RSC Advances

c

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
 manner and also cause cell cycle arrest at G2/M phase. Western blot results shows the cleavage of PARP and upstream caspase-3were increased, and further caspase -9 was activated by cleavage but not the caspase- 8 . Western blot also indicated that compound $\mathbf{4 0}$ could induce caspase-9 involved apoptosis and G2/M phase cell cycle arrest via P21, p - CDC2 (Tyr15) pathway independent of P53.

Design, Synthesis and Mechanism of Novel Shikonin Derivatives as Potent

Anticancer Agents

$$
\begin{gathered}
\text { Shahla Karim Baloch }{ }^{\text {a, b, c, § }} \text {, Lin Ma }{ }^{\mathrm{a}, \S} \text {, Xue-Liang Wang, }{ }^{\text {a Jing Shi, }{ }^{\text {a,b }} \text { Yu Zhu, }{ }^{\text {a,b }} \text { Feng-Yao Wu, }} \begin{array}{c}
{ }^{\text {a,b }} \text { Yan-Jun Pang, }{ }^{\text {a,b }} \text { Gui-Hua Lu, }{ }^{\text {a,b }} \text { Jin-Liang Qi, }{ }^{\text {a,b }} \text { Xiao-Ming Wang,, }{ }^{, a, b} \text { Hong-Wei Gu*, a,b } \text { and } \\
\text { Yong-Hua Yang*, a,b }
\end{array}
\end{gathered}
$$

${ }^{a}$ State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210093, China
${ }^{b}$ Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University,

Nanjing, 210037, China
${ }^{c}$ Department of Biotechnology, FCPD, Sindh Agriculture University, Tandojam, 70050 Pakistan
${ }^{\S}$ These two authors equally contribute to this paper

* Corresponding authors. Tel./fax: +86-25-89686305

E-mail address: yangyh@nju.edu.cn, hongweigu@nju.edu.cn, wangxm07@nju.edu.cn

Abstract

:

In this present study, a series of novel shikonin derivatives (30-49) was designed and synthesized and their antiproliferative activities were evaluated against five different cancer cell lines including HeLa, HepG2, MCF-7, BGC and A549. Some of the compounds shows strong antiproliferative effects against HeLa, HepG2 and MCF-7 with IC_{50} values ranging from 1.26 to $18.50 \mu \mathrm{M}$ and shows lower side effects towards normal cell lines as compared to shikonin. Compared to other compounds and shikonin itself, compound 40 displayed the much stronger anti-proliferative effects against various cancer cell lines. Furthermore the flowcytometry results demonstrated that compound $\mathbf{4 0}$ could obviously induces apoptosis in a dose and time dependent manner and also cause cell cycle arrested at G2/M phase. For further investigation of aforementioned mechanisms, we performed western blot, and we found that cleavage of PARP and upstream caspase-3were increased, and further caspase-9 was activated by cleavage but not the caspase-8. The aforementioned results also indicated that compound 40 could induce caspase-9 involved apoptosis and G2/M phase cell cycle arrested via P21, p-CDC2 (Tyr15) pathway independent of P53.

Key words: Shikonin derivatives; Anticancer; Apoptosis, Caspase-3, Caspase-9, PARP.

1. Introduction

Cancer is considered to be one of the main health threats throughout the world; it has been ranked first in carnage the peoples due to severely causing emerging factors. Various advancements have been achieved recently in the chemotherapeutic management of some patients, yet the continued promise to the tedious task of discovering new anticancer agents remains critically important. ${ }^{1-6}$ A variety of anti-cancer drugs have been developed and applied to cure the cancer patients, but numerous drugs have not succeeded to show desirable results due to problem of drug tolerance by cancer. The conventional anti-cancer drugs frequently results in apoptosis, though the cancer cells were sensitive to apoptotic initiation at an early stage but sooner or later exhibits resistance to it because of deregulation of the apoptotic machinery' which is indicated by the overexpression of anti-apoptosis proteins and also signaling defects in apoptosis. ${ }^{7,8}$

Besides, due to the high impact of cancer on human health, apoptosis plays a significant role in cell death mechanisms and largely takes place in various cancer cells as well. ${ }^{9-11}$ Whereas mitochondrial apoptotic pathway contains caspase-9 which is an essential member of caspase family protein , ${ }^{12}$ once the mitochondrial apoptotic pathway is activated, the cytochrome c releases from the mitochondrial interrmembrane space and interacts with dATP and APAF1 to develop composite receptor. ${ }^{12,13}$ Moreover, the receptor also helps to recruit and turn on caspase-

9 to induce the activation of downstream proteases (for example, caspase-3 and caspase-7). ${ }^{14}$

PARP and Caspase-3 are the vital performers of apoptosis that restrictively cleave almost all or part of key proteins, then cleaved caspase-3 and cleaved PARP come in their activation form after being cut . Therefore, after the increased level of all cleaved caspases and PARP, they induces apoptosis of cancer cells. ${ }^{15,16}$

Several new drugs have been obtained from natural products and have been active against a wide variety of diseases including cancer. Numerous plants from Boraginaceae family have been used as anti-inflammatory, anti-arthritis and antimicrobial agents in Eurasia. ${ }^{17-21}$ Shikonin and its derivatives, which primarily occur in Lithospermum erythrorhizon, have been arousing great interest as the hallmark molecules responsible for their significant and fascinating anti-tumor activities by different mechanisms. ${ }^{22,23}$ The specific protocols of the cancer research that related to shikonin and alkannin have been focused on induction of cell apoptosis ${ }^{24,25}$ and necroptosis, ${ }^{26,27}$ DNA topoisomerases, inhibition of angiogenesis, ${ }^{28-29}$ and protein tyrosine kinases, ${ }^{30,31}$ etc. However, as a potential anti-cancer drug, shikonin itself is poorly soluble and believed to exert strong cytotoxic effects on normal cells. ${ }^{32}$ Hence, large numbers of researchers are dedicated to synthesize and prepare some new and effective shikonin derivatives.

During the past decades, number of shikonin derivatives have been synthesized and prepared and studied for their anticancer activities. Many shikonin derivatives with hydroxyl group on the
side chain modifications have been synthesized and evaluated for their anti-tumor effects on various cancer cell lines. Most of the derivatives showed better cytotoxicity than the lead compound shikonin and meanwhile the mechanisms of action were also studied. ${ }^{33-34}$

Moreover, Acetylshikonin, isovalerylshikonin and SH-7 exhibited obvious inhibitory actions on topoisomerase I, stronger than their mother compound shikonin. ${ }^{35-37}$ Shikonin glycosyl derivatives were also reported to show similar or stronger cytotoxicity than mother compound shikonin. ${ }^{38}$ To reduce the toxicity and side effects of shikonin, we synthesized some related derivatives of shikonin in our previous studies by modification of its structure, and found that the toxicity of shikonin was greatly reduced after ester modifications. ${ }^{39-44}$ In this present study we also designed to augment the shikonin with some anticancer components to make it more effective against different cancer cell lines. The shikonin and decorating parts were conjugated by introducing amino acids as bridges. Different steric configurative compounds can be synthesized by using different chiral amino acids as bridges, and these new compounds could also act with differently mechanism against cancer cells. Based on the results of pre-experiments, a series of novel shikonin derivatives was synthesized as potent anticancer agents by using the alanine and phenylalanine as bridges.

2. Result and discussion

2.1 Chemistry

With the aim to obtaining a series of shikonin derivatives containing two functional structures, we designed some twin medicines that introduced cantharidin, norcantharidin and their analogous to shikonin skeleton. We finally conjugated norcantharidin or adjacent dicarboxylic acid to the skeleton of shikonin by using alanine, phenylalanine or norcantharidin as bridges. (Scheme 1-4). However, after several attempts we could not link cantharidin to shikonin and this was probably due to cantharidin's amino acid conformation or electron donating effect of methyl that prevented the linkage. Among the obtained compounds, the yield of compounds $\mathbf{3 4}, \mathbf{3 5}, \mathbf{3 6}$ was $>97 \%$ (highest), yield of compounds $\mathbf{4 4}, \mathbf{4 5}, 46$ was $<65 \%$ (lower), while the compounds $\mathbf{4 1}, \mathbf{4 2}, 43$ had lowest yield i.e., $<30 \%$ due to their amino acid conformation that resulted lowest yield. It is found that all compounds displayed different dimensional conformations; the carboxyl of $\mathbf{1 1}$ is completely naked after derivatization, which is good for the next esterification reaction. Nevertheless, the esterification reaction of $\mathbf{1 2}$ is blocked owing to its carboxyl group that is partially covered by phthalicanhydride. No significant effect was found on anti-proliferation activity due to chiral configuration of amino acids in the bridges; however derivatives in which phenylalanine was used as bridge moieties showed better antiproliferation activities than the alanine.
(Scheme 1-4)

2.2 Biological activities

2.2.1 In vitro antitumor and cytotoxicity evaluation

Antitumor activities of all compounds against different cancer cell lines i.e., HeLa (human cervix cell line), HepG_{2} (human liver cell line), MCF-7 (humane breast cell line), A549 (human lungs cell line) and BGC (human gastric cell line) were determined using the MTT assay. Each of these cell lines were incubated with five different concentrations $(0,0.3 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10$ $\mu \mathrm{M}$) of all synthesized compounds for 24 hours and subsequently the IC_{50} (half maximal inhibitory concentration) values were calculated as shown in (Table 1).
(Table 1)

From IC_{50} values it was found that after modification, not all the obtained compounds showed higher IC_{50} against five cell lines when compared with shikonin. And interestingly all the compounds lost their anti-proliferative activities against A549 and anti-proliferative activities were much lower than the shikonin against BGC. This is probably due to our modification that improved the selectivity and reduced the cytotoxicity. To determine the reduced cytotoxicity and clinically safe use of compounds MTT assay against L02 (human normal liver cell line) was performed and results (Table 1) showed that all compounds have no effects against L02. Some of the compounds showed strong effects against HeLa, HepG2 and MCF-7 cell lines with IC_{50} values ranging from $1.26 \mu \mathrm{M}$ to $18.50 \mu \mathrm{M}$. Furthermore, the compound 40 showed best antiproliferative activities against HeLa cells with the lowest IC_{50} value $(1.26 \mu \mathrm{M})$ compared to
shikonin $(3.11 \mu \mathrm{M})$ itself and was selected for further experiments.

2.2.2 Apoptosis is induced in HeLa cells in dose and time dependent manner

Annexin V and PI staining can distinguish the living cells (annexin V-/PI-), as early apoptotic cells (annexin $\mathrm{V}+/ \mathrm{PI}-$) and late apoptotic cells (annexin $\mathrm{V}+/ \mathrm{PI}+$). To validate whether compound $\mathbf{4 0}$ could cause the growth inhibition of HeLa cells by in vitro apoptosis, annexin VFITC/PI double staining assay was performed. After treating HeLa cells with different concentrations $(0,1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$ of compounds 40 for 24 hours, HeLa cells showed considerable sensitivity to compounds 40 in dose-dependent manner. For highest concentration $(10 \mu \mathrm{M})$, apoptotic rates reached upto 43.95% (Fig.1A, B), thus suggesting that these compounds can induce the apoptosis in vitro by targeting the cancer cells. Meanwhile, the time dependent assay results also indicated that when HeLa cells were treated with compound 40 in a time dependent manner, the percentage of apoptotic cells were increased, compared with the mock group, as shown in (Fig.2A,B). In conclusion, it is obvious from the aforementioned results that compound $\mathbf{4 0}$ could induce apoptosis in Hela cells in dose and time dependent manner.
(Fig.1A, B)
(Fig.2A, B).

2.2.3 Cell cycle arrest in HeLa cells in dose dependent manner

To gain better understanding on the potency of compound $\mathbf{4 0}$, we further explored the effect of compound $\mathbf{4 0}$ on the cell cycle to ascertain that the cells are blocked in mitosis. HeLa cells were treated with different concentration $(0 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$ of compound $\mathbf{4 0}$ for 12hours. The results demonstrated that the treatment of HeLa cells with compound $\mathbf{4 0}$ led to an obvious G2/M arrest in a concentration dependent manner as shown in (Fig.3), Incubation of cells with $3 \mu \mathrm{M}$ of compound 40 caused 39.1% of cells arrested at G2/M phase as compare to control. When the concentration of compound 40 increased upto $10 \mu \mathrm{M}, 47.9 \%$ of cells were arrested in G2/M phase. In summary, effective doses of compound $\mathbf{4 0}$ seem to cause an arrest of cells in G2/M phase, which leads to a significant increase in the number of apoptotic cells ultimately.

Western blot analysis

In order to investigate the process of apoptosis, we further performed the western blot to detect the expression of some related proteins in the apoptosis related pathway. From the western blot results, we found that cleavage of PARP and upstream caspase-3 were increased, indicating that compound 40 could induce caspase activation in apoptosis. Further determining the protein levels of caspase- 8 and caspase- 9 , we found that caspase- 9 other than caspase- 8 was activated by cleavage. Thus, caspase- 9 but not caspase- 8 was involved in the apoptosis induced by compound 40. We also found the level of P21 which is the downstream target of P53, was upregulated, and
enhanced the phosphorylation of its downstream target CDC2. However, no obvious change was found for P53 as shown in (Fig.4). Based on the above cell cycle results, we concluded P21 was activated independent of P53 and the downstream CDC2 was phosphorylated, which contributed to the G2/M arrest in Hela cells as described in pathway. (Fig.5)
(Fig.5)

3. Conclusion

In our present study we synthesized a series of novel shikonin derivatives (30-49). Selectivity and cytotoxicity assays were performed against five cancer cell lines along with one normal cell line. Some of the compounds showed strong effects against HeLa, HepG2 and MCF-7 with IC_{50} values ranging from $1.26 \mu \mathrm{M}$ to $18.50 \mu \mathrm{M}$. Among them, compound $\mathbf{4 0}$ displayed the much stronger anti-proliferative effects against various cancer cell lines. Detailed apoptotic mechanism studies with compound 40 suggested that through the cell cycle and apoptosis analysis, compound 40 showed the best antiproliferation activities and exhibited strong ability to inhibit the proliferation of HeLa cancer cells by inducing a high levels of apoptosis in a dose and time dependent manner, also causes HeLa cells arrested in G2/M phase. Western blot results also
indicated that compound $\mathbf{4 0}$ could induce caspase- 9 involved apoptosis and G2/M phase cell cycle arrest via P21, p-CDC2 (Tyr15) pathway independent of P53.

4. Materials and methods

4.1 Chemicals

All chemicals (reagent grade) were purchased from J\&K Chemical Ltd., and Nanjing Chemical Reagent Co. Ltd. (China). All the ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DRX 500 spectrometer in CDCl_{3}, TLC was carried out on glass-backed silica gel sheets (silica gel $60 \AA$ GF254). The ESI-MS spectra were obtained on a Mariner Biospectrometry Workstation (ESI-TOF) mass spectrometer. Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ NMR spectra were reported in ppm (δ). Melting points (uncorrected) were measured on a XT4 MP Apparatus (Taike Corp., Beijing, China).

4.1.1 General synthesis procedure of compound 8-17 and 21-29

A mixture of compound 4-7 $(50 \mathrm{mmol})$, amino acid $(50 \mathrm{mmol})$ were dissolved in acetic acid and stirred on 120° Cover night. Reaction mixture was poured into ice water and white precipitate was filtered and dried under vacuum to obtain the compound 8-17 and 21-29 (Scheme 1, 2).

4.1.2 General synthesis procedure of compound 31-49

Compounds 8-17 and 21-29 were dissolved in 16 mL of dichloromethane and $0.072 \mathrm{~g}(0.354$
mmol) of N, N^{\prime}-dicyclohexylcarbodiimide (DCC) was added into reaction system. The reaction
mixture was stirred under nitrogen atmosphere in ice bath for $15 \mathrm{~min} .0 .004 \mathrm{~g}(0.044 \mathrm{mmol})$ of 4dimethylaminopyridine (DMAP) was added, stirred in the ice bath and continued for further 15 \min. Then 0.050 g of Shikonin $(0.175 \mathrm{mmol})$ was added to the reaction mixture and stirred in the ice bath for 12 hours to afford the target compounds 31-49 (Scheme 3, 4).
4.1.2.1 (2R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-((4R,7S)-1,3-dioxohexahydro-1H-4,7-epoxyisoindol-2(3H)-yl)-3-phenylpropanoate(31)

Red powder, 76% yield. $\mathrm{Mp}: 69.5-71.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.592(\mathrm{~s}, 1 \mathrm{H})$; $12.477(\mathrm{~s}, 1 \mathrm{H}) ; 7.286-7.136(\mathrm{~m}, 8 \mathrm{H}) ; 7.033(\mathrm{~s}, 1 \mathrm{H}) ; 6.133\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}\right) ; 5.148-$ $5.066(\mathrm{~m}, 1 \mathrm{H}) ; 5.024-4.991(\mathrm{~m}, 2 \mathrm{H}) ; 4.898-4.843(\mathrm{~m}, 1 \mathrm{H}) ; 3.504-3.308(\mathrm{~m}, 3 \mathrm{H}) ; 2.833-2.715(\mathrm{~m}$, $2 \mathrm{H}) ; 2.607-2.560(\mathrm{~m}, 1 \mathrm{H}) ; 2.501-2.440(\mathrm{~m}, 1 \mathrm{H}) ; 1.975-1.518(\mathrm{~m}, 4 \mathrm{H}) ; 1.369-1.095(\mathrm{~m}, 4 \mathrm{H})$. ESIMS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{9}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$584.20, found 584.1025. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{9}$: C, 67.68; H, 5.34; N, 2.39; O, 24.59. Found: C, 67.71; H, 5.38; N, 2.41; O, 24.61.
4.1.2.2 (2S)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-((4R,7S)-1,3-dioxohexahydro-1H-4,7-epoxyisoindol-2(3H)-yl)-3-phenylpropanoate(32)

Red powder, 70% yield. $\mathrm{Mp}: 77.3-79.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.591(\mathrm{~s}, 1 \mathrm{H})$; $12.476(\mathrm{~s}, 1 \mathrm{H}) ; 7.286-7.136(\mathrm{~m}, 8 \mathrm{H}) ; 7.034(\mathrm{~s}, 1 \mathrm{H}) ; 6.135\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}\right) ; 5.104$ $\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right) ; 5.025-4.991(\mathrm{~m}, 2 \mathrm{H}) ; 4.909-4.851(\mathrm{~m}, 1 \mathrm{H}) ; 3.504-3.456(\mathrm{~m}, 2 \mathrm{H}) ;$ 3.360-3.309 (m, 1H); 2.834-2.793 (m, 1H); 2.731-2.702 (m, 1H); 2.611-2.537 (m, 1H); 2.502-
$2.430(\mathrm{~m}, 1 \mathrm{H}) ; 1.899-1.772(\mathrm{~m}, 2 \mathrm{H}) ; 1.975-1.518(\mathrm{~m}, 3 \mathrm{H}) ; 1.369-1.095(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{9}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 584.20$, found 584.2288. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{9}$: C, 67.68; H, 5.34; N, 2.39; O, 24.59. Found: C, 67.70; H, 5.36; N, 2.40; O, 24.62.
4.1.2.3 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-
((4R,7S)-1,3-dioxohexahydro-1H-4,7-epoxyisoindol-2(3H)-yl)-3-phenylpropanoate(33)

Red powder, 70% yield. Mp: $68.7-70.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.591(\mathrm{~s}, 1 \mathrm{H}) ;$ $12.476(\mathrm{~s}, 1 \mathrm{H}) ; 7.286-7.136(\mathrm{~m}, 8 \mathrm{H}) ; 7.034(\mathrm{~s}, 1 \mathrm{H}) ; 6.135\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}\right) ; 5.104$ $\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right) ; 5.025-4.991(\mathrm{~m}, 2 \mathrm{H}) ; 4.909-4.851(\mathrm{~m}, 1 \mathrm{H}) ; 3.504-3.456(\mathrm{~m}, 2 \mathrm{H}) ;$ $3.360-3.309(\mathrm{~m}, 1 \mathrm{H}) ; 2.834-2.793(\mathrm{~m}, 1 \mathrm{H}) ; 2.731-2.702(\mathrm{~m}, 1 \mathrm{H}) ; 2.611-2.537(\mathrm{~m}, 1 \mathrm{H}) ; 2.502-$ $2.430(\mathrm{~m}, 1 \mathrm{H}) ; 1.899-1.772(\mathrm{~m}, 2 \mathrm{H}) ; 1.975-1.518(\mathrm{~m}, 3 \mathrm{H}) ; 1.369-1.095(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{9}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 584.20$, found 584.2055. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{9}$: C, 67.68; H, 5.34; N, 2.39; O, 24.59. Found: C, 67.69; H, 5.40; N, 2.43; O, 24.64.
4.1.2.4 (2R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate(34)

Red powder, 98% yield. Mp: $70.5-71.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.566(\mathrm{~s}, 1 \mathrm{H})$; $12.443(\mathrm{~s}, 1 \mathrm{H}) ; 7.849-7.736(\mathrm{~m}, 4 \mathrm{H}) ; 7.224-7.196(\mathrm{~m}, 7 \mathrm{H}) ; 6.948(\mathrm{~s}, 1 \mathrm{H}$, naphthoquinone-H); $6.108\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=5 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}\right) ; 5.266-5.233(\mathrm{~m}, 1 \mathrm{H}) ; 5.019\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right) ;$ 3.640-3.572 (m, 2H); 2.640-2.610 (m, 1H); 2.499-2.440(m, 1H); 1.615-1.585 (m, 3H); 1.483-
$1.465(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$564.17, found 564.2332. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{8}: \mathrm{C}, 70.08 ; \mathrm{H}, 4.81 ; \mathrm{N}, 2.48 ; \mathrm{O}, 22.63$. Found: C, $70.13 ; \mathrm{H}, 4.95 ; \mathrm{N}, 2.71 ; \mathrm{O}, 22.72$.
4.1.2.5 (2S)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate(35)

Red powder, 97% yield. $\mathrm{Mp}: 60.9-62.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.565(\mathrm{~s}, 1 \mathrm{H})$; $12.443(\mathrm{~s}, 1 \mathrm{H}) ; 7.849-7.833(\mathrm{~m}, 2 \mathrm{H}) ; 7.751-7.735(\mathrm{~m}, 2 \mathrm{H}) ; 7.240-7.168(\mathrm{~m}, 7 \mathrm{H}) ; 6.949(\mathrm{~s}, 1 \mathrm{H}) ;$ $6.109\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right) ; 5.268-5.236(\mathrm{~m}, 1 \mathrm{H}) ; 5.021\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}\right) ;$ 3.653-3.546 (m, 2H); 2.641-2.611 (m, 1H); 2.499-2.441 (m, 1H); 1.615-1.585 (m, 3H); 1.484$1.465(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$564.17, found 564.2804. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{8}: \mathrm{C}, 70.08 ; \mathrm{H}, 4.81 ; \mathrm{N}, 2.48 ; \mathrm{O}, 22.63$. Found: C, $70.21 ; \mathrm{H}, 4.86 ; \mathrm{N}, 2.51 ; \mathrm{O}, 22.73$.
4.1.2.6 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate(36)

Red powder, 98% yield. $\mathrm{Mp}: 61.6-63.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.565(\mathrm{~s}, 1 \mathrm{H})$; $12.442(\mathrm{~s}, 1 \mathrm{H}) ; 7.839-7.810(\mathrm{~m}, 2 \mathrm{H}) ; 7.745-7.713(\mathrm{~m}, 2 \mathrm{H}) ; 7.210-7.194(\mathrm{~m}, 7 \mathrm{H}) ; 6.949(\mathrm{~s}, 1 \mathrm{H})$; $6.108\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right) ; 5.266-5.237(\mathrm{~m}, 1 \mathrm{H}) ; 5.022\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}\right) ;$ 3.641-3.573 (m, 2H); 2.640-2.612 (m, 1H); 2.497-2.442 (m, 1H); 1.614-1.586 (m, 3H); 1.483$1.465(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$564.17, found 564.2018. Anal. Calcd for
$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{8}: \mathrm{C}, 70.08 ; \mathrm{H}, 4.81 ; \mathrm{N}, 2.48 ; \mathrm{O}, 22.63$. Found: C, $70.23 ; \mathrm{H}, 4.91 ; \mathrm{N}, 2.62 ; \mathrm{O}, 22.69$.
4.1.2.7 (2R)-(R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3- en-1-yl-2-(1,3-dioxohexahydro-1H-isoindol-2(3H)-yl)-3- phenylpropanoate(37)

Red powder, 64% yield. Mp: 72.1-73.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.601(\mathrm{~s}, 1 \mathrm{H})$;
$12.455(\mathrm{~s}, 1 \mathrm{H}) ; 7.315-7.168(\mathrm{~m}, 6 \mathrm{H}) ; 7.022(\mathrm{~s}, 1 \mathrm{H}) ; 6.104\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=5 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}\right) ; 5.160-$
$5.091(\mathrm{~m}, 3 \mathrm{H}) ; 3.903(\mathrm{~d}, 2 \mathrm{H}, J=15 \mathrm{~Hz}) ; 3.778\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=7 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}\right) ; 3.532-3.509(\mathrm{~m}$, $3 \mathrm{H}) ; 2.943\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=8 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}\right) ; 2.782\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=4 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}\right) ; 1.715(\mathrm{~s}, 3 \mathrm{H}) ; 1.586$ (s, 3H). ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$570.62, found 570.631. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{8}: \mathrm{C}, 69.34 ; \mathrm{H}, 5.82 ; \mathrm{N}, 2.45 ; \mathrm{O}, 22.39$. Found: C, 69.47; H, 5.96; N, 2.51; O, 22.42.
4.1.2.8 (R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl-2-(1,3-dioxohexahydro-1H-isoindol-2(3H)-yl)-3-phenylpropanoate(38)

Red powder, 64% yield. Mp: $72.1-73.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.596(\mathrm{~s}, 1 \mathrm{H})$;
$12.452(\mathrm{~s}, 1 \mathrm{H}) ; 7.286-7.180(\mathrm{~m}, 6 \mathrm{H}) ; 7.020(\mathrm{~s}, 1 \mathrm{H}) ; 6.103\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right) ; 5.161-$ $5.091(\mathrm{~m}, 3 \mathrm{H}) ; 3.903(\mathrm{~d}, 2 \mathrm{H}, J=15 \mathrm{~Hz}) ; 3.778\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=7 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}\right) ; 3.568-3.508(\mathrm{~m}$, $3 \mathrm{H}) ; 2.943\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=8 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}\right) ; 2.782\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=4 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}\right) ; 1.716(\mathrm{~s}, 3 \mathrm{H}) ; 1.585$ (s, 3H). ESI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$570.62, found 570.631. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{8}: \mathrm{C}, 69.34 ; \mathrm{H}, 5.82$; N, 2.45; O, 22.39. Found: C, 69.45; H, 5.93; N, 2.58; O, 22.46.
4.1.2.9 (2R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-
((3aR,4S,7S,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindol-2(3H)-yl)-3phenylpropanoate(39)

Red powder, 64% yield. Mp: $60.5-62.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.594(\mathrm{~s}, 1 \mathrm{H})$; $12.448(\mathrm{~s}, 1 \mathrm{H}) ; 7.286-7.256(\mathrm{~m}, 2 \mathrm{H}) ; 7.223-7.173(\mathrm{~m}, 5 \mathrm{H}) ; 6.960(\mathrm{~s}, 1 \mathrm{H}) ; 6.286-6.220(\mathrm{~m}, 2 \mathrm{H}) ;$ $6.121\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=6 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right) ; 5.140-5.077(\mathrm{~m}, 2 \mathrm{H}) ; 3.554-3.438(\mathrm{~m}, 2 \mathrm{H}) ; 3.232(\mathrm{~s}, 1 \mathrm{H}) ;$ $3.168(\mathrm{~s}, 1 \mathrm{H}) ; 2.676-2.592(\mathrm{~m}, 2 \mathrm{H}) ; 2.536-2.466(\mathrm{~m}, 2 \mathrm{H}) ; 1.715-1.582(\mathrm{~m}, 8 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 580.20$, found 580.2168. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{8}$: C, 70.21; H, 5.37; N, 2.41; O, 22.01. Found: C, 70.34; H, 5.51; N, 2.55; O, 22.31.
4.1.2.10 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-

1-yl-2-((3aR,4S,7S,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindol-2(3H)-yl)-3phenylpropanoate(40)

Red powder, 67% yield. Mp: 51.6-53.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.598(\mathrm{~s}, 1 \mathrm{H}) ;$ $12.451(\mathrm{~s}, 1 \mathrm{H}) ; 7.287-7.176(\mathrm{~m}, 7 \mathrm{H}) ; 6.963(\mathrm{~s}, 1 \mathrm{H}) ; 6.289-6.223(\mathrm{~m}, 2 \mathrm{H}) ; 6.125\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=4.5\right.$ $\left.\mathrm{Hz}, J_{2}=6 \mathrm{~Hz}\right) ; 5.140-5.079(\mathrm{~m}, 2 \mathrm{H}) ; 3.556-3.439(\mathrm{~m}, 2 \mathrm{H}) ; 3.253(\mathrm{~s}, 1 \mathrm{H}) ; 3.173(\mathrm{~s}, 1 \mathrm{H}) ; 2.689-$ $2.595(\mathrm{~m}, 2 \mathrm{H}) ; 2.538-2.470(\mathrm{~m}, 2 \mathrm{H}) ; 1.718-1.584(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta:$ 185.37, 183.12, 175.23, 172.57, 161.21, 160.14, 150.24, 149.22, 139.93, 139.56, 139.15, 135.68, $134.33,133.64,132.26,125.28,118.37,74.38,62.86,55.34,48.80,47.65,16.89,36.97,31.23$, 20.21, 19.87. ESI-MS: Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 580.20$, found 580.2368. Anal. Calcd for
$\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{8}: \mathrm{C}, 70.21 ; \mathrm{H}, 5.37 ; \mathrm{N}, 2.41 ; \mathrm{O}, 22.01$. Found: C, $70.32 ; \mathrm{H}, 5.41 ; \mathrm{N}, 2.51 ; \mathrm{O}, 22.31$.
4.1.2.11 (2R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-((4R,7S)-1,3-dioxohexahydro-1H-4,7-epoxyisoindol-2(3H)-yl)propanoate(41)

Red powder, 27% yield. $\mathrm{Mp}: 63.2-64.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.601(\mathrm{~s}, 1 \mathrm{H})$; $12.484(\mathrm{~s}, 1 \mathrm{H}) ; 7.028(\mathrm{~s}, 2 \mathrm{H}) ; 7.049(\mathrm{~s}, 1 \mathrm{H}) ; 6.151-6.063(\mathrm{~m}, 1 \mathrm{H}) ; 6.035\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=\right.$ $11 \mathrm{~Hz}) ; 5.168-5.063(\mathrm{~m}, 1 \mathrm{H}) ; 5.024-4.991(\mathrm{~m}, 2 \mathrm{H}) ; 4.898-4.843(\mathrm{~m}, 1 \mathrm{H}) ; 3.504-3.308(\mathrm{~m}, 3 \mathrm{H}) ;$ 2.833-2.715 (m, 2H); 2.607-2.560(m, 1H); 2.501-2.440(m, 1H); 1.975-1.518 (m, 3 H$)$; 1.568~1.412 (m, 3H);1.387-1.196 (m, 3H).ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{9}$ ([M-H] $)$ 508.50, found 508.5245. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{9}$: C, 63.65 ; H, 5.34; N, 2.75; O, 28.26. Found: C, 63.72; H, 5.43; N, 2.81; O, 28.37.
4.1.2.12(2S)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-((4R,7S)-1,3-dioxohexahydro-1H-4,7-epoxyisoindol-2(3H)-yl)propanoate(42)

Red powder, 25% yield. $\mathrm{Mp}: 62.7-63.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.601(\mathrm{~s}, 1 \mathrm{H})$; $12.484(\mathrm{~s}, 1 \mathrm{H}) ; 7.028(\mathrm{~s}, 2 \mathrm{H}) ; 7.049(\mathrm{~s}, 1 \mathrm{H}) ; 6.151 \sim 6.063(\mathrm{~m}, 1 \mathrm{H}) ; 6.035\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=\right.$ $11 \mathrm{~Hz}) ; 5.168-5.063(\mathrm{~m}, 1 \mathrm{H}) ; 5.024-4.991(\mathrm{~m}, 2 \mathrm{H}) ; 4.898-4.843(\mathrm{~m}, 1 \mathrm{H}) ; 3.504-3.308(\mathrm{~m}, 3 \mathrm{H}) ;$ 2.833-2.715 (m, 2H); 2.607-2.560 (m, 1H); 2.501-2.440 (m, 1H); 1.975-1.518 (m, 3H); 1.568$1.412(\mathrm{~m}, 3 \mathrm{H}) ; 1.387-1.196(\mathrm{~m}, 3 \mathrm{H})$.ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{9}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 508.50$, found 508.5245. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{9}$: C, 63.65 ; H, 5.34; N, 2.75; O, 28.26. Found: C, 63.72; H,
5.43; N, 2.81; O, 28.37.
4.1.2.131-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-
((4R, 7S)-1,3-dioxohexahydro-1H-4,7-epoxyisoindol-2(3H)-yl)propanoate(43)

Red powder, 30% yield. $\mathrm{Mp}: 71.8-72.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.601(\mathrm{~s}, 1 \mathrm{H})$;
$12.484(\mathrm{~s}, 1 \mathrm{H}) ; 7.028(\mathrm{~s}, 2 \mathrm{H}) ; 7.049(\mathrm{~s}, 1 \mathrm{H}) ; 6.151-6.063(\mathrm{~m}, 1 \mathrm{H}) ; 6.035\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=\right.$ $11 \mathrm{~Hz}) ; 5.168-5.063(\mathrm{~m}, 1 \mathrm{H}) ; 5.024-4.991(\mathrm{~m}, 2 \mathrm{H}) ; 4.898-4.843(\mathrm{~m}, 1 \mathrm{H}) ; 3.504-3.308(\mathrm{~m}, 3 \mathrm{H}) ;$ 2.833-2.715 (m, 2H); 2.607-2.560 (m, 1H); 2.501-2.440(m, 1H); 1.975-1.518 (m, 3H); 1.568~1.412 (m, 3H);1.387-1.196 (m, 3H).ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{9}\left([\mathrm{M}-\mathrm{H}]{ }^{-}\right) 508.50$, found 508.5245. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{9}: \mathrm{C}, 63.65 ; \mathrm{H}, 5.34 ; \mathrm{N}, 2.75$; O, 28.26. Found: C, 63.72; H, 5.43; N, 2.81; O, 28.37.
4.1.2.14(R)-(R)-2-(3-hydroxybenzoyl)-6-methylhepta-1,5-dien-3-yl2-(1,3-dioxoisoindolin-2yl)propanoate (44)

Red powder, 60% yield. Mp: $76.5-77.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.569(\mathrm{~s}, 1 \mathrm{H}) ;$ $12.444(\mathrm{~s}, 1 \mathrm{H}) ; 7.952-7.923(\mathrm{~m}, 2 \mathrm{H}) ; 7.821-7.794(\mathrm{~m}, 2 \mathrm{H}) ; 7.204(\mathrm{~s}, 2 \mathrm{H}) ; 6.950(\mathrm{~s}, 1 \mathrm{H}) ; 6.080(\mathrm{t}$, $\left.1 \mathrm{H}, J_{1}=9 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}\right) ; 5.117-4.978(\mathrm{~m}, 2 \mathrm{H}) ; 2.677-2.585(\mathrm{~m}, 1 \mathrm{H}) ; 2.518-2.419(\mathrm{~m}, 1 \mathrm{H}) ;$ 1.795-1.755 (m, 3H); $1.629(\mathrm{~s}, 3 \mathrm{H}) ; 1.485(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$ 446.17, found 446.1760. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 69.79 ; H, 5.63; N, 3.13; O, 21.45. Found: C, 69.36; H, 5.88; N, 3.09; O, 21.32
4.1.2.15(S)-(R)-2-(3-hydroxybenzoyl)-6-methylhepta-1,5-dien-3-yl2-(1,3-dioxoisoindolin-2-
yl)propanoate (45)

Red powder, 55% yield. Mp: 55.7-57. $5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.581(\mathrm{~s}, 1 \mathrm{H})$; $12.476(\mathrm{~s}, 1 \mathrm{H}) ; 7.929-7.901(\mathrm{~m}, 2 \mathrm{H}) ; 7.822-7.770(\mathrm{~m}, 2 \mathrm{H}) ; 7.208(\mathrm{~s}, 2 \mathrm{H}) ; 7.013(\mathrm{~s}, 1 \mathrm{H}) ; 6.078(\mathrm{t}$, $\left.1 \mathrm{H}, J_{1}=9 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}\right) ; 5.117-4.975(\mathrm{~m}, 2 \mathrm{H}) ; 2.634-2.568(\mathrm{~m}, 1 \mathrm{H}) ; 2.516-2.441(\mathrm{~m}, 1 \mathrm{H}) ;$ $1.795-1.741(\mathrm{~m}, 3 \mathrm{H}) ; 1.648-1.565(\mathrm{~m}, 3 \mathrm{H}) ; 1.491(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 186.3$, $184.8,173.9,171.5,166.5,165.8,151.8,140.2,130.8,130.1,125.1,122.5,110.6,73.8,60.5$, 31.9, 25.8, 19.1, 12.4. ESI-MS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}$ ([M-H] $]^{-}$) 446.17, found 446.1728. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 69.79; H, 5.63; $\mathrm{N}, 3.13 ; \mathrm{O}, 21.45$. Found: C, 69.76; H, 5.52; $\mathrm{N}, 3.09 ; \mathrm{O}$, 21.57.
4.1.2.16(R)-2-(3-hydroxybenzoyl)-6-methylhepta-1,5-dien-3-yl2-(1,3-dioxoisoindolin-2-
yl)propanoate1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-

3-en-1-yl-2-(1,3-dioxoisoindolin-2-yl)propanoate(46)

Red powder, 65% yield. Mp: $43.2-44.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 12.572(\mathrm{~s}, 1 \mathrm{H})$; $12.466(\mathrm{~s}, 1 \mathrm{H}) ; 7.954-7.952(\mathrm{~m}, 2 \mathrm{H}) ; 7.824-7.795(\mathrm{~m}, 2 \mathrm{H}) ; 7.207(\mathrm{~s}, 2 \mathrm{H}) ; 6.950(\mathrm{~s}, 1 \mathrm{H}) ; 6.081(\mathrm{t}$, $\left.1 \mathrm{H}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}\right) ; 5.118-5.069(\mathrm{~m}, 2 \mathrm{H}) ; 2.652-2.609(\mathrm{~m}, 1 \mathrm{H}) ; 2.510-2.445(\mathrm{~m}, 1 \mathrm{H}) ;$ 1.796-1.631 (m, 9H). ESI-MS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}$ ([M-H]) 446.17, found 446.1728. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 69.79; H, 5.63; N, 3.13; O, 21.45. Found: C, 69.66; H, 5.52; N, 3.24; O,
21.40.
4.1.2.17(2R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-(1,3-dioxohexahydro-1H-isoindol-2(3H)-yl)propanoate(47)

Red oil, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.588(\mathrm{~s}, 1 \mathrm{H}) ; 12.455(\mathrm{~s}, 1 \mathrm{H}) ; 7.207(\mathrm{~s}$, 2H); $7.027(\mathrm{~s}, 1 \mathrm{H}) ; 6.070\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right) ; 5.094\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=12\right.$ $\mathrm{Hz}) ;$ 4.919-4.846 (m, 1H); 2.962-2.905 (m, 3H); 2.694-2.607 (m, 1H); 2.570-2.472 (m, 1H); 1.861-1.481 (m, 16H). ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}$ ([M-H] $]^{-}$494.19, found 494.2081. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}: \mathrm{C}, 65.44 ; \mathrm{H}, 5.90 ; \mathrm{N}, 2.83 ; \mathrm{O}, 25.83$. Found: C, 65.56; H, 6.08; N, 2.99; O, 25.97.
4.1.2.18(2S)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-(1,3-dioxohexahydro-1H-isoindol-2(3H)-yl)propanoate(48)

Red oil, 87% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.594(\mathrm{~s}, 1 \mathrm{H}) ; 12.447(\mathrm{~s}, 1 \mathrm{H}) ; 7.203$ (s, 2H); $7.006(\mathrm{~s}, 1 \mathrm{H}) ; 6.067\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right) ; 5.099\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=12 \mathrm{~Hz}, J_{2}=12.5\right.$ $\mathrm{Hz}) ;$ 4.921-4.848 (m, 1H); 2.961-2.900 (m, 3H); 2.715-2.625 (m, 1H); .559-2.461 (m, 1H); 1.876-1.580 (m, 16H). ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}$ ([M-H] $]^{-}$) 494.19, found 494.1879. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}$: C, 65.44; H, 5.90; N, 2.83; O, 25.83. Found: C, 65.59; H, 6.67; N, 2.97; O, 25.90 .
4.1.2.191-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-3-yl)-4-methylpent-3-en-1-yl-2-

Red oil, 93% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 12.599(\mathrm{~s}, 1 \mathrm{H}) ; 12.453(\mathrm{~s}, 1 \mathrm{H}) ; 7.206(\mathrm{~s}$, $2 \mathrm{H}) ; 7.012(\mathrm{~s}, 1 \mathrm{H}) ; 6.071\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}\right) ; 5.102\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=12.5 \mathrm{~Hz}\right)$; 4.923-4.850 (m, 1H); 2.964-2.908 (m, 3H); 2.718-2.610 (m, 1H); 2.566-2.467 (m, 1H); 1.8801.547 (m, 16H). ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$494.19, found 494.2054. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}$: C, 65.44; H, 5.90; N, 2.83; O, 25.83. Found: C, 65.58; H, 6.01; N, 2.94; O, 25.90.

4.2. Cell culture

All cell lines were obtained from State Key Laboratory of Pharmaceutical Biotechnology(Nanjing University) and maintained in Dulbecco's modified Eagle's medium (DMEM) with L-glutamine, supplemented with 10% fetal bovine serum (FBS) at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$.

4.3. Cell Viability Assay (MTT Assay)

Cells were planted in 96-well plates at appropriate densities to ensure exponential growth throughout the experimental period $\left(2.0 \times 10^{3}\right.$ cells per well), and then allowed to adhere for 6 hours. Cells were then treated for 20 hours with four serial concentrations $(0,1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10$ $\mu \mathrm{M})$ of each compound. Shikonin and norcantharidin were used as positive controls. After 20 hours incubation, $20 \mu \mathrm{~L}$ MTT solution was added in each well to a final concentration of 4 $\mathrm{mg} / \mathrm{mL}$. Plates were then incubated for further 4 hours, after incubation all the plates were
centrifuged ($1500 \mathrm{rpm}, 10 \mathrm{~min}$) and then the entire medium was removed. $150 \mu \mathrm{~L}$ of DMSO was added to each well for coloration. The plates were shaken vigorously to ensure complete solubilization for 10 min at room temperature Optometric density (OD) was read on a microplate reader ELx800 (BioTek, Highland Park, Winooski, VT, USA) at the wavelength of 570 nm , and subsequently the data was analyzed using Origin7.5.

4.4. Analysis for Apoptosis by Flow Cytometry.

Apoptosis was detected using an Apoptosis Detection Kit (invitrogen, Eugene, Oregon, USA). Briefly, cells were plated in 6 well plates $\left(5.0 \times 10^{4}\right.$ cells/well) and incubated at $37{ }^{\circ} \mathrm{C}$ for 12 hours. Exponentially growing cells were then incubated with compounds 40 of different concentrations $(0 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$. Following 24 hours treatment, cells were collected and washed twice with PBS and subsequently washed once with $1 \times$ binding buffer and then stained with $5 \mu \mathrm{~L}$ of Annexin V-FITC and $2.5 \mu \mathrm{~L}$ of PI ($5 \mu \mathrm{~g} / \mathrm{mL}$) in $1 \times$ binding buffer for 30 min at room temperature in the dark. Apoptotic cells were quantified using a FACScan cytofluorometer(PT. MadagasiBrosa Inc. Jl. BatangHari No.73, Propinsi Sumatera Utara, Indonesia). Statistical analysis was performed using WINMDI software version 2.8 (The Scripps Research Institute (TSRI), San Diego, CA, USA).

4.5. Analysis for cell cycle by Flow cytometry

HepG2 cells were plated in 6-well plates $\left(5.0 \times 10^{3}\right.$ cells per well) and incubated at $37^{\circ} \mathrm{C}$ for 24 hours. Exponentially growing cells were then incubated with the compound $\mathbf{4 0}$ at different concentrations ($0 \mathrm{mM}, 1 \mathrm{mM}, 3 \mathrm{mM}$, and 10 mM). After 12 hours, untreated cells (control) or cells treated with compound 40 were centrifuged at 1500 rpm at $4{ }^{\circ} \mathrm{C}$ for 10 min , and then fixed in 70% ethanol at $4{ }^{\circ} \mathrm{C}$ for at least 12 hours and subsequently resuspended in phosphate buffered saline (PBS) containing $0.1 \mathrm{mg} / \mathrm{mL}$ RNase A and $5 \mu \mathrm{~g} / \mathrm{mL}$ propidium iodide (PI). The cellular DNA content, for cell cycle distribution analysis was measured by flow cytometry using a Becton_Dickinson FACScan cytoflouorometer, plotting at least 10,000 events per sample. The percentage of cells in the G0/G1, S and G2/M phases of the cell cycle were determined using the Verity Software BD Accuri C6 software.

4.6. Western blot analysis

Cells were rinsed with PBS and lysed in cold RIPA buffer (10 Mm Tris-HCl, 1 mM EDTA, 1% SDS, 1 mM DTT, 0.1 mM PMSF, protease inhibitors, 1% Nonidet P-40, pH 8.0). Lysates were centrifuged at $12,000 \mathrm{~g}$ for 10 min at $4^{\circ} \mathrm{C}$ to remove cell debris and protein content was analyzed by a Micro BCA Protein Assay kit (Pierce). Aliquots of proteins ($40 \sim 60 \mu \mathrm{~g}$) were separated on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electro-transferred to polyvinylidenedifluoride (PVDF) membranes. Membranes were blocked with 5% nonfat dry milk or BSA in TBST (TBS plus 0.1% Tween 20) for 1 hour. Blots were then
probed with primary antibodies against PARP, caspase-3, caspase-8, caspase-9, P53, P21, CDC2, phosphor-CDC2(Tyr 15) and α-tubulin, incubated at $4^{\circ} \mathrm{C}$ overnight, followed by HRP-conjugated secondary antibodies and protein expression was detected with an enhanced chemiluminescent reagent (Cell Signaling Technology). The PARP antibody was purchased from Oncogene Company, and other antibodies were purchased from Cell Signalling Technology Company. The autoradiographic intensity of each band was scanned.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (NSFC) (Nos. 31171161, 31170275, 31470384), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_14R27), the Project of New Century Excellent Talents in University (NECT-11-0234), the fund for University Ph.D. Program from the Ministry of Education of China (20120091110037), and the Natural Science Foundation of the Jiangsu (BK2011414).

References and Notes

1 S. Eckhardt, Curr. Med. Chem. Anti-Canc. Agent ., 2002, 2, 419-39.

2 J.C. Medina, B. Shan, H. Beckmann, R.P. Farrell, D.L. Clark, R.M. Learned, D. Roche, A. Li,
V. Baichwal, C. Case, P.A. Baeuerle, T. Rosen and J.C. Jaen, Bioorg.Med. Chem. Lett., 1998, 8, 2653-2656.

3 J.C. Medina, D. Roche, B. Shan, R.M. Learned, W.P. Frankmoelle, D.L. Clark, T. Rosen and J.C. Jaen, Bioorg. Med. Chem. Lett., 1999, 9, 1843-1846.

4 H.S. Hwang, E.Y. Moon, S.K. Seong, C.H. Choi, C.H. Chung, S.H. Jung and S.J. Yoon, Anticancer. Res., 1999, 19, 5087-5093.

5 S.T. Al-Rashood, I.A. Aboldahab, M.N. Nagi, L.A. Abouzeid, A.A.-M. Abdel-Aziz, S.G. Abdel-Hamide, K.M. Youssef, A.M. Al-Obaid and H.I. El-Subbagh, Bioorg. Med. Chem., 2006, 14, 8608-8621.

6 A.M. Al-Obaid, S.G.Abdel-Hamide, H.A. El-Kashef, A.A.-M.Abdel-Aziz, A.S. El-Azab, H.A.

Al-Khamees and H.I. El-Subbagh, Eur. J. Med. Chem., 2009, 44, 2379-2391.

7 T. Yabuno, N. Konishi, M. Nakamura, T. Tsuzuki, S. Tsunoda, T. Sakaki and Y. Hiasa, J. Neuro-Oncol., 1998, 36, 105-112.

8 R. Perez-Tomas, Curr. Med. Chem., 2006, 13, 1859-1876.

9 B. R. Acharya, S. Bhattacharyya, D. Choudhury and G .Chakrabarti, Apoptosis, 2011,

16, 924-939.

10 J. A. Hickman, Cancer Metast. Rev., 1992, 11, 121-139.

11 A.Eisenberg-Lerner, S. Bialik, H. U. Simon and A. Kimchi, Cell Death Differ., 2009, 16, 966975.

12 R. W. Johnstone, A. J. Frew and M. J. Smyth, Nat. Rev. Cancer., 2008, 8, 782-798.

13 S. W. Fesik, Nat. Rev. Cancer., 2005, 5, 876-885.

14 D. Hanahan and R. A. Weinberg, Cell, 2000, 100, 57-70.

15 C. B. Thompson, Science, 1995, 267, 1456-1462.

16 I. Budihardjo, H. Oliver, M. Lutter, X. Luo and X. Wang, Annu. Rev. Cell Dev. Bi., 1999, 15, 269-290.

17 V.P. Papageorgioua, A.N. Assimopoulou, V.F. Samanidou and I.N. Papadoyannis, Curr. Org. Chem., 2006, 10,583-622.

18 D. J. Liang, Y. Sun, Y. B. Shen, F. Y. Li, X. J. Song, E. S. Zhou, F. Y. Zhao, Z. C. Liu, Y. H. Fu, M. Y. Guo, N. S. Zhang, Z. T. Yang and Y. G. Cao, Int. Immunopharmacol., 2013,16, 475-480.

19 C. C. Shen, W. J. Syu, S. Y. Li, C. H. Lin, G. H. Lee and C. M. Sun, J. Nat. Prod., 2002, 65, 1857-1862.

20 H. Y. Wang, C. L. Wu, S. B. Wan, H. J. Zhang, S. W. Zhou and G. T. Liu, Toxicology, 2013,

308, 104-112.

21 J. W. Ahn, M. S. Won, J. H. Choi, Y. S. Kim, C. R. Jung, D. S. Im, M. L. Kyun, K. Y. Lee, K. B. Song and K. S. Chung, Apoptosis., 2013, 18, 870-881.

22 X. Chen, L. Yang, J.J. Oppenheim, O.M.Z. Howard, Phytother. Res., 2002, 16,199-209.

23 V.P. Papageorgiou, A.N. Assimopoulou and A.C. Ballis, Curr. Med. Chem., 2008, 15, 3248-3267.

24 X. Mao, C. R. Yu, W. H. Li and W. X. Li, Cell Res., 2008,18, 879-888.

25 J. Liu, W. Zhou, S. S. Li, Z. Sun, B.Lin, Y. Y.Lang, J. Y. He, X. Cao, T. Yan,
L. Wang, J. Lu, Y. H. Han, Y. Cao, X. K. Zhang and J. Z. Zeng, Cancer Res., 2008, 68, 8871.

26 X. Hu, W. Han and L. Li, Autophagy, 2007, 3, 490-492.

27 W. Han, L. Li, S. Qiu, Q. Lu, Q.Pan, Y. Gu, , J. Luo and X. Hu, Mol. Cancer Ther., 2007, 6, 1641-1649.

28 T. Hisa, Y. Kimura, K. Takada, F.Suzuki and M.Takigawa, Anticancer Res., 1998, 18, 783790.

29 Y. Komi, Y. Suzuki, M. Shimamura, S. Kajimoto, S. Nakajo, M.Masuda,M.Shibuya, H.Itabe, K.Shimokado, P. Oettgen, K. Nakaya and S. Kojima, Cancer Sci., 2009, 2 , 269-277.

30 F. Singh, D. Gao, M. G. Lebwohl and H. Wei, Cancer Lett., 2003, 2, 115-121.

31 K .Nakaya and T. Miyasaka, Anticancer Drugs., 2003, 14, 683.

32 S. J. Lee, H. Sakurai, K. Koizumi, G. Y. Song, Y. S. Bae, H. M. Kim, K. S. Kang, Y. J. Surh I.

Saiki and S. H. Kim, Cancer Lett., 2006, 233, 57-67.

33 Y.H. Su, J.S. Xie, Y.G. Wang, X. Hu and X.F. Lin, Eur. J. Med. Chem., 2009,45, 2713-2718.

34 Y. Xuan, and X. Hu, Cancer Lett, 2009, 274, 233-244 ().

35 Q. Lu, W. Liu, J. Ding, J. Cai and W.H. Duan, Bioorg. Med. Chem. Lett., 2002,12, 13751378.

36 B.Z. Ahn, K.U. Baik, G.R. Kweon, K. Lim and B.D. Hwang, J. Med. Chem., 1995, 38, 1044-1047.

37 F. Yang, Y. Chen, W.H. Duan, C. Zhang, H. Zhu, and J. Ding, Int. J. Cancer., 2006, 119, 1184-1193.

38 Z.F. Plyta, T. Li, V.P. Papageorgiou, A.S. Mellidis, A.N. Assimopoulou, E.N. Pitsinos and E.A. Couladouros, Bioorg. Med. Chem. Lett., 1998, 8, 3385-3390.

39 W. Y. Kong, X. F. Chen, J. Shi, S. K. Baloch, J. L. Qi, H. L. Zhu, X. M. Wang and Y. H.

Yang, Chirality, 2013, 25, 757-762.

40 H. Y. Lin, W. Chen, J. Shi, W. Y. Kong, J. L. Qi, X. M. Wang and Y. H. Yang, Chem. Biol. Drug Des., 2013, 81, 275-283.

41 J. Guo, X. F. Chen, J. Liu, H. Y. Lin, H. W. Han, H. C. Liu, S. C. Huang, S. K. Baloch,
A.Kulek, X. M. Wang, L. J. Ling and Y. H. Yang, Chem. Biol. Drug Des., 2014, 84, 603-615.

42 X. M. Wang, H. Y. Lin, W. Y. Kong, L. J. Ling, J. Guo, S. C. Huang, J. L. Qi, R. W. Yang, H. W. Gu and Y. H. Yang, Chem. Biol. Drug Des., 2014, 83, 334-343.

43 H.Y. Lin, H. W. Han, L. F. Bai, H. Y. Qiu, D. Z. Yin, J. L. Qi, X. M. Wang, H.W. Gu and Y.H. Yang, RSC Adv., 2014, 4, 49796-49805.

44 S. K. Baloch, L. J. Ling ,H.Y.Qiu, L.Ma, H. Y. Lin, S. C. Huang, J. L. Qi, X. M. Wang, G. H. Lu and Y. H. Yang, RSC $A d v ., 2014,4,35588-35596$.

Figure and table captions:

Scheme. 1 Synthesis of Phenylalanine Derivatives.

Scheme. 2 Synthesis of Alanine Derivatives.

Scheme. 3 Synthesis of Phenylalanine Shikonin Ester.

Scheme. 4 Synthesis of Alanine Shikonin Ester.

Table. 1 In Vitro Anticancer Activity of Shikonin Derivatives Against Five Cancer Cell Lines.

Fig.1A+B Cellular apoptosis study of compound 40 tested on HeLa cellsin dose dependent $\operatorname{manner}(0 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$. The percentage of early apoptotic cells in the lower right quadrant (annexin V-FITC-positive / PI-negative cells), as well as late apoptotic cells located in the upper right quadrant (annexin V-FITC-positive / PI-positive cells).

Fig.2A+B Cellular apoptosis study of compound $\mathbf{4 0}$ tested on HeLa cells in time dependent manner compared $(0 h, 8 h, 16 \mathrm{~h}$ and 24 h$)$ with the mock group.

Fig. 3 Effect of comound 40 on the cell cycle distribution of HeLa cells in dose dependent manner $(0 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$.

Fig. 4 Immunodetection of apoptosis related proteins of HeLa cells treated with different concentrations ($0 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$ of compound 40 .

Fig. 5 Compound 40 induced caspase-9 involved apoptosis and G2/M phase cell cycle arrest via P21, p - CDC2 (Tyr15) pathway independent of P53.

Scheme 1. Synthesis of Phenylalanine Derivatives

${ }^{a}$ Reagents and conditions: acetic acid, reflux, 12 h .

Scheme 2. Synthesis of Alanine Derivatives

${ }^{a}$ Reagents and conditions: acetic acid, reflux, 12 h .

Scheme 3. Synthesis of PhenylalanineShikonin Ester

${ }^{b}$ Reagents and conditions: DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent, ice-bath, overnight.

Scheme 4. Synthesis of Alanine Shikonin Ester

${ }^{b}$ Reagents and conditions: DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent, ice-bath, overnight

Table 1. In Vitro Anticancer Activity of Shikonin Derivatives against Five Cancer Cell Lines.

Table 1.In Vitro Anticancer Activity of Shikonin Derivatives Against Five Cancer Cell Lines.

	$\mathrm{IC}_{50} \pm \mathrm{SD}^{a}(\mu \mathrm{M})$						
entry			HeLa	HepG2	MCF-7	BGC	A549
1		4.88 ± 0.87	2.33 ± 0.43	6.06 ± 1.49	20.53 ± 3.76	>100	>100
2		4.51 ± 0.66	2.48 ± 0.38	4.58 ± 0.34	>100	>100	>100
3		5.68 ± 1.34	2.98 ± 0.61	7.59 ± 1.15	52.70 ± 4.12	>100	>100
4		3.21 ± 0.45	2.96 ± 0.88	6.12 ± 0.84	>100	>100	>100
5	$\mathbf{3 5}$	2.92 ± 0.67	1.69 ± 0.25	3.05 ± 0.21	>100	>100	>100
6	$\mathbf{3 6}$	2.92 ± 0.34	5.18 ± 0.87	3.51 ± 0.33	36.12 ± 3.89	>100	>100
7	$\mathbf{3 7}$	9.99 ± 1.85	2.77 ± 1.05	5.88 ± 0.65	>100	>100	>100
8	$\mathbf{3 8}$	3.75 ± 0.44	3.65 ± 1.30	8.47 ± 0.53	7.63 ± 1.63	>100	>100
9	$\mathbf{3 9}$	5.91 ± 0.98	2.21 ± 0.32	3.43 ± 0.21	>100	>100	>100
10	$\mathbf{4 0}$	1.26 ± 0.25	1.92 ± 0.19	3.55 ± 0.34	11.56 ± 2.81	>100	>100
11	$\mathbf{4 1}$	5.54 ± 1.24	2.33 ± 0.54	5.69 ± 0.88	>100	>100	>100
12	$\mathbf{4 2}$	7.38 ± 2.08	2.67 ± 0.29	9.06 ± 1.54	>100	>100	>100
13	$\mathbf{4 3}$	3.28 ± 0.71	2.15 ± 0.14	3.82 ± 0.58	>100	>100	>100
14	$\mathbf{4 4}$	5.54 ± 1.90	5.14 ± 0.91	4.24 ± 0.82	92.85 ± 6.73	>100	>100
15	$\mathbf{4 5}$	1.93 ± 1.36	5.35 ± 0.28	2.55 ± 0.35	13.34 ± 1.78	>100	>100
16	$\mathbf{4 6}$	2.96 ± 0.98	5.11 ± 0.47	4.30 ± 0.51	14.67 ± 2.05	>100	>100
17	$\mathbf{4 7}$	8.53 ± 0.67	2.10 ± 0.13	4.19 ± 0.32	14.94 ± 2.41	>100	>100
18	$\mathbf{4 8}$	18.50 ± 2.71	$3.16 \pm 0 . .45$	6.27 ± 0.69	57.54 ± 4.67	>100	>100
19	$\mathbf{4 9}$	11.39 ± 2.28	3.57 ± 0.19	16.08 ± 2.09	61.25 ± 3.65	>100	>100
20	shikonin	3.11 ± 0.82	0.92 ± 0.12	1.03 ± 0.21	2.20 ± 0.19	2.51 ± 0.35	65.34 ± 3.18

${ }^{a}$ SD: standard deviation. All experiments were independently performed at least three times.

Fig.1A+B Cellular apoptosis study of compound 40 tested on HeLa cellsin dose dependent manner($0 \mu \mathrm{M}, 1$ $\mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M}$). The percentage of early apoptotic cells in the lower right quadrant (annexin V-FITCpositive / PI-negative cells), as well as late apoptotic cells located in the upper right quadrant (annexin V-FITC-positive / PI-positive cells).
$37 \times 10 \mathrm{~mm}$ (300×300 DPI)

Fig.2A+B Cellular apoptosis study of compound 40 tested on HeLa cells in time dependent manner compared($0 \mathrm{~h}, 8 \mathrm{~h}, 16 \mathrm{~h}$ and 24 h) with the mock group.
$53 \times 19 \mathrm{~mm}(300 \times 300$ DPI)

Fig. 3 Effect of comound 40 on the cell cycle distribution of HeLa cells in dose dependent manner ($0 \mu \mathrm{M}, 1 \mu \mathrm{M}, 3 \mu \mathrm{M}, 10 \mu \mathrm{M})$.
$27 \times 6 \mathrm{~mm}(300 \times 300 \mathrm{DPI})$

$29 \times 27 \mathrm{~mm}(300 \times 300$ DPI)

