
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



RSC Advances RSCPublishing 

ARTICLE 

This journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 1  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 

Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Synthesis and biological evaluation of non-glucose 

glycoconjugated N-hydroyxindole class LDH 

inhibitors as anticancer agents 

Valeria Di Bussolo,a Emilia C. Calvaresi,b,c Carlotta Granchi,a Linda Del Bino,a 
Ileana Frau,a Maria Chiara Dasso Lang,a,d Tiziano Tuccinardi,a Marco Macchia,a 
Adriano Martinelli,a Paul J. Hergenrother*,b and Filippo Minutolo*,a 

Inhibitors of human lactate dehydrogenase A (LDH-A) are promising therapeutic agents 
against cancer. The development of LDH-A inhibitors that possess cellular activities has so far 
proved to be particularly challenging, since the enzyme’s active site is narrow and highly 
polar. In the recent past, we were able to develop a glucose-conjugated N-hydroxyindole-based 
LDH-A inhibitor designed to exploit the sugar avidity expressed by cancer cells (the Warburg 
effect). Herein we describe a structural modulation of the sugar moiety of this class of 
inhibitors, with the insertion of α-D-mannose, β-D-gulose, or β-N-acetyl-D-glucosamine 
portions in their structures. Their stereospecific chemical synthesis, which involve a substrate-
dependent stereospecific glycosylation step, and their biological activity in reducing lactate 
production and proliferation in cancer cells are reported. Interestingly, the α-D-mannose 
conjugate displayed the best properties in the cellular assays, demonstrating an efficient 
antiglycolytic and antiproliferative activity in cancer cells. 
 

Introduction 

Tumors generally follow unusual metabolic pathways to obtain 
the energy and anabolites required for their persistent growth. 
Growing cancer cells rewire their metabolism to meet their 
bioenergetic and biosynthetic needs for rapid proliferation by 
increasing their consumption of glucose and glutamine, 
enhancing glycolysis, and increasing the excretion of lactate. In 
particular, glycolysis, rather than oxidative phosphorylation 
(OXPHOS), is predominantly used even in the presence of 
oxygen, as described by the well-known “Warburg effect”.1,2 In 
fact, in normal cells, most of the pyruvate produced by 
glycolysis goes into the tricarboxylic acid (TCA) cycle and is 
eventually oxidized to CO2 via OXPHOS. On the contrary, 
tumor cells mostly convert pyruvate to lactate anaerobically. 
Several prospective drugs have been developed to take 
advantage of this peculiar metabolism occurring in cancer by 
acting as anti-glycolytic agents, as reviewed recently.3,4 
 Lactate dehydrogenase (LDH), the enzyme that catalyzes 
the interconversion of pyruvate and lactate, establishes a key 
checkpoint for the switch from aerobic to anaerobic glycolysis. 
LDH is a tetrameric enzyme that may exist in five isoforms 
(hLDH1-5), which results from the possible combinations of 
the two subunits: LDH-A and LDH-B. Subunit LDH-A (and, 
consequently, its tetrameric functional form hLDH5 or LDH-
A4) is very frequently found to be overexpressed in invasive 
cancer; its genetic silencing has been shown to reduce 
proliferation and invasiveness of tumor cells, especially under 
hypoxic conditions.5 The validity of LDH-A as an anticancer 

target is further strengthened by the fact that individuals 
homozygous for LDH-A deficiency do not show any particular 
clinical symptoms, except for myoglobinuria upon intense 
physical exertion.6 Therefore, several recent research efforts 
have been dedicated to the development of new LDH-A 
inhibitors with therapeutic potential as anticancer drugs, 
although problems related to poor cellular activities of these 
inhibitors have been often reported.7,8 
 The high rate of glycolysis in cancer cells is associated with 
a striking glucose avidity. This feature has been exploited by 
glycoconjugation of anticancer drugs, in order to improve their 
targeting to tumor cells versus normal tissues.9 We have 
previously developed a novel class of N-hydroxyindole (NHI)-
based LDH-A inhibitors,10,11 and we recently reported that 
gluco-conjugated NHIs, in particular NHI-Glc-2 (1, Fig. 1), 
showed a remarkably improved potency in reducing the cellular 
production of lactic acid in cancer cells.12 Anticancer 
glycoconjugates are not limited to D-glucose; other sugar and 
aminosugar moieties have been previously introduced in 
anticancer agents with improved selectivity. This is due to the 
fact that glucose transporters overexpressed by tumor tissues, 
such as GLUT1, are able to transport a number of sugar 
substrates besides glucose.9 Therefore, the ability of glucose 
analogues, such as α-manno- 2 and β-gulo-conjugate 3, to be 
efficiently taken up by cancer cells, results in an attractive 
strategy of extending our “dual targeting” of the Warburg 
effect.12 to a wider class of sugar conjugates. Compound 2 is a 
conjugate of D-mannose, a C2 epimer of D-glucose; D-mannose 
is found at concentrations of around 50 µM in human serum, 
and it is primarily used in the glycosylation of proteins 
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(specifically, mannose-6-phosphate is a localization tag applied 
to proteins destined for lysosomal import). Mannose is known 
to be transported into mammalian cells primarily by mannose-
specific transporters normally expressed in intestinal cells; 
however, it has also been reported to be a good substrate for 
GLUT113 with a 13-fold reduction of its affinity for this 
transporter (Km = 20 mM), when compared to that of glucose 
(Km = 1.5 mM).14 Compound 3 contains D-gulose, which is a 
stereoisomer of glucose differing in stereochemistry at the C3 
and C4 positions; it is used by some archaea but it is not known 
to be found in human serum or used in human metabolism. So 
far, the ability of D-gulose to be transported by GLUTs has not 
been reported. In addition, since cancer cells have been found 
to utilize O-GlcN-acylation as a post-translational 
modification,15,16 we also synthesized compound 4, in which 
the NHI pharmacophoric unit is conjugated with GlcNAc. 
 Herein, we describe the application of our originally-
developed glycosylation protocols to the synthesis of 
glycoconjugates 2-4 (Fig. 1) and their biological evaluations as 
prospective anticancer agents interfering with the cellular 
production of lactic acid. 
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Fig. 1 Chemical structures of the NHI-glycoconjugates: β-D-Glc- (1), α-D-

Man- (2), β-D-Gul- (3), and β-D-Glc(NAc)- (4) NHIs.  

Results and discussion 

Synthesis of the glycoconjugates 

Recently, we reported a new glycosylation process, using glycal 
derived vinyl epoxides 6α and 6β as new glycosyl donors 
(Scheme 1). These systems, in the presence of alcohols or alkyl 
lithium reagents as nucleophiles, afford only 6-O-benzyl-
protected O- and C-glycosides with the same configuration of 
the starting epoxide, in an uncatalyzed substrate-dependent 
stereospecific process.17-19 The driving force of this regio- and 
stereoselective 1,4-addition process is the occurrence of a 
coordination between the nucleophile and the oxirane oxygen in 
the form of hydrogen bond, in the case of O-nucleophile, or 
through the metal lithium cation, in the case of alkyl lithium 
reagents. Vinyl epoxides 6α and 6β cannot be isolated, because 
they are unstable and, therefore, they must be prepared only in 
situ by cyclization under basic conditions with t-BuOK of their 

ultimate precursor, the corresponding trans-hydroxymesylates 5 
and 7. 

 
Scheme 1 Substrate-dependent stereospecific glycosylation: reaction 

conditions and mechanism of the stereochemical outcome [O-nucleophiles 

(alcohols), X = OH; C-nucleophiles (lithium alkyls), X = Li; R = Me, Et, i-Pr, t-Bu, Ph, 

monosaccharides]. 

 In the synthesis of glycoconjugates 2 and 3, due to the 
instability the N-O single bond under the reductive conditions 
utilized for the final removal of the benzyl protective group 
which was present in our original methodology (see 6α and 6β, 
Scheme 1), we decided to use synthetic intermediates in which 
the primary hydroxy functionality is protected as a 
tetrahydropyranyl ether  (-OTHP), a protective group which can 
be easily removed by acid hydrolysis. The key intermediates 
are represented by THP-protected hydroxymesylate 8, which 
was synthesized in six steps starting from tri-O-acetyl-D-glucal 
as previously reported20 and 9, which was instead specifically 
synthesized from 8 (Scheme 2). The conversion of 8 to 9 started 
with a cyclization with t-BuOK in CH3CN, leading to the in situ 
formation of epoxide 10β, which was followed by a ring 
opening reaction with a non-coordinating hydroxy ion 
equivalent, such as Me3SiO- present in Bu4N

+Me3SiO-, a salt 
prepared by addition of potassium trimethyl silanolate 
(Me3SiOK) to a solution of tetrabutyl amonium bromide 
(TBAB) in THF.19 In this way, after exposure to water, a clean 
1,2-addition process is obtained, affording the desired trans diol 
12, which was treated with TBSCl to give the mono allyl C(3)-
O-TBS derivative 13. Subsequent mesylation of 13 at C(4) 
produced the all-protected glycal derivative 14, which was 
finally, deprotected with TBAF/THF to give trans hydroxy 
mesylate 9. 
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Scheme 2 Synthesis of THP-protected trans-hydroxymesylates 8 and 9 from tri-

O-acetyl-D-glucal. 

 The synthesis of β-gulo-derivative 3 started from trans-
hydroxymesylate 8 (Scheme 3), with the in situ formation of 
vinyl epoxide 10β by cyclization with t-BuOK in CH3CN. This 
reactive intermediate was not isolated. It was immediately 
treated with the NHI-based glycosyl acceptor 15 (NHI-2, a 
LDH-A inhibitor previously reported by us11) to give, after only 
30 minutes at room temperature, the glycosylation product 16 

with complete 1,4-regio- and β-stereoselectivity. 
Functionalization of the double bond present in 16 by 
OsO4/NMO protocol afforded the corresponding syn-
dihydroxylated product 18, in accordance with a complete 
sterically-favored α-facial stereoselective electrophilic addition 
(70% yield). The deprotection of the C(6)-OTHP functionality 
of 18 by using catalytic PPTS in absolute EtOH under 
controlled temperature at 40 °C for 46 h, afforded the desired β-
O-D-gulo-conjugate 3 in good yield after recrystallization (75% 
yield). A similar protocol was utilized for the preparation of the 
α-manno-derivative 2 (Figure 4). In this case, the reaction 
sequence started from trans-hydroxymesylate 9 with a 
cyclization reaction with t-BuOK in CH3CN to produce highly 
reactive vinyl epoxide 10α, which was treated in situ with 
glycosyl acceptor 15. Here again, the glycosylation step proved 
to be very efficient after only 30 minutes at room temperature, 
with the production of α-glycoconjugate 17 with a complete 
1,4-regio- and α-stereoselectivity (58% yield after purification). 
Once obtained, the unsaturated α-glycoconjugate 17 was 
submitted to cis-dihydroxylation with OsO4/NMO and, in this 
case, the β-stereoselective attack of the electrophile is directed 
by the allyl substituents at C(4) and C(1), now located on the α-
face. Therefore the corresponding β-dihydroxylated derivative 
19 was the only stereoisomer obtained (65% yield). The final 
deprotection of the THP moiety present at C(6) of 19, carried 
out in absolute EtOH for 20 h at 40 °C in the presence of PPTS, 
provided the α-O-D-manno-conjugate 2 in 80% yield after 
recrystallization. 

 
Scheme 3 Synthesis of glycoconjugates 2 and 3 by stereospecific glycosylation 

of NHI-derivative 15. 

 The synthesis of GlcNAc-conjugate 4 (Scheme 4) utilized 
as the glycosyl donor oxazoline 20, which was prepared as 
previously reported.21 Glycosyl acceptor 15 displayed a low 
reactivity as the nucleophile with oxazoline 20 and, therefore, 
we needed to test a wide array of reaction conditions. The best 
results were obtained by using TMSOTf as the catalyst.22 This 
way, the ring opening of oxazoline 20 was realized in 
anhydrous dichloroethane at 80 °C for 24 h in the presence of 
molecular sieves 4Å using 0.5 equiv of TMSOTf and 1.5 equiv 
of NHI 15 to afford peracetylated Glc-NAc-conjugate 17 in 
58% yield after purification. Deacetylation of 21 with MeONa 
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in CH2Cl2/MeOH afforded Glc-NAc-conjugate 4 in quantitative 
yields. 
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Scheme 4 Synthesis of GlcNAc conjugate 4 via the formation of oxazoline 20 

and subsequent stereospecific glycosylation of NHI-derivative 15. 

 

Table 1. In vitro kinetic inhibition of sugar conjugates 1-4 against 
LDH-A.a 

Compound LDH-A – Ki (µM) 
1 37.8 ± 0.9b 
2 92.4 ± 9.0 
3 68.1 ± 17.5 
4 98.4 ± 15.6 

aKi values were obtained by non-linear regression analysis with 
GraphPad Prism software (GraphPad, La Jolla, CA) using a second 
order polynomial regression analysis by applying the mixed-model 
inhibition fit (mean values ± SD calculated from at least 2 experiments, 
see Experimental Section). bFrom Ref. 12. 

Enzyme inhibition assays 

The inhibitory activities of the sugar conjugates 2-4 were 
measured by standard enzyme kinetic experiments on purified 
human enzyme isoform hLDH5. The Ki values of each 
compound (Table 1) were measured in NADH-competition 
experiments as previously described.12 
 All the newly synthesized sugar conjugates (2-4) proved to 
be moderately active in these assays, with Ki values ranging 
from 68.1 µM with the manno-derivative 3 to 98.4 µM with the 
aminoglucose-derivative 4. None of them proved to be more 
potent than glucose-conjugate 112 in these in vitro assays on the 
isolated enzyme. 

Molecular modeling 

Docking studies followed by molecular dynamic (MD) 
simulations were carried out to examine the putative modes of 
interaction of sugar conjugates 2-4 with LDH-A and the results 
of these studies are shown in Figure 2. 
 As highlighted in Figure 2, all three compounds show a 
very similar positioning into the LDH-A binding site. In all 
cases, the C=O portion of the ester group of these compounds 
forms an H-bond with R169, and the methyl group of the ester 
establishes lipophilic interactions with the isopropyl side chain 
of V235. The 4-(trifluoromethyl)indole central scaffold is 
placed in a cleft mainly delimited by H193, G194, A238, V241, 
and I242, whereas the 6-phenyl group is directed toward the 
entrance of the binding site cavity. The sugar moiety is always 
placed in the NADH-binding pocket but, depending on the type 
of monosaccharide attached, it shows different H-bonds with 
the protein. Specifically, the α-mannose ring of 2 (Figure 2A) 
forms two H-bonds with the hydroxyl group of T248 through 
its 2- and 3-hydroxyl groups. The β-gulose ring of 3 (Figure 
2B) shows a slightly different interaction mode with the 
protein, with a H-bond occurring between its 4-OH group and 
T248, and a peculiar H-bond that is formed by its 6-OH group 
and the side chain of N138. Finally, the GlcNAc portion of 4 
(Figure 2C) forms completely different interactions with the 
enzyme active site, the most important of which seem to be the 
interaction of the acetamido-group with T248, through its N-H 
portion, and with R169 through its C=O moiety. 

 
 

 
Fig. 2 MD simulation results for the complex of LDH-A with 2 (A), 3 (B), and 4 (C). 
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Fig. 3 Lactate production inhibition of glycoconjugates 1-4. HeLa human cervical carcinoma cells were treated under normoxic conditions with indicated 

compound concentrations or 1% DMSO vehicle, in DMEM supplemented with 10 mM unlabeled glucose, 1 mM pyruvate, and 4 mM glutamine. Following 8 hour 

incubation, medium aliquots were collected, concentrated, derivatized using MTBSTFA + 1% TBDMCS catalyst, and assessed by GC-MS. Lactate was normalized in 

each sample using the 1 mM chlorophenylalanine (CPA) internal standard, and lactate relative to vehicle is depicted. Averages from three or more independent 

experiments are depicted, with error bars depicting standard error (n ≥3). 

 

Cellular lactate production inhibition assays 

The ability of the glycol-conjugated NHIs 2-4 to inhibit lactate 
production in cells was evaluated using the same previously 
reported technique developed for glucose-conjugate 1,12 and the 
results are displayed in Figure 3. 
 In testing these glyco-conjugates at 50-200 µM 
concentrations for their ability to reduce lactate production in 
HeLa cells following an 8 hour incubation, it was found that the 
α-manno-derivative 2 led to a potent, dose-dependent reduction 
in lactate production, which is comparable to that obtained with 
glucose-conjugate 1, with a remarkable 55% inhibition at the 
lowest concentration used (50 µM). A noticeable dose-
dependent activity was also found with β-gulo derivative 3, 
although it was lower than those observed with 1 and 2. On the 
contrary, GlcNAc-conjugate 4 lacked any significant activity in 
this assay, and, therefore, was not considered in our subsequent 
experiments. Under these conditions, a very modest effect is 
observed with very high concentrations (10 mM) of hexokinase 
inhibitor 2-deoxyglucose, whereas negligible effects are 
observed upon incubation with 10 µM of the topoisomerase II 
inhibitor etoposide, a cytotoxic compound that does not affect 
glucose metabolism. 

Cellular uptake assays 

The relative cell uptake levels of glyco-conjugates 2 and 3, and 
of reference glucose-conjugate 1,12 versus their aglycone 
counterpart NHI-2 (15, Scheme 3), and the potential cleavage 
of the mannose- (2) and gulo-portions (3) in cell culture, was 
assessed. A549 cells were treated with 100 µM concentrations 
of each compound for 4 hours. After washing and lysing the 
cells, the cellular fraction of each compound was assessed by 
LC-MS and correlated to concentration using calibration 
standards (Figure S1, Supporting Information), and the 
intracellular concentrations are displayed in Figure 4. 
 As we had previously observed with glucose-conjugate 1,12 
mannose-derivative 2 displays a significantly enhanced cell 
uptake compared to the aglycone NHI-2. While 1 and 2 had 
similar levels of cell uptake, the gulose-derivative 3 had slightly 

lower levels of cell uptake. These results are consistent with 
those obtained in the cellular lactate production inhibition 
assays (Figure 7), where the most potent cellular inhibitors 
were found to be 1 and 2, thus positively correlating cellular 
activity and cell uptake. It is important to note that no cleavage 
of any of these compounds was observed in either the UV trace 
or TIC of the resultant lysate samples from 4 hours of 
incubation in A549 cells, so all the effects should be ascribed to 
the parent compounds. 

 
Fig. 4 Results of the intracellular concentration comparison study 

comparing relative uptake of NHI-2 (15) to its three glycoconjugates 1-3. A549 

non-small cell lung carcinoma cells were treated with 100 μM concentrations of 

each compound for 4 hours; cells were then lysed, sonicated in methanol, and 

assessed for intracellular compound concentration by LC-MS.  Triplicate data is 

shown, with error bars denoting standard error. Statistical analysis was 

performed using an unpaired Student’s t test to compare glycoconjugate 

intracellular concentrations with NHI-2 intracellular concentration, with * 

denoting p < 0.05, ** denoting p < 0.01, and *** denoting p < 0.0005. 

Cancer cell antiproliferative potency assays 

After assessing the ability of glycol-conjugates 2 and 3 to 
penetrate cells and inhibit cellular lactate production, their 
potency in killing HeLa and A549 cancer cells was evaluated 
and compared to that of their glucose analogue 1 and of their 
aglycone NHI-2 (15). The growth inhibitory effect of these 
compounds was evaluated by treating the cancer cells for 72 
hours with varying concentrations of the compounds, after 
which cell death was assessed by the Sulforhodamine B (SRB) 
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assay.23 The antiproliferative potencies are expressed as IC50 
values (the concentration of compound required to kill 50% of 
cells, where lower concentrations indicate increased potency) 
and are presented in Table 2. 
 

Table 2. Antiproliferative effect (72 hour IC50 values, µM ± standard 
error, n=3) of glycoconjugates 1-3 in HeLa and A549 human cancer 
cell lines.a 

Compound HeLa  
(cervical carcinoma) 

A549 
(NSCLC) 

NHI-2 (15) 33.4 ± 1.0b 44.1 ± 6.2b 
1 7.2 ± 0.2c 17.2 ± 3.0c 
2 5.4 ± 1.3 15.2 ± 0.7 
3 11.8 ± 0.1 24.7 ± 0.9 

a Three independent experiments were performed under normoxic 
conditions. Remaining biomass after fixing with 10% trichloroacetic 
acid was quantified by sulforhodamine B staining. bData from Ref. 11. 
cData from Ref. 12. 

 Glycoconjugated NHI compounds 1-3 were all more potent 
in killing cancer cells than their respective aglycone (NHI-2, 
15), in agreement with their increased cell uptake (Figure 8) 
and increased cellular lactate production inhibition (Figure 7) 
compared to the aglycone. In particular, the newly-synthesized 
compounds have 3-6-fold (compound 2) and 2-3-fold 
(compound 3) enhanced potencies compared to NHI-2. Finally, 
the highest potency levels were found with the new mannose-
derivative 2, which is even more potent than glucose-derivative 
1, and shows IC50 values of 5.4 µM against HeLa cells and 15.2 
µM against A549 cells.  

Conclusions 

We have successfully planned and implemented the 
stereospecific synthesis of three new glycoconjugates (2-4), 
which were intended to extend the chemical class of sugar-
conjugates of NHIs. These glycoconjugates were designed to be 
LDH-A inhibitors with efficient cell uptake. The biological 
assays in cancer cells displayed a remarkable correlation 
between the cell uptake, reduction of cellular production of 
lactate, and inhibition cellular proliferation. Overall, the α-
manno-derivative 2 proved to be the most efficient compound 
in cell-based assays. These results confirm the validity of the 
dual targeting strategy of the Warburg effect and pave the way 
to a more expansive exploration of glycoconjugates, both as 
molecular tools and as potential therapeutic agents that block 
tumor glycolysis. 

Experimental 

Materials and methods 

All solvents and chemicals were used as purchased without 
further purification. Chromatographic separations were 
performed on silica gel columns by flash (Kieselgel 40, 0.040–
0.063 mm; Merck) or gravity column (Kieselgel 60, 0.063–
0.200 mm; Merck) chromatography. Reactions were followed 
by thin-layer chromatography (TLC) on Merck aluminum silica 
gel (60 F254) sheets that were visualized under a UV lamp. 
Evaporation was performed in vacuo (rotating evaporator). 
Sodium sulfate was always used as the drying agent. Proton 
(1H) and carbon (13C) NMR spectra were obtained with a 
Bruker Avance III 400 MHz or Bruker Avance 250 MHz 
spectrometer using the indicated deuterated solvents. Chemical 

shifts are given in parts per million (ppm) (δ relative to residual 
solvent peak for 1H and 13C). Yields refer to isolated and 
purified products. LC-MS characterization and high-resolution 
mass spectrometry (HRMS) analysis were performed using a 
Waters Quattro II quadrupole-hexapole-quadrupole liquid 
chromatography/mass spectrometry apparatus (Waters, Milford, 
MA) equipped with an electrospray ionization source. LC 
separation was achieved using a C18 Waters Xbridge column 
(2.1x20mm, Waters) at 25°C using a linear gradient of mobile 
phases: 95% H2O, 5% acetonitrile, and 0.1% formic acid (A) 
and 95% acetonitrile, 5% H2O, and 0.1% formic acid (B). 
Solution A was initially passed through the column but 
decreased linearly to 50% of the mobile phase at 10 minutes 
and 0% of the mobile phase at 25 minutes. The flow rate was 
200 µL/min, and the injection volume was 10 µL. The 
ultraviolet (UV) detector was programmed to monitor 
absorbance at 254 nm, to detect the phenyl ring present in all 
compounds. 

Synthetic procedures 

Methyl 1-(((2S,5R,6R)-5-hydroxy-6-(((tetrahydro-2H-

pyran-2-yl)oxy)methyl)-5,6-dihydro-2H-pyran-2-yl)oxy)-6-

phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (16). A 
solution of trans-hydroxymesylate 820 (0.150 g, 0.488 mmol) in 
anhydrous CH3CN (13 mL) was treated with t-BuOK (0.060 g, 
0.54 mmol, 1.1 equiv) at room temperature and, after the 
disappearance of the starting material (TLC), with N-
hydroxyindole derivative 15 (0.180 g, 0.537 mmol, 1.1 equiv) 
and the resulting reaction mixture was stirred 1 h at the same 
temperature. After dilution with Et2O, the organic phase was 
washed with brine, dried (MgSO4) and concentrated to afford a 
crude reaction product (0.272 g), which was subjected to flash 
chromatography. Elution with a 1:1 hexane/AcOEt (0.1% Et3N) 
mixture afforded pure glycoside 16 (0.206 g, 77% yield) as a 
liquid. Rf = 0.33 (4:6 hexane/AcOEt). 1H NMR (250 MHz; 
CDCl3) δ 8.13-8.27 (m corresponding to two diastereoisomers, 
overall 1H; Ar), 7.62-7.96 (m, 3H; Ar), 7.15-7.52 (m, 4H; Ar), 
6.23-6.47 (m corresponding to two diastereoisomers, overall 
2H; vinyl CH), 5.96-6.05 (m corresponding to two 
diastereoisomers, overall 1H; anomeric CH), 4.31-4.59 (m 
corresponding to two diastereoisomers, overall 1H; THP-
CHO2), 3.08-4.15 (m corresponding to two diastereoisomers, 
overall 6H; CHO & CH2O), 3.96 (s, 3H; COOCH3), 1.29-1.74 
(m corresponding to two diastereoisomers, overall 6H; THP-
CH2).

 

Methyl 6-phenyl-4-(trifluoromethyl)-1-(((2S,3R,4R,5R,6R)-

3,4,5-trihydroxy-6-(((tetrahydro-2H-pyran-2-

yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-1H-indole-2-

carboxylate (18). A solution of glycoside (16) (0.050 g, 0.091 
mmol) in an 1:1 t-BuOH/acetone mixture (0.31 mL) was added 
to a 50% p/v aqueous solution of N-methyl morpholine-N-oxide 
(NMO) (80 µL) and the resulting reaction mixture was treated 
with 2.5% p/v OsO4 solution in t-BuOH (80 µL) and stirred for 
2 h at the same temperature. Dilution with AcOEt and 
evaporation of the filtered (Celite) organic solution afforded a 
crude reaction product (0.092 g), which was subjected to flash 
chromatography. Elution with a 2:8 hexane/AcOEt (0.1% Et3N) 
mixture afforded 18 (0.037 g, 70% yield), practically pure as a 
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liquid. Rf = 0.12 (2:8 hexane/AcOEt). 1H NMR (250 MHz; 
CDCl3) δ 8.25-8.31 (m corresponding to two diastereoisomers, 
overall 1H; Ar), 7.58-7.79 (m, 3H; Ar), 7.34-7.54 (m, 4H; Ar), 
5.37-5.49 (m corresponding to two diastereoisomers, overall 
1H; anomeric CHO), 5.14-5.25 (m corresponding to two 
diastereoisomers, overall 1H; THP-CHO2), 3.90-4.46 (m 
corresponding to two diastereoisomers, overall 5H; CH2O and 
CHO), 3.98 (s, 3H; COOMe), 3.34-3.80 (m corresponding to 
two diastereoisomers, overall 3H; CH2O and CHO), 1.40-1.74 
(m corresponding to two diastereoisomers, overall 6H; THP-
CH2).  
Methyl 6-phenyl-4-(trifluoromethyl)-1-(((2S,3R,4R,5R,6R)-

3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-

yl)oxy)-1H-indole-2-carboxylate (3). PPTS (0.002 g, 0.008 
mmol, 0.1 equiv) was added to a solution of 6-OTHP-protected 
precursor 18 (0.048 g, 0.083 mmol) in absolute EtOH (0.3 mL) 
and the reaction mixture was carefully stirred 46 h at 40 °C. 
After dilution with CH2Cl2, solid NaHCO3 was added until the 
solution turned out to be slightly basic. Evaporation of the 
filtered organic solution afforded a crude solid reaction product 
which was purified by trituration in hexane, yielding pure 3 
(0.031 g, 75% yield) as a white solid. Rf = 0.25 (9:1 
hexane/acetone). [α]20

D: +57.71 (c 0.35, CH3OH). 1H NMR 
(400 MHz; CD3OD) δ 8.31-8.36 (m, 1H; Ar), 7.72-7.79 (m, 3H; 
Ar), 7.45-7.54 (m, 2H; Ar), 7.40 (tt, 1H, J = 7.4, 1.2 Hz; Ar), 
7.23 (qd, 1H, J= 1.8, 0.9 Hz; Ar), 5.47 (d, 1H, J= 8.3 Hz; 
anomeric CHO), 4.11 (t, 1H, J= 3.4 Hz; CHO), 4.03 (dd, 1H, 
J= 8.3, 3.4 Hz; CHO), 3.98 (s, 3H; COOMe), 3.93 (td, 1H, J = 
6.2, 1.1 Hz; CHO), 3.81-3.85 (m, 1H; CHO), 3.79 (dd, 1H, J= 
10.8, 4.6 Hz; CH2O), 3.66 (dd, 1H, J= 10.8, 6.1 Hz; CH2O). 13C 
NMR (62.5 MHz; CD3OD) δ 162.2, 141.2, 140.1, 139.9, 130.1 
(2C), 129.8, 129.1, 128.4 (2C), 125.9 (q, J = 271.7 Hz), 124.4 
(q, J = 32.3 Hz), 120.1 (q, J = 4.6 Hz), 118.4 (q, J = 1.3 Hz), 
115.2, 108.8, 106.7, 75.5, 73.2, 70.4, 68.6, 61.9, 52.4. HRMS: 
(M +H+) found 498.1370; C23H23F3NO8 requires 498.1376. 
(2R,3R,4S)-2-(((Tetrahydro-2H-pyran-2-yl)oxy)methyl)-3,4-

dihydro-2H-pyran-3,4-diol (12). A solution of Bu4NBr (2.94 
g, 9.12 mmol, 4.0 equiv) in anhydrous THF (21.0 mL) was 
treated with Me3SiOK (1.18 g, 9.12 mmol, 4.0 equiv) and the 
reaction mixture was stirred at room temperature for 10 min. 
Filtration through a short (1 cm) Celite column afforded a clear 
THF solution which was concentrated at reduced pressure 
(rotary evaporator, final volume about 10 mL) (Solution B, 
containing Bu4N

+Me3SiO-, 4.0 equiv). A solution of hydroxy 
mesylate 8 (0.702 g, 2.28 mmol) in anhydrous THF (10.5 mL) 
was treated with t-BuOK (0.282 g, 2.51 mmol, 1.1 equiv) and 
the reaction mixture was stirred 15 min at room temperature 
(Solution A, containing epoxide 10β). Solution B was added 
dropwise to Solution A and the reaction mixture was stirred 48 
h at room temperature. Dilution with Et2O and evaporation of 
the washed (brine) organic solution afforded a crude liquid 
product that was subjected to flash chromatography. Elution 
with a 3:7 hexane/AcOEt (0.1% Et3N) mixture afforded pure 
trans diol 12 (0.235 g, 45% yield), as a colorless liquid. Rf = 
0.13 (3:7 hexane/AcOEt). 1H NMR (250 MHz; CDCl3) δ 6.58-
6.66 (m corresponding to two diastereoisomers, overall 1H, 

vinyl CHO), 4.95-5.05 (m corresponding to two 
diastereoisomers, overall 1H, vinyl CH), 4.64-4.72 (m 
corresponding to two diastereoisomers, overall 1H, THP-
CHO2), 4.06-4.20 (m corresponding to two diastereoisomers, 
overall 1H; CHO), 3.77-4.04 (m corresponding to two 
diastereoisomers, overall 5H CHO and CH2O), 3.47-3.62 (m 
corresponding to two diastereoisomers, overall 1H; CHO), 
1.69-1.85 (m corresponding to two diastereoisomers, overall 
3H, THP-CH2), 1.48-1.68 (m corresponding to two 
diastereoisomers, overall 3H; THP-CH2). 
(2R,3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-2-(((tetrahydro-

2H-pyran-2-yl)oxy)methyl)-3,4-dihydro-2H-pyran-3-ol (13). 
Treatment of trans diol 12 (0.216 g, 0.939 mmol) in anhydrous 
DMF (2.5 mL) with imidazole (0.128 g, 1.88 mmol, 2.0 equiv) 
and TBSCl (0.170 g, 1.13 mmol) afforded, after 18 h stirring at 
room temperature, a crude liquid product (0.283 g, 88% yield) 
consisting of mono-silylated 13, pure as a liquid, which was 
used in the next step without any purifications. Rf = 0.25 (8:2 
hexane/AcOEt). 1H NMR (250 MHz; CDCl3) δ 6.49-6.58 (m 
corresponding to two diastereoisomers, overall 1H; vinyl 
CHO), 4.81-4.90 (m corresponding to two diastereoisomers, 
overall 1H; vinyl CH), 4.63-4.71 (m corresponding to two 
diastereoisomers, overall 1H; THP-CHO2), 3.95-4.17 (m 
corresponding to two diastereoisomers, overall 2H; CHO and 
CH2O), 3.72-3.94 (m corresponding to two diastereoisomers, 
overall 4H CHO and CH2O), 3.43-3.62 (m corresponding to 
two diastereoisomers, overall 1H, CHO), 1.44-1.86 (m 
corresponding to two diastereoisomers, overall 6H; THP-CH2), 
0.87 (s, 9H; (CH3)3CSi), 0.10 (s, 6H; CH3Si). 
(2R,3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-2-(((tetrahydro-

2H-pyran-2-yl)oxy)methyl)-3,4-dihydro-2H-pyran-3-yl 

methanesulfonate (14). Treatment of 13 (0.283 g, 0.82 mmol) 
in anhydrous pyridine (2.5 mL) with MsCl (0.13 mL, 1.6 mmol, 
2.0 equiv) was stirred at 0 °C for 18 h. After concentration 
under vacuum, the crude product was subjected to flash 
chromatography. Elution with a 8:2 hexane/AcOEt (0.1% Et3N) 
mixture afforded pure mesylate derivative 14 (0.254 g, 71% 
yield) as a yellow liquid. Rf =0.19 (8:2 hexane/AcOEt). 1H 
NMR (250 MHz; CDCl3) δ 6.45-6.54 (m corresponding to two 
diastereoisomers, overall 1H; vinyl CHO), 4.82-4.91 (m 
corresponding to two diastereoisomers, overall 1H; vinyl CH), 
4.58-4.76 (m corresponding to two diastereoisomers, overall 
2H; CHOMs + THP-CHO2), 4.22-4.34 (m corresponding to two 
diastereoisomers, overall 1H; CHO), 4.15-4.21 (m 
corresponding to two diastereoisomers, overall 1H; CHO), 
3.81-4.02 (m corresponding to two diastereoisomers, overall 
2H; CH2O), 3.57-3.80 (m corresponding to two 
diastereoisomers, overall 1H; CHO), 3.43-3.56 (m 
corresponding to two diastereoisomers, overall 1H; CHO), 
3.04-3.10 (m corresponding to two diastereoisomers, overall 
3H; CH3SO2), 1.66-1.89 (m corresponding to two 
diastereoisomers, overall 2H; THP-CH2), 1.44-1.62 (m 
corresponding to two diastereoisomers, overall 4H; THP-CH2), 
0.83-0.92 (m corresponding to two diastereoisomers, overall 
9H; (CH3)3CSi), 0.09-0.16 (m corresponding to two 
diastereoisomers, overall 6H; CH3Si). 
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(2R,3R,4S)-4-Hydroxy-2-(((tetrahydro-2H-pyran-2-

yl)oxy)methyl)-3,4-dihydro-2H-pyran-3-yl 

methanesulfonate (9). Treatment of 14 (0.249 g, 0.589 mmol) 
in anhydrous THF (20 mL) with 1M TBAF in THF (0.59 mL, 
0.59 mmol) at 0°C for 20 min. After dilution with Et2O, 
evaporation of the washed (brine) and dried (MgSO4) organic 
solution afforded a crude product, which was subjected to flash 
chromatography (1:1 hexane/AcOEt) to produce pure trans-
hydroxymesylate 9 (0.122 g, 67% yield) as a yellow liquid. Rf = 
0.19 (1:1 hexane/AcOEt). 1H NMR (250 MHz; CDCl3) δ 6.53-
6.61 (m corresponding to two diastereoisomers, overall 1H; 
vinyl CHO), 4.93-5.04 (m corresponding to two 
diastereoisomers, overall 1H; vinyl CH), 4.72-4.87 (m 
corresponding to two diastereoisomers, overall 1H; THP-
CHO2), 4.59-4.68 (m corresponding to two diastereoisomers, 
overall 1H; CHOMs), 4.18-4.30 (m corresponding to two 
diastereoisomers, overall 2H; CH2O), 3.43-4.05 (m 
corresponding to two diastereoisomers, overall 4H CHO & 
CH2O), 3.04-3.13 (m corresponding to two diastereoisomers, 
overall 3H; CH3SO2), 1.36-1.90 (m corresponding to two 
diastereoisomers, overall 6H; THP-CH2). 
Methyl 1-(((2R,5S,6R)-5-hydroxy-6-(((tetrahydro-2H-

pyran-2-yl)oxy)methyl)-5,6-dihydro-2H-pyran-2-yl)oxy)-6-

phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (17). A 
solution of trans hydroxymesylate 9 (0.150 g, 0.488 mmol) in 
anhydrous CH3CN (12.6 mL) was treated with t-BuOK (0.060 
g, 0.54 mmol, 1.1 equiv) and, after the disappearance of the 
starting material (TLC), with N-hydroxyindole derivative 15 
(0.180 g, 0.537 mmol, 1.1 equiv) and the resulting reaction 
mixture was stirred for 1 h at room temperature. After dilution 
with Et2O, the organic phase was washed with brine, dried 
(MgSO4) and concentrated to afford a crude reaction product, 
which was subjected to flash chromatography. Elution with a 
1:1 hexane/AcOEt (0.1% Et3N) mixture afforded pure 
glycoside 17 (0.155 g, 58% yield) as a white solid. Rf = 0.33 
(4:6 hexane/AcOEt); m.p. 50-53 °C; 1H NMR (250 MHz; 
CDCl3) δ 7.77-7.89 (m corresponding to two diastereoisomers, 
overall 1H; Ar), 7.59-7.76 (m corresponding to two 
diastereoisomers, overall 3H; Ar), 7.34-7.56 (m corresponding 
to two diastereoisomers, overall 3H; Ar), 7.27-7.33 (m 
corresponding to two diastereoisomers, overall 1H; Ar), 6.12-
6.36 (m corresponding to two diastereoisomers, overall 2H, 
vinyl CH), 5.78-5.89 (m corresponding to two 
diastereoisomers, overall 1H; anomeric CHO), 3.26-4.53 (m 
corresponding to two diastereoisomers, overall 7H; CH2O and 
CHO), 3.94 (s, 3H; COOMe), 1.28-1.86 (m corresponding to 
two diastereoisomers, overall 6H; THP-CH2). 
Methyl 6-phenyl-4-(trifluoromethyl)-1-(((2R,3S,4S,5S,6R)-

3,4,5-trihydroxy-6-(((tetrahydro-2H-pyran-2-

yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-1H-indole-2-

carboxylate (19). A solution of 17 (0.040 g, 0.073 mmol) in an 
1:1 t-BuOH/acetone mixture (0.25 mL) was added to 50% p/v 
aqueous solution of N-methyl morpholine-N-oxide (NMO) (60 
µL) and the resulting reaction mixture was treated with 2.5% 
p/v OsO4 solution in t-BuOH (60 µL) and stirred for 8 h at 
room temperature. Dilution with AcOEt and evaporation of the 

filtered (Celite) organic solution afforded a crude reaction 
product which was purified by flash chromatography. Elution 
with a 2:8 hexane/AcOEt (0.1% Et3N) mixture afforded pure α-
mannopyranoside 19 (0.028 g, 65% yield) as a white solid. Rf = 
0.17 (2:8 hexane/AcOEt). 1H NMR (250 MHz; CDCl3) δ 7.76-
7.88 (m corresponding to two diastereoisomers, overall 1H; 
Ar), 7.55-7.72 (m corresponding to two diastereoisomers, 
overall 3H; Ar), 7.32-7.50 (m corresponding to two 
diastereoisomers, overall 4H; Ar), 5.66-5.71 (m corresponding 
to two diastereoisomers, overall 1H; anomeric CHO), 4.66-4.77 
(m corresponding to two diastereoisomers, overall 1H; THP-
CHO2), 4.30-4.47 (m corresponding to two diastereoisomers, 
overall 2H; CHO), 3.93-4.22 (m corresponding to two 
diastereoisomers, overall 3H; CHO and CH2O), 3.90 (s, 3H; 
COOMe), 3.71-3.86 (m corresponding to two diastereoisomers, 
overall 2H; CH2O), 3.29-3.48 (m corresponding to two 
diastereoisomers, overall 1H; CHO), 1.30-1.71 (m 
corresponding to two diastereoisomers, overall 6H; THP-CH2). 
Methyl 6-phenyl-4-(trifluoromethyl)-1-(((2R,3S,4S,5S,6R)-

3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-

yl)oxy)-1H-indole-2-carboxylate (2). PPTS (0.018 g, 0.007 
mmol, 0.1 equiv) was added to a solution of 19 (0.040 g, 0.068 
mmol) in absolute EtOH (1.3 mL) and the reaction mixture was 
stirred for 20 h at 40 °C. After dilution with CH2Cl2, solid 
NaHCO3 was added until the solution turned out to be slightly 
basic. Evaporation of the filtered organic solution afforded a 
crude reaction product, which was purified by trituration with 
hexane, yielding pure α-O-D-mannopyranoside 2 (0.014 g, 83% 
yield) pure as a white solid. Rf = 0.08 (9:1 AcOEt/acetone). 
[α]20

D +18.14 (c 0.95, CH3OH). 1H NMR (400 MHz; CD3OD) δ 
8.04 (s, 1H; Ar), 7.75-7.78 (m, 3H; Ar), 7.48-7.53 (m, 2H; Ar), 
7.41 (tt, 1H, J = 7.4, 1.2 Hz; Ar), 7.25-7.29 (m, 1H; Ar), 5.57 
(d, 1H, J= 1.9 Hz; anomeric CHO), 4.57-4.63 (m, 1H; CHO), 
4.20-4.28 (m, 1H; CHO), 3.96 (s, 3H; COOMe), 3.83-3.89 (m, 
4H; CH2O and CHO). 13C NMR (62.5 MHz; CD3OD) δ 161.3, 
141.1, 140.5, 139.2, 130.2 (2C), 129.3, 129.1, 128.5 (2C), 125.2 
(q, J = 271.0 Hz), 124.8 (q, J = 32.9 Hz), 120.2 (q, J = 4.9 Hz), 
118.3 (q, J = 1.7 Hz), 113.6, 111.2, 106.9, 77.5, 72.4, 70.5, 
67.9, 62.6, 52.8. HRMS: (M +H+) found 498.1366; 
C23H23F3NO8 requires 498.1376. 
(2R,3S,4R,5R,6S)-5-Acetamido-2-(acetoxymethyl)-6-((2-

(methoxycarbonyl)-6-phenyl-4-(trifluoromethyl)-1H-indol-

1-yl)oxy)tetrahydro-2H-pyran-3,4-diyl diacetate (21). 
Activated molecular sieves 4 Å (0.215 g), oxazoline 2021 (0.230 
g, 0.69 mmol, 1.0 equiv) and N-hydroxyindole derivative 15 
(0.250 g, 0.75 mmol, 1.1 equiv) were dissolved in 3.5 mL of 
anhydrous DCE and the obtained mixture was stirred at 80 °C 
until complete dissolution of the reagents. After cooling to 
room temperature, TMSOTf (60 µL, 0.34 mmol, 0.5 equiv) was 
added. The resulting solution was heated again at 80 °C and 
stirred overnight at the same temperature. Then the mixture was 
diluted with CH2Cl2 and filtered; the filtered solution was 
neutralized by saturated aqueous NaHCO3 and washed with 
brine. Evaporation of the washed organic solution afforded a 
crude product, which was subjected to flash chromatography. 
Elution with a 9:1 CHCl3/acetone mixture yielded pure 
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compound 21 (0,140 g, yield 40%) as a pale yellow solid: mp 
222-225 °C. [α]20

D = +26.9 (c 0.79; CHCl3). Rf = 0.3 (9:1 
CHCl3/acetone). 1H NMR (400 MHz; CDCl3): δ 8.10 (s, 1H; 
Ar), 7.74 (s, 1H; Ar), 7.63 (d, 2H, J = 7.7 Hz; Ar), 7.36-7.49 
(m, 3H; Ar), 7.33 (bs, 1H; Ar), 6.70 (d, 1H, J = 8.6 Hz; NH), 
5.52 (d, 1H, J = 9.05, anomeric CHO), 5.16-5.28 (m, 2H; 
CH2OAc), 4.55 (q, 1H, J = 9.0 Hz; CHOAc), 4.26 (dd, 1H, J = 
12.4, 4.7 Hz; CHOAc), 3.98-4.08 (m, 1H; CHO), 3.95 (s, 3H; 
COOMe), 3.69-3.75 (m, 1H; CHN), 2.07 (s, 3H; CH3CO), 2.03 
(s, 3H; CH3CO), 2.02 (s, 3H; CH3CO), 1.77 (s, 3H; CH3CO). 
13C NMR (100 MHz; CDCl3): δ 171.0, 170.6 (2C), 169.4, 
161.0, 140.2, 140.0, 139.6, 129.2 (2C), 128.3, 127.4 (2C), 124.3 
(q, J = 272.4 Hz), 123.8 (q, J = 33.0 Hz), 120.0 (q, J = 4.8 Hz), 
119.03 (q, J = 4.7 Hz), 117.4 (q, J = 2.1 Hz), 114.3, 108.4, 
105.8, 73.6, 72.5, 68.0, 61.8, 52.5, 52.4, 23.3, 20.8, 20.7, 20.4. 
Methyl 1-(((2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-6-phenyl-4-

(trifluoromethyl)-1H-indole-2-carboxylate (4). Compound 21 
(56.5 mg, 0.087 mmol, 1.0 equiv) was dissolved in a 2:3 
mixture of CH2Cl2 and MeOH (4 mL) and cooled at 0 °C. A 
freshly prepared 0.33 M solution of MeONa/MeOH (0.05 mL) 
was added to the resulting solution and the reaction mixture 
was stirred for 4 h at room temperature. The mixture was then 
neutralized with an acidic Amberlite™ IR 120 H resin The 
resin was then removed by filtration and repeatedly extracted 
with methanol. The combined filtrate was concentrated under 
vacuum to give a crude product, which was recrystallized from 
MeOH to yield pure glycoside 4 (0.020 g, yield 50%) as a pale 
yellow solid: mp: 190-194 °C. [α]20

D = –36.9 (c 0,17; MeOH). 
Rf = 0.15 (9:1 AcOEt/MeOH). 1H NMR (400 MHz; DMSO-d6): 
δ 8.15 (s, 1H; Ar), 8.06 (d, J = 9.0 Hz, 1H, NH), 7.82-7.91 (m, 
3H; Ar), 7.50-7.55 (m, 2H; Ar), 7.44 (t, 1H, J = 7.3 Hz; Ar), 
7.11 (s, 1H; Ar), 5.18-5.21 (m, 2H, 2 x OH), 5.11 (d, J = 8.7 
Hz, 1H, anomeric CHO), 4.39 (t, J = 4.8 Hz, 1H, OH), 3.92 (s, 
3H, COOMe), 3.80 (q, J = 9.0 Hz, 1H; CHO), 3.41-3.67 (m, 
4H; CH2O, CHO and CHN), 3.11-3.19 (m, 1H; CHO), 1.94 (s, 
3H; CH3CO); 13C NMR (100 MHz; DMSO-d6): δ 169.4, 159.4, 
139.1, 137.7, 137.5, 129.9, 129.2 (2C), 128.1, 127.4 (2C), 124.7 
(q, J = 271.0 Hz), 122.4 (q, J = 32.3 Hz), 119.4 (q, J = 4.7 Hz), 
117.2 (q, J = 2.0 Hz), 113.7, 106.5, 104.2, 77.0, 73.5, 69.8, 
60.8, 54.0, 52.3, 23.2. HRMS: (M +H+) found 539.1639; 
C25H26F3N2O8 requires 539.1641. 

Molecular Modeling 

The compounds were built using Maestro 9.024 and was 
subjected to a conformational search (CS) of 1000 steps, using 
a water environment model (generalized-Born/surface-area 
model) by means of Macromodel.25 The algorithm used was 
based on the Monte Carlo method with the MMFFs force field 
and a distance-dependent dielectric constant of 1.0. The ligand 
was then energy minimized using the conjugated gradient (CG) 
method until a convergence value of 0.05 kcal/(mol•Å) was 
reached, using the same force field and parameters used for the 
CS. The hLDH5 chain was extracted from the minimized 
average structure of the complex between LDH and 1J obtained 
by us through molecular dynamic simulations.10 Automated 

docking was carried out by means of the GOLD 5.1 program.26 
The “allow early termination” option was deactivated, the 
remaining GOLD default parameters were used, and the ligand 
was submitted to 30 genetic algorithm runs by applying the 
ChemScore fitness function. The best docked conformation was 
taken into account. The so obtained complexes were energy 
minimized using AMBER 11.27 Each complex was placed in a 
rectangular parallelepiped water box, an explicit solvent model 
for water (TIP3P) was used, and the complex was solvated with 
a 10 Å water cap. Chloride ions were added as counterions to 
neutralize the system. Two steps of minimization were then 
carried out. In the first stage, we kept the complex fixed with a 
position restraint of 500 kcal/(mol•Å2) and we solely minimized 
the positions of the water molecules. In the second stage, we 
minimized the entire system through 20000 steps of steepest 
descent followed by conjugate gradient until a convergence of 
0.05 kcal/(mol•Å) was attained. All the α carbons of the protein 
were blocked with a harmonic force constant of 10 
kcal/(mol•Å2). Ten nanoseconds of MD simulation were then 
carried out. The time step of the simulations was 2.0 fs with a 
cutoff of 10 Å for the non-bonded interaction, and SHAKE was 
employed to keep all bonds involving hydrogen atoms rigid. 
Constant-volume periodic boundary MD was carried out for 
400 ps, during which the temperature was raised from 0 to 300 
K. Then 9.6 ns of constant pressure periodic boundary MD was 
carried out at 300 K using the Langevin thermostat to maintain 
constant the temperature of our system. General Amber force 
field (GAFF) parameters were assigned to the ligand, while 
partial charges were calculated using the AM1-BCC method as 
implemented in the Antechamber suite of AMBER 11. The 
final structure of the complex was obtained as the average of 
the last 8 ns of MD minimized by the CG method until a 
convergence of 0.05 kcal/(mol•Å). The average structure was 
obtained using the ptraj program implemented in AMBER 11. 

Biological assays 

Enzyme inhibition assay. The compounds were evaluated in 
enzymatic assays to assess their inhibitory properties against 
commercially available purified human isoform of lactate 
dehydrogenase hLDH5 (LDH-A4, Lee Biosolution, Inc.). The 
reaction of lactate dehydrogenase was conducted using the 
"forward" direction (pyruvate → lactate) and the kinetic 
parameters for the substrate (pyruvate) and the cofactor 
(NADH) were measured by fluorescence (emission wavelength 
at 460 nm, excitation wavelength at 340 nm), to monitor at 37 
°C the rate of conversion of NADH to NAD+ and, therefore, the 
progression of the reaction. Such assays were conducted in 
wells containing 200 µL of a solution comprising the reagents 
dissolved in 100 mM phosphate buffer at pH 7.4. DMSO stock 
solution of compounds were prepared (concentration of DMSO 
did not exceed 4% during the measurements). Assays were 
performed in 96-well plates and compounds were assayed in 
the presence of scalar concentrations of NADH. They were 
added in scalar amounts (concentration range = 15-60 µM) to a 
reaction mix containing phosphate buffer, 1.4 mM pyruvate and 
a scalar concentration of NADH (10-150 µM), finally LDH 
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solution was added (0.015 U mL-1). LDH activity was 
measured by recording the decrease in NADH fluorescence 
using Victor X3 Microplates Reader (PerkinElmer®). 

Assessment of lactate production by GC-MS. This assay was 
performed under normoxic conditions as previously described12 
Briefly, confluent HeLa cervical carcinoma cells (ATCC, 
Manassas, VA) in a 96 well plate were treated with compound 
or vehicle control (1% DMSO final concentration in all 
samples) in DMEM minus phenol red + 10% dialyzed FBS + 
1% Penstrep, supplemented with 10 mM glucose, 1mM sodium 
pyruvate and 4mM glutamine, in a final volume of 125 μL per 
well. Immediately following compound addition, plates were 
incubated for 4 or 8 hours at 37 °C in a 95% air/5% CO2 
atmosphere. Duplicate wells were prepared for each treatment. 
Following treatment, medium was collected, and 100 μL were 
added to 2 μL 50 mM chlorophenylalanine (CPA; internal 
standard for GC-MS analysis). Samples were concentrated, 
derivatized by a four-hour incubation with MTBSTFA + 1% 
TBDMCS (Thermo Scientific, Walthman, MA) in acetonitrile 
at 85 °C, and immediately analyzed using GC-MS (Agilent 
6890N GC/5973 MS, equipped with an Agilent DB-5 capillary 
column, 30 M x 320 μM x 0.25 μM, model number J&W 
123-5032, Agilent Technologies, Santa Clara, CA) and an 
electron impact ionization source. One microliter of each 
sample was injected using an automated injector, and a solvent 
delay of 8.20 minutes was implemented. The initial oven 
temperature was 120 °C, held for 5 minutes; then the 
temperature was increased at a rate of 10 °C/minute until a 
temperature of 250 °C was reached. Temperature was then 
increased by 40 °C/minute until a final temperature of 310 °C 
was reached. Total run time per sample was 22.5 minutes. 
 Compounds were identified using AMDIS Chromatogram 
software (Amdis, freeware available from amdis.net) and 
programmed WIST and Niley commercial libraries. The 
integration area of lactate in each sample was divided by the 
integration area of CPA in the same sample to achieve a 
lactate/internal standard ratio. The ratios were averaged for 
duplicates, and percent lactate production over vehicle was 
calculated for each independent experiment. The mean lactate 
production/vehicle was then averaged between three or more 
independent experiments. 

Intracellular concentration assessment. Assessment of 
intracellular concentration was performed as described 
previously12. A549 human non-small cell lung carcinoma cells 
(ATCC, Manassas, VA) were grown in T25 cell culture flasks 
prior to being treated with 100 µM compound or vehicle control 
(prepared in DMSO) in 5 mL total volume (0.2% final 
concentration DMSO in all treatments). At each time point, 
cells were rapidly collected by scraping, washed twice with 
sterile PBS, 37 °C, and disrupted by sonication in methanol, –
80 °C, using an XL-2000 Misonix sonicator (Qsonica, Newton, 
CT). After a 30 minute incubation at 4 °C to facilitate 
precipitation of proteins, the sonicates were centrifuged, and a 
portion of the supernatant was analyzed using the protocol 

described above.  Data analysis was performed using 
MassLynx spectrometry software (Waters).  
 These LC-MS parameters allowed for the clear resolution of 
compound 1 (elution time: 12.4 minutes in the UV trace, 12.6 
minutes in the TIC), compound 2 (elution time: 12.7 minutes in 
the UV trace, 12.9 minutes in the TIC), compound 3 (elution 
time: 12.9 minutes in the UV trace, 13.1 minutes in the TIC), 
and 15 (elution time: 15.8 minutes in the UV trace; 16.0 
minutes in the TIC).  The UV traces of vehicle-treated sonicates 
from both the start and end of the experiment time course 
contained no peaks in this range. Calibration curves of 15 and 
glycoconjugates 1, 2, and 3 demonstrated a linear relationship 
between concentration and UV trace integration area, so a 
linear equation was generated for each compound to convert 
integration area to concentration. 

Cell proliferation assay. Determination of cellular IC50 values 
was performed under normoxic conditions as described 
previously12. Briefly, HeLa and A549 cells, grown in RPMI 
1640 medium supplemented with 10% FBS and 1% 
Penicillin/Streptomycin, were added at a density of 5000 
cells/well to 96 well plates to which 31.6 nM - 200 μM 
compound in DMSO was already added (1% final 
concentration DMSO in all wells; triplicate wells at the same 
concentration per repetition).  Plates were incubated at 37 °C in 
a 95% air/5% CO2 atmosphere for 72 hours. Medium was 
removed and cells were fixed by the addition of 50 μL 10% 
trichloroacetic acid in water, 4 °C, to each well. Plates were 
incubated at 4 °C for at least one hour, and the sulforhodamine 
B colorimetric assay23 was performed to assess remaining 
biomass in each well. Cells treated with 1% DMSO were used 
as the 100% live control for biomass, and wells incubated with 
medium alone were used as the baseline zero biomass control. 
IC50 values were calculated using SoftMax Pro software 
(Molecular Devices, Sunnyvale, CA). 
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