51%) of compound 6b were 
obtained as a light orange solid; Mp 157 °C. 1H NMR (300 
MHz, CDCl3)  = 2.29 (s, 3 H), 2.44 (s, 3 H), 3.95 (s, 3 H), 
6.62 (s, 1 H), 6.94-7.00 (m, 2 H), 7.18-7.25 (m, 1 H), 7.28-7.41 
(m, 5 H), 7.52 (d, J = 8.3 Hz, 1 H), 7.74 (d, J = 8.1 Hz, 1 H), 
7.87 (d, J = 8.4 Hz, 1 H). 13C NMR (75 MHz, CDCl3)  = 20.8 
(CH3), 21.4 (CH3), 37.7 (CH3), 103.2 (CH), 112.6 (CH, d, J = 
20.9 Hz), 116.9 (CH, d, J = 21.0 Hz), 125.5 (CH), 128.8 (CH), 
129.6 (CH), 129.7 (CH), 131.3 (CH, d, J = 8.2 Hz), 132.3 
(Cquat), 137.5 (Cquat), 137.9 (Cquat, d, J = 11.3 Hz), 138.7 (Cquat) , 
140.3 (Cquat), 141.3 (Cquat), 145.3 (Cquat), 150.3 (Cquat), 162.1 
(Cquat, d, J = 122.6 Hz). IR (ATR): ̃[cm-1] 3049 (w), 2951 (w), 
1609 (w), 1585 (w), 1481 (m), 1437 (m), 1350 (w), 1265 (w), 
1223 (m), 1007 (w), 943 (w), 854 (m), 822 (s), 787 (s), 745 
(m), 691 (m). GC-MS (m/z %): 357 (26), 356 (100), 226 (2), 
207 (2), 183 (6), 178 (11), 177 (5), 170 (5), 169 (2), 146 (2), 
132 (4), 118 (3), 115 (3), 91 (5), 77 (2). UV/Vis (CH2Cl2): max 
[nm] ([Lcm-1mol-1]) = 267.5 (35800). Emission (CH2Cl2): 
max [nm] (f) = 338.5 (0.83). Stokes shift [cm-1] = 7800. 
HRMS calcd. for C24H21FN2+H+: 357.1762; Found 357.1763. 
 
3-([1,1'-Biphenyl]-4-yl)-5-butyl-1-methyl-1H-pyrazole (6c) 
According to GP2 356.0 mg (61%) of compound 6c were 
obtained as a light yellow solid; Mp 76 °C. 1H NMR (300 MHz, 
CDCl3)  = 0.99 (t, J = 7.3 Hz, 3 H), 1.40-1.52 (m, 2 H), 1.64-
1.74 (m, 2 H), 2.36-2.76 (m, 2 H), 3.85 (s, 3 H), 6.37 (s, 1 H), 
7.35 (d, J = 7.4 Hz, 1 H), 7.38-7.54 (m, 2 H), 7.55-7.70 (m, 4 
H), 7.85 (d, J = 8.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3)  = 
14.0 (CH3), 22.5 (CH2), 25.6 (CH2), 30.7 (CH2), 36.3 (CH3), 
101.6 (CH), 125.9 (CH), 127.1 (CH), 127.3 (CH), 127.4 (CH), 
128.9 (CH), 132.8 (Cquat), 140.2 (Cquat), 141.0 (Cquat), 144.8 
(Cquat), 149.7 (Cquat). IR (ATR):  ̃[cm-1] 3053 (w), 2953 (w), 
2928 (w), 2859 (w), 1597 (w), 1491 (m), 1466 (m), 1439 (m), 
1368 (w), 1292 (w), 1119 (w), 1007 (m), 959 (m), 847 (m), 806 
(m), 785 (m), 764 (s), 729 (s), 696 (s). GC-MS (m/z %): 291 
(14), 290 (61), 249 (18), 248 (100), 247 (70), 232 (2), 206 (3), 
203 (8), 202 (12), 179 (4), 178 (5), 165 (3), 153 (3), 152 (7), 
125 (3), 124 (26), 115 (2), 77 (2), 69 (4), 54 (2). UV/Vis 
(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 286.0 (33000). 
Emission (CH2Cl2): max [nm] (f) = 347.0 (0.27). Stokes shift 
[cm-1] = 6200. Anal. calcd. for C20H22N2 (290.4): C 82.72, H 
7.64, N 9.65; Found C 82.50, H 7.51, N 9.73. 
 
4’-(1-Methyl-5-phenyl-1H-pyrazol-3-yl)-[1,1’-biphenyl]-4-
carbonitrile (6d) 
According to GP2 395 mg (59%) of compound 6d were 
obtained as a colorless gleamy solid; Mp 214 °C. 1H NMR (300 
MHz, CD2Cl2)  = 3.94 (s, 3 H), 6.69 (s, 1 H), 7.42-7.56 (m, 5 
H), 7.68 (d, J = 8.6 Hz, 2 H), 7.75 (br, 5 H), 7.95 (d, J = 8.6 Hz, 
2 H). 13C NMR (75 MHz, CD2Cl2)  = 38.3 (CH3), 103.7 (CH), 
111.35 (Cquat), 119.5(Cquat), 126.5 (CH), 127.94 (CH), 127.98 
(CH), 129.1 (CH), 129.2 (CH), 129.3 (CH), 131.1 (Cquat), 133.2 
(CH), 134.6 (Cquat), 138.5 (Cquat), 145.65 (Cquat), 145.74 (Cquat), 
149.7 (Cquat). IR (ATR):  ̃[cm-1] 3038 (w), 2999 (w), 2949 (w), 
2222 (m), 1603 (m), 1483 (m), 1472 (m), 1458 (m), 1437 (m), 
1354 (w), 1283 (w), 1186 (m), 1119 (w), 1003 (w), 959 (m), 
910 (w), 826 (s), 791 (s), 762 (s), 746 (m), 689 (m), 673 (m). 
EI/MS (m/z (%)): 337 (3), 336 (25), 335 (100), 334 (7), 292 (3), 
290 (2), 204 (2), 167 (7), 151 (2), 118 (3), 103 (3), 77 (2), 44 
(2), 43 (3). UV/Vis (CH2Cl2): max [nm] ([Lcm-1mol-1]) = 
306.5 (36600). Emission (CH2Cl2): max [nm] (f) = 384.0 

(0.10). Stokes shift [cm-1] = 6600. Anal. calcd. for C23H17N3 
(335.4): C 82.36, H 5.11, N 12.53; Found C 82.18, H 4.81, N 
12.40. 
 
One-pot Synthesis of 3,5-Di([1,1'-biphenyl]-4-yl)-1-methyl-
1H-pyrazole (7) 
In a 10 mL microwave tube PdCl2(PPh3)2  (14.5 mg, 0.02 
mmol) and CuI (8.53 mg, 0.04 mmol) were dissolved in THF 
(4.00 mL) under nitrogen. To the yellow solution acid chloride 
(1d) (219 mg, 1.00 mmol) and alkyne (2a) (180 mg, 1.00 
mmol) were added. Finally triethylamine (109 mg, 1.07 mmol) 
was added. The reaction mixture turned from yellow to light 
brown and was stirred at room temperature for 2 h. Then 
methylhydrazine (3a) (53.5 mg, 1.15 mmol) were added and the 
reaction mixture was stirred under continuous microwave 
irradiation at 150°C for 20 min. After cooling to room 
temperature boronic acid 4b (366 mg, 3.00 mmol), Cs2CO3 

(2.00 g, 6.14 mmol) dissolved in deionized water (1.0 mL) and 
PPh3 (53.0 mg, 0.20 mmol) were added. The reaction mixture 
was stirred under continuous microwave irradiation at 120°C 
for 1 h. After cooling to room temperature the reaction mixture 
was extracted with dichloromethane (3 x 20 mL) and then 
washed with a saturated aqueous solution of ammonium 
chloride and brine. The combined organic layers were dried 
with anhydrous magnesium sulfate. The crude product was 
purified by flash chromatography (n-hexane/ethyl acetate 20:1, 
v/v) to give 142 mg (37%) of pyrazole 7 as beige colored 
plates; Mp 200 °C. 1H NMR (300 MHz, CDCl3)  = 4.01 (s, 3 
H), 6.70 (s, 1 H), 7.33-7.53 (m, 6 H), 7.57 (d, J = 8.4 Hz, 2 H), 
7.61-7.70 (m, 6 H), 7.72 (d, J = 8.4 Hz, 2 H), 7.93 (d, J = 8.4 
Hz, 2 H). 13C NMR (75 MHz, CDCl3)  = 37.9 (CH3), 103.5 
(CH), 126.1 (CH), 127.1 (CH), 127.3 (CH), 127.4 (CH), 127.5 
(CH), 127.6 (CH), 127.88 (CH), 128.91 (CH), 129.1 (CH), 
129.3 (CH), 129.6 (Cquat), 132.6 (Cquat), 140.4 (Cquat), 140.5 
(Cquat), 141.0 (Cquat), 141.6 (Cquat), 145.0 (Cquat), 150.4 (Cquat). 
IR (ATR):  ̃[cm-1] 3028 (w), 2938 (w), 1477 (m), 1437 (m), 
1277 (w), 1184 (w), 1119 (w), 1001 (m), 959 (m), 918 (w), 847 
(s), 826 (m), 785 (m), 762 (s), 729 (m), 692 (s), 671 (m). GC-
MS (m/z (%)): 388 (5), 387 (31), 386 (100), 343 (5), 281 (3), 
207 (9), 206 (2), 194 (6), 193 (22), 180 (4), 179 (10), 165 (5), 
153 (3), 152 (7), 133 (2), 77 (3), 73 (4). UV/Vis (CH2Cl2): max 
[nm] ([Lcm-1mol-1]) = 288.5 (62500). Emission (CH2Cl2): 
max [nm] (f) = 367.0 (0.07). Stokes shift [cm-1] = 7400. 
HRMS calcd. for C28H22N2+H+: 387.1856; Found 387.1856. 
 
General Procedure for the One-pot Synthesis of 1-
Biarylsubstituted Pyrazoles 8 (GP3). In a 10 mL microwave 
tube PdCl2(PPh3)2 (28.4 mg, 0.04 mmol) and CuI (15.4 mg, 
0.08 mmol) were dissolved in dichloromethane (4 mL) under 
nitrogen. To the yellow solution acid chloride 1 (2.00 mmol) 
and alkyne 2 (2.00 mmol) were added (for experimental details 
see Table 10). Finally triethylamine (207 mg, 4.10 mmol) was 
added. The reaction mixture turned from yellow to light brown 
and was stirred at room temperature for 16 h. Then the 
hydrochloride of hydrazine (3c) (492 mg, 2.20 mmol) was 
added and the reaction mixture was stirred under continuous 
microwave irradiation at 100°C for 40 min. After cooling to 
room temperature boronic acid 4 (3.00 mmol), Cs2CO3 (2.00 g, 
6.00 mmol) dissolved in deionized water (1.0 mL) and PPh3 

(104 mg, 0.40 mmol) were added. The reaction mixture was 
stirred under continuous microwave irradiation at 100°C for 90 
min. After cooling to room temperature the reaction mixture 
was extracted with dichloromethane (3 x 20 mL) and then 
washed with a saturated aqueous solution of ammonium 
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chloride and brine. The combined organic layers were dried 
with anhydrous magnesium sulfate. The crude products were 

purified by flash chromatography (n-hexane/ethylacetate 200:1 
(v/v)) to give the desired pyrazoles 8. 

 
Table 10.Experimental details for the one-pot synthesis of 1-biarylsubstituted pyrazoles 8. 

Entry Acid chloride 1 Alkyne 2 Hydrazine 3c Boronic acid 4 1-Biarylsubstituted pyrazoles 8 

 mg (mmol) mg (mmol) mg (mmol) mg (mmol) mg (%) 

1a 143 (1.00) of 1a 109 (1.10) of 2b 246 (1.10) of 3c 183 (1.50) of 4b 212 (57) of 8a 

2 281 (2.00) of 1a 204 (2.00) of 2b 492 (2.20) of 3c 411 (3.00) of 4a 456 (59) of 8b 

3 285 (2.00) of 1a 208 (2.00) of 2b 492 (2.20) of 3c 439 (3.00) of 4e 494 (62) of 8c 

4 283 (2.00) of 1a 209 (2.00) of 2b 493 (2.20) of 3c 385 (3.00) of 4f 431 (55) of 8d 

5b 361 (2.10) of 1e 211 (2.10) of 2b 493 (2.20) of 3c 417 (3.10) of 4a 365 (44) of 8e 

6 345 (2.00) of 1f 212 (2.10) of 2b 493 (2.20) of 3c 411 (3.00) of 4a 159 (19) of 8f 

7 306 (2.00) of 1c 209 (2.10) of 2b 493 (2.20) of 3c 409 (3.00) of 4a 430 (55) of 8g 

8 286 (2.00) of 1a 164 (2.00) of 2d 493 (2.20) of 3c 409 (3.00) of 4a 440 (60) of 8h 
aPdCl2(PPh3)2 (14.0 mg, 0.02 mmol), CuI (7.62 mg, 0.04 mmol), Et3N (106 mg, 1.05 mmol), Cs2CO3 (978 mg, 3.00 mmol), PPh3 
(52.3 mg, 0.2 mmol). bPdCl2(PPh3)2 (29.0 mg, 0.04 mmol), CuI (16.7 mg, 0.09 mmol), Et3N (223 mg, 2.20 mmol), Cs2CO3 (2.05 
g, 6.30 mmol), PPh3 (110 mg, 0.42 mmol). 
 
1-([1,1'-Biphenyl]-4-yl)-3,5-diphenyl-1H-pyrazole (8a) 
According to GP3 212 mg (57%) of compound 8a were 
obtained as a light orange solid; Mp 160 °C. 1H NMR (300 
MHz, CDCl3)  = 6.86 (s, 1 H), 7.36 (br, 7 H), 7.45-7.47 (m, 6 
H), 7.58-7.60 (m, 4 H), 7.96 (d, J = 8.1 Hz, 2 H). 13C NMR (75 
MHz, CDCl3)  = 105.5 (CH), 125.5 (CH), 126.0 (CH), 127.2 
(CH), 127.66 (CH), 127.70 (CH), 128.2 (CH), 128.5 (CH), 
128.7 (CH), 128.8 (CH), 128.9 (CH), 129.0 (CH), 130.8 (Cquat), 
133.2 (Cquat), 139.4 (Cquat), 140.2 (Cquat), 140.3 (Cquat), 144.5 
(Cquat), 152.2 (Cquat). IR (ATR): ṽ [cm-1] 3061 (w), 3032 (w), 
1960 (w), 1896 (w), 1819 (w), 1605 (m), 1524 (m), 1487 (m), 
1462 (m), 1435 (w), 1361 (m), 1217 (w), 1186 (w), 972 (m), 
955 (m), 916 (m), 839 (m), 760 (s), 729 (m), 690 (s), 656 (m). 
GC-MS (m/z (%)): 373 (29), 372 (100), 344 (3), 295 (7), 268 
(16), 267 (10), 254 (3), 241 (8), 166 (8), 152 (40), 151 (12), 139 
(8), 115 (7), 103 (6), 102 (7), 90 (4), 89 (12), 77 (49), 51 (16). 
UV/Vis (CH2Cl2): max [nm] ([Lcm-1mol-1]) = 257.0 (36300), 
293.0 sh (25000). Emission (CH2Cl2): max [nm] (f) = 385.0 
(0.41). Stokes shift [cm-1] = 8200. Anal calcd. for C27H20N2 

(372.5): C 87.07, H 5.41, N 7.52; Found: C 86.85, H 5.17, N 
7.54. 
 
1-(4'-Methyl-[1,1'-biphenyl]-4-yl)-3,5-diphenyl-1H-pyrazole 
(8b) 
According to GP3 456 mg (59%) of compound 8b were 
obtained as a light yellow solid; Mp 110 °C. 1H NMR (300 
MHz, CDCl3)  = 2.41 (s, 3 H). 6.86 (s, 1 H), 7.26 (d, J = 7.9 
Hz, 2 H), 7.36 (br, 6 H), 7.40-7.46 (m, 4 H), 7.50 (d, J = 8.2 
Hz, 2 H), 7.57 (d, J = 8.6 Hz, 2 H), 7.96 (d, J = 7.0 Hz, 2 H). 
13C NMR (75 MHz, CDCl3)  = 21.3 (CH3), 105.4 (CH), 125.5 
(CH), 126.0 (CH), 127.0 (CH), 127.4 (CH), 128.1 (CH), 128.5 
(CH), 128.7 (CH), 128.8 (CH), 128.9 (CH), 129.7 (CH), 130.8 
(Cquat), 133.2 (Cquat), 137.4 (Cquat), 137.5 (Cquat), 139.2 (Cquat), 
140.2 (Cquat), 144.5 (Cquat), 152.1 (Cquat). IR (ATR): ṽ [cm-1] 
3026 (w), 2961 (w), 2916 (w), 1485 (m), 1460 (m), 1362 (m), 
1267 (w), 1171 (w), 1005 (w), 972 (m), 955 (w), 916 (w), 849 
(w), 808 (s), 760 (s), 733 (w), 692 (s). GC-MS (m/z (%)):386 
([M+], 100), 282 (15), 165 ([C13H9

+], 25), 91 ([C7H7
+], 5), 77 

([C6H5
+], 24), 65 ([C5H5

+], 6), 51 ([C4H3
+], 8). UV/Vis 

(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 257.0 (32000), 296.0 
sh (23000). Emission (CH2Cl2): max [nm] (f) = 388.0 (0.33). 
Stokes shift [cm-1] = 8000. Anal. calcd. for C28H22N2 (386.5): C 
87.01, H 5.74, N 7.25; Found: C 86.83, H 5.91, N 7.51. 
 

4'-(3,5-Diphenyl-1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-
carbonitrile (8c) 
According to GP3494 mg (62%) of compound 8c were 
obtained as a colorless light yellow solid; Mp 156 °C. 1H NMR 
(300 MHz, CDCl3)  = 6.86 (s, 1 H), 7.30-7.42 (m, 6 H), 7.44 
(d, J = 7.5 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 2 H), 7.57 (d, J = 8.8 
Hz, 2 H), 7.65-7.77 (m, 4 H), 7.94 (d, J = 7.0 Hz, 2 H). 13C 
NMR (75 MHz, CDCl3)  = 105.9 (CH), 111.3 (Cquat), 119.0 
(Cquat), 125.6 (CH), 126.0 (CH), 127.7 (CH), 127.8 (CH), 128.3 
(CH), 128.7 (CH), 128.77 (CH), 128.83 (CH), 128.9 (CH), 
130.6 (CH), 132.8 (Cquat), 133.0 (Cquat), 137.9 (Cquat), 140.6 
(Cquat), 144.57 (Cquat), 144.62 (Cquat), 152.5 (Cquat). IR (ATR): ṽ 
[cm-1] 3044 (w), 2220 (w), 1605 (m), 1495 (s), 1481 (w), 1460 
(m), 1435 (w), 1362 (m), 1287 (w), 1082 (w), 1065 (w), 1026 
(w), 1005 (w), 970 (m), 955 (w), 918 (w), 820 (s), 766 (w), 735 
(w), 692 (s), 667 (w). ESI (m/z (%)): 398 ([M++H], 1), 397 
([M+], 4), 309 (49), 308 (100), 232 (13),105 (12), 77 ([C6H5

+], 
12), 51 ([C4H3

+], 3). UV/Vis (CH2Cl2): max [nm] ([Lcm-

1mol-1]) = 257.0 (27400), 307.5 sh (18900). Emission (CH2Cl2): 
max [nm] (f) = 387.0 (0.12). Stokes shift [cm-1] = 6700. Anal. 
calcd. for C29H19N3 (397.5): C 84.61, H 4.82, N 10.57; Found: 
C 84.53, H 4.61, N 10.28. 
 
1-(4-(5-Methylthiophen-2-yl)phenyl)-3,5-diphenyl-1H-
pyrazole (8d) 
According to GP3 431 mg (55%) of compound 8d were 
obtained as a yellow orange solid; Mp 115 °C. 1H NMR (600 
MHz, CDCl3)  = 2.51 (s, 3 H), 6.74 (d, J = 3.5 Hz, 1 H), 6.84 
(s, 1 H), 7.12 (d, J = 3.5 Hz, 1 H), 7.39-7.29 (m, 7 H), 7.45 (t, J 
= 7.6 Hz, 3 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.94 (d, J = 7.9 Hz, 2 
H). 13C NMR (151 MHz, CDCl3)  = 15.6 (CH3), 105.5 (CH), 
123.5 (CH), 125.6 (CH), 125.8 (CH), 126.0 (CH), 126.5 (CH), 
128.2 (CH), 128.5 (CH), 128.7 (CH), 128.8 (CH), 128.9 (CH), 
130.7 (Cquat), 133.1 (Cquat), 133.9 (Cquat), 138.9 (Cquat), 140.2 
(Cquat), 141.0 (Cquat), 144.4 (Cquat), 152.1 (Cquat). IR (ATR): ṽ 
[cm-1 ] 3065 (w), 2980 (w.), 2914 (w), 1545 (w), 1512 (m), 
1485 (m), 1460 (m), 1433 (w), 1362 (w), 1261 (w), 1215 (w), 
1180 (w), 1163 (w), 1107 (w), 972 (m), 914 (w), 837 (s), 802 
(s), 758 (s), 702 (m), 687 (s), 667 (w). GC-MS (m/z (%)):392 
([M+], 1), 330 (20), 297 (22), 296 (100), 295 ([C21H15N2

+], 53), 
192 ([C14H14N2

+], 8), 165 ([C13H9
+], 11), 77 ([C6H5

+], 10), 51 
([C4H3

+], 4). UV/Vis (CH2Cl2): max [nm] ([Lcm-1mol-1]) = 
268.5 (29500). Emission (CH2Cl2): max [nm] (f) = 385.0 
(0.29). Stokes shift [cm-1] = 11300. Anal. calcd. for C26H20N2S 
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(392.5): C 79.56, H 5.14, N 7.14; Found: C 79.39, H 4.89, N 
7.18. 
 
5-(4-Methoxyphenyl)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-
phenyl-1H-pyrazole (8e) 
According to GP3 365 mg (44%) of compound 8e were 
obtained as an orange solid; Mp 107 °C. 1H NMR (600 MHz, 
CDCl3)  = 2.41 (s, 3 H), 3.87 (s, 3 H), 6.78 (s, 1 H), 6.99 (d, J 
= 8.8 Hz, 2 H), 7.26 (d, J = 7.9 Hz, 2 H), 7.35 (br, 5 H), 7.43 (d, 
J = 8.5 Hz, 2 H), 7.50 (d, J = 8.1 Hz, 2 H), 7.56 (d, J = 8.6 Hz, 
2 H), 7.88 (d, J = 8.8 Hz, 2 H). 13C NMR (151 MHz, CDCl3)  
= 21.2 (CH3), 55.4 (CH3), 105.0 (CH), 114.2 (CH), 125.5 (CH), 
126.0, 127.0 (CH), 127.2 (CH), 127.4 (CH), 128.4 (CH), 128.6 
(CH), 128.9 (CH), 129.7 (CH), 130.9 (Cquat), 137.4 (Cquat), 
137.5 (Cquat), 139.2 (Cquat), 140.1 (Cquat), 144.4 (Cquat), 152.0 
(Cquat), 159.7 (Cquat). IR (ATR): ṽ [cm-1] 2997 (w), 2917(w), 
1609 (w), 1501 (m), 1485 (m), 1456 (w), 1433 (m), 1358 (w), 
1246 (m), 1169 (w), 1111 (w), 1030 (m), 955 (w), 924 (w), 841 
(m), 806 (s), 764 (s), 733 (w), 698 (m), 675 (m). ESI (m/z (%)): 
416 ([M+], 5), 327 (5), 326 ([C22H18N2O

+], 19), 239 (14), 238 
(86), 237 (100), 223 (11), 195 (12), 165 ([C13H9

+], 11), 135 
(55), 107 ([C7H7O

+], 11), 103 (13), 92 ([C7H8
+], 12), 77 

(([C6H5
+], 27), 65 ([C5H5

+], 3), 51 ([C4H3
+], 6), 43 (48). UV/Vis 

(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 261.5 (39900), 288.0 
sh (29600), 311.0 sh (20500). Emission (CH2Cl2): max [nm] 
(f) = 386.5 (0.37). Stokes shift [cm-1] = 6300. Anal. calcd. for 
C29H24N2O (416.5): C 83.63, H 5.82, N 6.73; Found: C 83.43, 
H 5.89, N 6.66. 
 
5-(2-Chlorophenyl)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-
phenyl-1H-pyrazole (8f) 
According to GP3 159 mg (19%) of compound 8f were 
obtained as a colorless solid; Mp 118 °C. 1H NMR (600 MHz, 
CDCl3)  = 2.41 (s, 3 H), 6.89 (s, 1 H), 7.26 (d, J = 7.5 Hz, 2 
H), 7.31 (d, J = 7.6 Hz, 1 H), 7.37 (m, 4 H), 7.41 (d, J = 8.4 Hz, 
2 H), 7.47 (d, J = 8.7 Hz, 4 H), 7.53 (d, J = 7.6 Hz, 2 H), 7.99 
(d, J = 7.5 Hz, 2 H); additional signal for the minor 
regioisomer:  = 8.03 (d, J = 7.6 Hz); ratio of regioisomers = 
10:1. 13C NMR (151 MHz, CDCl3)  = 21.2 (CH3), 107.0 (CH), 
124.3 (CH), 126.0 (CH), 127.0 (CH), 127.3 (CH), 128.2 (CH), 
128.8 (CH), 129.7 (CH), 130.2 (CH), 130.4 (CH), 130.55 
(Cquat), 132.3 (CH), 133.1 (Cquat), 134.2 (Cquat), 137.3 (Cquat), 
137.5 (Cquat), 139.2 (Cquat), 139.9 (Cquat), 141.1 (Cquat), 151.9 
(Cquat); additional signal for the minor regioisomer:  =109.3 
(CH). IR (ATR):ṽ [cm-1] 3022 (w), 2918 (w.) 1601 (w), 1503 
(s), 1456 (m), 1362 (w), 1124 (w), 1113 (w), 955 (m), 918 (w), 
849 (m), 812 (s), 800 (m), 764 (s), 725 (m), 683 (s). ESI (m/z 
(%)): 421 ([M+], 5), 420 (14), 333 (7), 332 (34), 331 (31), 330 
(100), 329 (30), 296 (13), 295 (54), 267 (10), 192 ([C14H14N2

+], 
17), 165 ([C13H9

+], 16), 147 ([C11H16
+], 14), 146 (14), 91 

([C7H7
+], 5), 77 ([C6H5

+], 16), 51 ([C4H3
+], 6). UV/Vis 

(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 256.5 (27300), 296.0 
(28400). Emission (CH2Cl2): max [nm] (f) = 388.5 (0.35). 
Stokes shift [cm-1] = 8000. HRMS calcd. for C28H21N2Cl+H+: 
421.1472; Found: 421.14564. 
 
1-(4'-Methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-5-(thiophen-2-
yl)-1H-pyrazole (8g) 
According to GP3 430 mg (55%) of compound 8g were 
obtained as an orange solid; Mp 87 °C. 1H NMR (300 MHz, 
CDCl3)  = 2.41 (s, 3 H), 6.90 (s, 1 H), 6.98 (dd, J = 5.1, 3.6 
Hz, 1 H), 6.92 (dd, J = 3.6, 1.1 Hz, 1 H), 7.27 (d, J = 7.9 Hz, 2 
H), 7.31 (dd, J = 5.1, 1.1 Hz, 1 H), 7.36 (d, J = 7.2 Hz, 1 H), 
7.41 -7.46 (m, 3 H), 7.56-7.49 (m, 4 H), 7.64 (d, J = 8.6 Hz, 2 

H), 7.93 (d, J = 7.1 Hz, 2 H); additional signal for the minor 
regioisomer:  = 6.88 (s); ratio of regioisomers = 22:1. 13C 
NMR (75 MHz, CDCl3)  = 21.3 (CH), 105.2 (CH), 125.9 
(CH), 126.4 (CH), 126.7 (CH), 127.07 (CH), 127.50 (CH), 
127.54 (CH), 127.57 (CH), 128.2 (CH), 128.8 (CH), 129.7 
(CH), 131.5 (Cquat), 132.9 (Cquat), 137.3 (Cquat), 137.7 (Cquat), 
138.3 (Cquat), 138.9 (Cquat), 141.2 (Cquat), 152.1 (Cquat). IR 
(ATR):ṽ [cm-1] 3080 (w), 2945 (w.), 1915 (w), 1603 (w), 1499 
(s); 1449 (m), 1362 (w), 1283 (w), 1229 (w), 1159 (m), 1115 
(w), 1006 (m), 959 (m), 918 (w); 831 (m), 812 (s), 795 (m), 766 
(s), 741 (w), 692 (s). GC-MS (m/z(%)): 392 ([M+], 11), 302 
([C19H14N2S

+], 12), 215 (14), 214 (65), 213 ([C13H11NS+],100), 
185 (24), 111 ([C6H7S

+], 30), 103 ([C8H7
+], 13), 77 ([C6H5

+], 
14), 51 ([C4H3

+], 6). UV/Vis (CH2Cl2): max [nm] ([Lcm-

1mol-1]) = 272.5 (39600). Emission (CH2Cl2): max [nm] (f) = 
394.0 (0.30). Stokes shift [cm-1] = 11300. Anal. calcd. for 
C26H20N2S (392.5):C 79.56, H 5.14, N 7.14; Found: C 79.41, H 
5.35, N 6.91. 
 
3-Butyl-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-5-phenyl-1H-
pyrazole (8h) 
According to GP3 440 mg (60%) of compound 8h were 
obtained as a colorless light yellow solid; Mp 64 °C. 1H NMR 
(300 MHz, CDCl3) 1.00 (t, J = 7.3 Hz, 3 H), 1.50 (m, 2 H), 1.77 
(m, 2 H), 2.42 (s, 3 H), 2.83-2.71 (m, 3 H), 6.36 (s, 1 H), 7.26 
(d, J = 8.7 Hz, 2 H), 7.30-7.39 (m, 7 H), 7.50 (d, J = 8.2 Hz, 2 
H), 7.54 (d, J = 8.7 Hz, 2 H); additional signals for the minor 
regioisomer:  = 0.94 (t, J = 7.3 Hz), 6.59 (s); ratio of 
regioisomers = 6:1. 13C NMR (75 MHz, CDCl3)  = 14.1 
(CH3), 21.2 (CH3), 22.8 (CH2), 28.2 (CH2), 32.0 (CH2), 107.0 
(CH), 125.4 (CH), 127.0 (CH), 127.3 (CH), 128.2 (CH), 128.6 
(CH), 128.8 (CH), 129.65 (CH), 131.1 (Cquat), 137.4 (Cquat), 
139.3 (Cquat), 139.8 (Cquat), 143.5 (Cquat), 154.5 (Cquat); 
additional signals for the minor regioisomer:  =103.0 (CH), 
127.1 (CH), 127.7 (CH), 128.7 (CH), 129.74 (CH). IR (ATR): ṽ 
[cm-1] 3032(w), 2955(w), 2928 (w), 1605 (w), 1503 (s), 1456 
(w), 1423 (w), 1369 (m), 1261 (w), 1192 (w), 1105 (w), 999 
(w), 966 (m), 920 (w), 851 (m), 812 (s), 768 (s), 698 (s), 673 
(w). GC-MS (m/z(%)):366 ([M+], 19), 355 (24) 337 (12), 325 
(26), 324 (100), 281 (19), 221 (24), 147 (21), 77 (3). UV/Vis 
(CH2Cl2): max [nm] ([Lcm-1mol-1]) = 286.0 (22900). 
Emission (CH2Cl2): max [nm] (f) = 382.5 (0.33). Stokes shift 
[cm-1] = 8800. HRMS calcd for C26H26N2+H+: 367.2174; 
Found: 367.2175. 
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