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Abstract 

Coronary artery disease (CAD) involves a complex interplay between multiple 

pathogenic genes that leads to a complex pathogenesis; its diagnosis and treatment 

remain significantly challenging. Here, we developed an integrated network biology 

approach to identify disease risk functional modules and pathogenic genes associated 

with CAD risk. First, we selected 72 known disease genes from the OMIM, GAD, and 

DO databases as an initial set of seed genes. We retrieved PPI data from HPRD to 

expand this gene set into a CAD-PPI gene network based on direct interactions and 

then performed topology analysis for this CAD-PPI gene network. Second, we 

utilized an MCL algorithm to identify 49 susceptible modules with high modularity. 

Third, we used functional consistency analysis to further identify 23 risk functional 

modules. Finally, according to existing cascades of known disease genes in KEGG 

pathways, we identified 82 pathogenic genes that are either directly or indirectly 

associated with CAD risk. Based on previous reports, 37 of our identified genes are 

involved in the development of CAD, whereas the other 45 genes remain to be 

associated with CAD by experimental evidence. Taken together, our results will 

provide a better understanding of CAD pathogenesis as well as new insights into its 

prognosis and treatment. 

Key words: coronary artery disease, network biology approach, risk disease module, 

risk pathogenic gene 
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1 Introduction 

Coronary artery disease (CAD), an important cardiovascular disease, involves a 

complex interplay between multiple pathogenic genes [1-3]. CAD development has a 

strong genetic component and has become a leading cause of morbidity and mortality 

worldwide [4, 5]. According to the 2013 Statistical Update published by the American 

Heart Association [6, 7], approximately one in every six people die of CAD at an 

estimated cost of US $180 billion each year. Although the CAD mortality rate has 

gradually decreased in many developed countries, it will remain quite a public health 

challenge in numerous industrial countries and the developing world in the near future 

[8, 9]. Therefore, identifying and characterizing CAD risk genes and their biological 

functions currently remains very vital and will aid the study of CAD pathogenesis. 

Previously, Li et al. [10] employed integrated network analysis to uncover 

comprehensive insights into cardiovascular disease (CVD) pathogenesis and to 

discover novel drug targets. Nair et al. [11] constructed a gene network based on 

integrated leukotrienes and inflammatory biomarkers to identify leukotriene-induced 

inflammatory molecules and the expression of important members of the leukotriene 

pathway in CAD patients and a cohort of healthy controls. In this study, they found 

that leukotrienes and inflammatory genes (LTA4H and IL-8) are closely related to 

cardiovascular disease. Moreno-Moral et al. [12] employed transcriptional network 

analysis to identify and characterize many co-expressed genes that play a key role in 

human heart disease. Huan et al. [13] built a coexpression network based on whole 

blood gene expression profiles to identifying a differential module (DM). In their 
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study, they further integrated tissue-specific Bayesian Networks and Protein-Protein 

Interaction Networks for their causal DM to identify key regulatory driver genes. 

Their results suggested that these key drivers (SPIB, TNFRSF13C and EBF1) are 

highly related to CAD development.  

 Biomolecular networks and Protein and Protein Interaction (PPI) networks have 

be used to screen candidate genes, predict gene function, and identify molecular 

markers of disease [14-16]. In PPI networks, direct interaction partners tend to share 

the same or similar functions, and causative genes for some complex diseases are 

likely to congregate in the same network communities, such as biological modules, 

protein complexes, pathways or sub-works [17-20]. For example, Oti et al. [21] and 

Chen et al. [22] successfully predicted novel genetic heterogeneity of disease 

causative genes by adopting direct interactive relationships with known disease genes 

in a protein-protein interaction network. In addition, some graph theoretical analyses 

have succeeded in mining network modules [23]. The MCL algorithm, a fast and 

scalable unsupervised cluster algorithm for graphs (also known as networks) based on 

the simulation of (stochastic) flow in graphs, is currently one of the best clustering 

algorithms. MCL only requires an inflation parameter and sets different values 

corresponding to different clustering results [24]. As an example, James et al. [25] 

studied protein complexes from binary interaction networks using the MCL algorithm 

and found that the MCL algorithm is superior to other cluster algorithms. Therefore, 

identification of disease modules based on PPI network is an important biological 

question that can be addressed by the MCL algorithm. 
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According to the degree of functional consistency and intensity of the interactive 

correlation, we proposed a joint strategy to identify functional modules and 

pathogenic genes associated with CAD risk. First, we selected 72 known disease 

genes as the initial set of seed genes and employed PPI knowledge to expand these 

genes into a CAD-PPI gene network based on genes with the same or similar 

functions as the known disease genes. Subsequently, our topology analysis 

demonstrated that the CAD-PPI gene network possesses the well-known small-world 

and scale-free properties. Second, we applied the MCL method to identify susceptible 

modules that include at least one known disease gene. Third, we screened a total of 23 

risk functional modules and identified 82 risk pathogenic genes that were either 

directly or indirectly associated with CAD development based on this joint strategy. 

Finally, we found that 37 risk pathogenic genes are associated with CAD based on 

bioinformatics retrieval analyses.  

  

2 Materials and Methods 

In this study, we implemented a joint strategy based on interaction correlations and 

functional consistency to identify functional modules and pathogenic genes associated 

with CAD risk. The detailed protocol of this strategy is shown in Figure 1.  

Global identification of known CAD-associated genes  

OMIM (Online Mendelian Inheritance in Man) (http://www.ncbi.nlm.nih.gov/omim) 

is an online and open-source database that incorporates a comprehensive, 

authoritative compendium of human genes and genetic phenotypes [26]. In addition, 
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GAD (Genetic Association Database) (http://geneticassociationdb.nih.gov/) is a 

collective archive of human genetic association studies of complex diseases and 

disorders[27], and DO (disease ontology) (http://www.disease-ontology.org/) is 

another comprehensive knowledge database of inherited, developmental and acquired 

human diseases [28]. Through high-throughput data mining, 72 known disease genes 

were captured from these three databases and defined as the initial set of seed genes 

for our analysis. 

 

3 Systems Construction of CAD-PPI gene network 

HPRD (Human Protein Reference Database) (http://www.hprd.org/) is a rich resource 

of experiments that confirm human protein functions. This resource provides 

information on human protein functions including protein–protein interactions, post-

translational modifications, enzyme-substrate relationships and disease associations 

[29]. We directly collected protein–protein interaction (PPI) data from HPRD 

(HPRD_Release9). This dataset consisted of 9453 proteins and 36,867 pairs of 

confirmed interactions excluding intra-molecular protein interactions and self 

oligomerization. 

The analysis steps were as follows. First, the initial seed genes map was 

subjected to the PPI network in an effort to discover directly interacting genes. 

Second, we constructed a CAD-PPI gene network by actually mapping the known 

disease genes and their direct interaction partners. Finally, to assess the availability of 

the CAD-PPI gene network, we manipulated the topological analysis of the CAD-PPI 
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gene network. 

 

4 Identification of risk functional modules 

Based on the functional consistency of identifying risk functional modules, we first 

utilized the MCL clustering algorithm to mine disease modules. MCL is a fast and 

expandable unsupervised clustering algorithm. This algorithm simulates random 

walks within a graph through repeat implementation of expansion and inflation [30]. 

In this study, susceptible modules are defined as those with ≥3 genes ≥1 known 

disease gene. Then, we carried out pathway enrichment analysis targeting susceptible 

modules using the hypergeometric distribution test. Furthermore, we screened the risk 

functional modules with significant functional consistency (p<0.01) between the 

susceptible modules and the known disease genes.  

 

5 Identification of risk pathogenic genes 

Using the CAD-PPI gene network, we employed our joint strategy based on the 

degree of functional consistency and intensity of interaction correlations to screen for 

and identify risk pathogenic genes. 

 

Functional consistency: We performed significant pathway enrichment analysis for 

susceptible modules using the hypergeometric distribution test to screen the candidate 

gene set, note	S�|��. 
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S�|�� = ��S�|�	

�

�
�

�

�
�
 

p��(k|N,M, n) = ����������� �����  

where i denotes a module, n denotes the number of modules, m denotes the number of 

pathways, j denotes a pathway, N denotes the whole human genome, n is the number 

of genes in a module, M is the number of genes in a pathway, and k is the number of 

overlapping genes in M and n. Pathways with p<0.01 were regarded as significantly 

enriched. 

 

Interaction correlation: We screened for the risk pathogenic genes from among 

candidate genes with direct interactions with known disease genes in our CAD-PPI 

gene network and with relationships that exist within KEGG pathways. Let S be a set 

that contains all risk pathogenic genes: 

 

� =  !"#$%& = 1,2,3⋯+,,			〈"#$ , "./〉 ∃223	4+5	 〈"#$ , "./〉 ∃6788	
�,																																		 〈"#$ , "./〉 ∃223	4+5	 〈"#$ , "./〉 ∄6788  

 

where 	g;  is the candidate gene, g<  is a known disease gene,〈g;	 , g<
〉  denotes the 

direct interaction correlation,	and	j = 1,2,3⋯n. 

 

Results and Discussion 

Construction of gene networks for CAD 

By utilizing the PPI knowledge regarding seed genes and their direct relationships in 
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HPRD, we mapped 72 initial seed genes into a CAD-PPI gene network with 811 gene 

nodes and 1079 interactions (Figure 2). To estimate the availability of the CAD-PPI 

gene network, we performed topological analysis and illustrated that the CAD-PPI 

gene network has well-known small-world and scale-free features. As shown in 

Figure 3, the topological features of the CAD-PPI gene network were visually 

demonstrated. 

 

Identification of functional modules associated with CAD risk. The MCL 

algorithm was selectively utilized to mine the risk functional modules; we identified a 

total of 49 susceptible modules that relied on the known disease genes. We further 

performed pathway analysis using a hypergeometric distribution test to target these 

susceptible modules; 23 risk functional modules were discovered and identified 

(p<0.01) (Figure 4). These modules correlated remarkably with many biological 

processes such as the Wnt signalling pathway, complement and coagulation cascades, 

the Jak-STAT signalling pathway, cytokine-cytokine receptor interactions, the renin-

angiotensin system, Type II diabetes mellitus, the MAPK signalling pathway, etc. 

Basically, we characterized the pathways which were either directly or indirectly 

associated with CAD development. For example, M14 was enriched in factors 

involved in Wnt signalling. The Wnt signalling pathway encompasses a series of 

proteins that are required for developmental processes such as cell fate specification 

[31-33]. In addition, defects in Wnt signalling were found in a family with autosomal 

dominant early coronary artery disease, and the developmentally important Wnt 
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pathway has also been associated with the early stages of coronary artery disease [34, 

35]. M11, M30, M31, M36 and M41 were enriched in the complement and 

coagulation cascades. Complement activation affects many biochemical processes 

including the development and progression of atherosclerosis, and it also influences 

thrombosis development [36]. TF produced by macrophages and smooth muscle cells 

is capable of activating the coagulation cascade, and thrombosis and coagulation can 

be stimulated by disrupted plaque [37, 38]. Similarly, M4, M34, M37, and M43 were 

enriched in cytokine-cytokine receptor interaction pathways as well, which may be 

involved in the inflammatory processes of CAD progression. Similarly, Rull et al. 

[39] reported that arteriosclerosis lesions and plaque composition are related to 

enrichment in the cytokine–cytokine receptor interaction pathways. In addition, the 

data collected by Liu et al. [40] and Zhang et al. [41] also suggested that cytokine–

cytokine receptor interaction pathways play important roles in CAD development. 

 

Identification of pathogenic genes associated with CAD risk 

We screened a total of 82 risk pathogenic genes based on our joint strategy, and 

37 risk genes were identified that are associated with the pathogenesis of CAD based 

on bioinformatics analyses. Another 45 risk pathogenic genes were discovered that 

might be related to CAD development but require more experimental evidence to 

confirm this relationship (Table 1). 

 

Table 1. Pathogenic genes and enriched pathways of the identified CAD-
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associated modules. 

Module  pathway Pathogenic genes  

M3 Type II diabetes mellitus 

Neurotrophin signalling pathway 

Insulin signalling pathway 

INSR, PIK3R2, PIK3R3, IKBKB, MAPK8, GRB2,  

MAPK9, PTPN, SOCS1, PTPR, MTOR, PRKCD,  

RPTOR 

M4 Chemokine signalling pathway 

Cytokine-cytokine receptor interaction 

Toxoplasmosis 

CCL11, CCL13, CCL14, CCL16, CCL3, CCL3L1, 

CCL3, CCL4, CCL5, CCL7, CCL8, GNAI1 

CXCR4, GNAI3, JAK1, JAK2 

M9 African trypanosomiasis HPR, APOL1 

M10 PPAR signalling pathway RXRB, RXRG 

M11 Complement and coagulation cascades PLAT, PLAU,  

M12 Renin-angiotensin system CMA1, CTSG, ENPEP, MAS1, ACE2 

M14 Wnt signalling pathway FZD5, FZD8, WNT1, WNT3A, DKK1, DKK2 

M18 Cell adhesion molecules SELL, GLG1 

M22 Apoptosis 
Osteoclast differentiation 

IL1A, MYD88, IRAK2, IL1RAP 

M25 Leukocyte transendothelial migration 

Staphylococcus aureus infection 
EZR, MSN, SPN 

M26 Cell adhesion molecules SELPLG 

M28 Regulation of actin cytoskeleton 

Calcium signalling pathway 
GNA12, GNA13, GAN15 

M30 Complement and coagulation cascades PROC, PROS1 

M31 Complement and coagulation cascades 

Staphylococcus aureus infection 

MASP1 

MASP2 

M32 Endocytosis LDLRAP1 

M34 NOD-like receptor signalling pathway 

Amoebiasis 

Cytokine-cytokine receptor interaction 

MAPK signalling pathway 

CASP1, IL1R2 

M35 Leukocyte transendothelial migration 

Osteoclast differentiation 

Phagosome 

Leishmaniasis 

RAC1, CYBB,  

NCF1, NCF2,  

NCF4, NOX1 

M36 Complement and coagulation cascades KLKB1 

M37 Chemokine signalling pathway 

Cytokine-cytokine receptor interaction 

CCR1 

CCR10 

M41 Complement and coagulation cascades F2 

M43 Jak-STAT signalling pathway 

Cytokine-cytokine receptor interaction 

IL6R 

IL6ST 

M46 Renin-angiotensin system 

Chagas disease 

AGTR2 
BDKRB2 

M47 Salivary secretion 
Calcium signalling pathway 

ADRB2 

GNAS 

Note: Red genes have reported evidence of a CAD association 

As shown in Figure 5, the genes CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, 

CCL13, CCL14, CCL16, CCL3L1, CCL3L3, CCR2, CCR5, CXCR4, GNAI1, 

GNAI3, JAK1, and JAK2 were contained in M4; of these genes, CCR2 and CCR5 are 
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known disease genes for CAD. We identified CCL3, CCL4, CCL5, CCL7, CCL8, 

CCL11, CCL13, CCL14, CCL16, CCL3L1, and CCL3L3, which not only belong to 

the CC chemokine family, but also participated in the chemokine signalling pathway 

and cytokine-cytokine receptor interaction pathways (Figure 3). Basically, cytokines 

play remarkable roles as regulators of inflammatory activity, in the development of 

atherosclerotic plaques and in the process of plaque destabilization [42]. The 

chemokine signalling pathway also plays a vital role in lesion development in 

atherosclerosis [43, 44]. 

The chemokines CCL3, CCL4, and CCL5 have been reported to play a positive role 

in the formation of atherosclerotic plaques [45-47]. CCL7, also known as MCP-3, has 

been shown by Maddaluno et al. [48] and Schenk et al. [49] to play a key role in the 

development of atherosclerosis and restenosis as well as other vascular pathologies. 

CCL14, CCL, CCL3L1, and CCL3L3 are likely to be linked to CAD; however, these 

relationships need further validation by biochemical experiments. 

The CCL2, CCR1, and CCR10 genes were incorporated into M37, and CCL2 is 

the known disease gene. CCR1 and CCR10 are members of the chemokine receptor 

family and are also part of the chemokine signalling pathway and cytokine-cytokine 

receptor interaction pathways (Figure 3). Chemokine receptors play an important role 

in the inflammatory response that is associated with CAD development, suggesting 

their involvement in inflammation during CAD development. The chemokine receptor 

CCR1 is bound to chemokines present in arterial plaques [50]. Cha et al. [51] also 

verified that CCR1 is associated with the pathogenesis of CAD. Additionally, CCR10 
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may be a novel risk gene associated with CAD, but this relationship requires 

verification by future experiments.  

The identified genes shown in Figure 6, CYBB, RAC1, NCF1, NCF2, NCF4, 

and NOX1, were mapped in M35, and CYBB was confirmed to be the known disease 

gene. NCF1, NCF2, NCF4, and NOX1 are members of the NADPH (nicotinamide 

adenine dinucleotide phosphate) family, which are enriched in the phagosome 

pathway (Figure 3). NADPH oxidases are important sources of superoxide in the 

vasculature, and different NADPH oxidase isoforms have potential contributions to 

vascular diseases [52]. Jiang et al. [53] found that Nox1 inhibitors have clinical 

significance in the treatment of cardiovascular disease. The remaining genes, NCF1, 

NCF2, and NCF4, were discovered to correlate with CAD in this study, but this 

association requires further confirmation by experimental evidence. 

 

Conclusions 

Coronary artery disease is a complex disease that is often triggered by the 

combinational effects of multiple genes [54]. In this study, we explored and exploited 

a joint strategy based on interaction correlations and functional consistency to identify 

function modules and pathogenic genes associated with the risk of CAD development. 

First, based on genes that share the same or similar functions with known disease 

genes, we built a CAD-PPI gene network using PPI data and data on known disease 

genes. Because the CAD-PPI gene network has a reliable biological foundation, we 

performed topology analysis on our CAD-PPI gene network, which rendered well-
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known small-world and scale-free features. 

Then, in the context of this integrated CAD-PPI gene network, we employed the 

MCL algorithm to mine susceptible modules. Finally, we identified a total of 23 risk 

function modules and 82 risk pathogenic genes. The modules were remarkably 

enriched in the Wnt signalling pathway, complement and coagulation cascades, the 

Jak-STAT signalling pathway, cytokine-cytokine receptor interactions, and the renin-

angiotensin system. These pathways provide novel insights into the pathogenesis of 

CAD. To implement further bioinformatics analyses, we identified 35 risk pathogenic 

genes that are associated with the pathogenesis of CAD and 45 risk pathogenic genes 

that may be involved in the development of CAD, but which need further 

confirmation through experimental evidence (Figure 7). 

In this study, our strategy had two advantages. We built the CAD-PPI gene 

network based on genes that share the same or similar functions with known disease 

genes. Simultaneously, the relationships between genes were based on credible data 

within PPI databases that are documented by expert biologists. However, the 

proposed strategy was also deficient: first, there is a time lag for updating the data in 

these databases (HPRD, OMIM, GAD, and DO), and second, our PPI network was 

not large enough to be thoroughly optimized for the prediction and understanding of 

CAD. 

Altogether, despite the few shortcomings of this study, we are still confident in 

our findings, as we successfully identified pathogenic genes and modules associated 

with the risk of CAD development that may be redefined as pathogenic genes for the 
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diagnosis and treatment of CAD. Meanwhile, the joint strategy we developed can be 

further explored and exploited to gain a better understanding of the pathogenesis of 

different cardiovascular diseases and other health issues.   
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Figure Legends 

Figure 1. Workflow for identifying the functional modules and pathogenic genes 
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associated with CAD risk. 

Figure 2. The CAD-PPI gene network. Red denotes known genes, and green denotes 

gene that directly interact with the known genes. 

Figure 3. The properties of the CAD-PPI gene network. (a) Degree distribution. The 

connectivity distribution of the proteins obeys the power-law distribution. (b) 

Clustering coefficient. (c) Shortest path. (d) Between centrality.  

Figure 4. The functional relationships between the identified disease risk function 

modules. Green triangles denote KEGG pathways, and orange ovals denote modules.  

Figure 5. Chemokine signalling pathway. Yellow rectangles denote disease risk 

disease, and red rectangles denote known disease genes. 

Figure 6. Phagosome pathway. Yellow rectangles denote disease risk, and red 

rectangles denote known disease genes.  

Figure 7. Disease gene network for CAD risk. Red denotes known disease genes, 

green denotes confirmed risk disease genes, and grey denotes unconfirmed risk 

disease genes. 
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Figure 5 
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