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Ionic Compatibilization of polypropylene/polyamide 6 
blends using an ionic liquids/nanotalc fillers 
combination: morphology, thermal and mechanical 
properties  
 
M. Yousfia, S. Livia, A. Dumasb, J. Crépin-Leblondc, M. Greenhill-Hooperc  
and J. Duchet-Rumeaua 
 

In this study, room temperature ionic liquids (RTILs) based on phosphonium cations have been 
used as effective compatibilizers of polyolefin/polyamide 6/synthetic talc blends using a melt 
extrusion process. Thus, different ionic liquids functionalized by various counteranions 
(phosphinate versus bistriflimide) were introduced at various concentrations (1, 5 and 10 wt%) 
in the polymer mixtures. Then, the crystallization behaviour, the thermal and mechanical 
properties of blends as well as the morphologies were investigated. The transmission electronic 
microscopy (TEM) micrographs demonstrated that the use of a very low of ILs (1wt%) led to a 
significant reduction of the size of the dispersed PA 6 phase. Moreover, the thermal properties 
of PP/PA6/talc was dramatically enhanced (+80 °C) and the mechanical performance was 
improved without reducing the strain at break suggesting a synergistic effect between nanotalc 
and ionic liquids.  

 

 

A Introduction 

The development of polymer blend based materials has 
attracted great interest over the past several decades and is 
currently considered as a very active area of science and 
technology of great economic importance 1. Blending two or 
more polymers is a suitable route for producing new 
engineering polymers at low cost and desirable properties 
combination for specific end use. They can be developed much 
more quickly than new synthetic polymers and require much 
less capital investment 2. Unfortunately, most pairs of polymers 
are not compatible with each other from a thermodynamic point 
of view. These immiscible blends are characterized by a two 
phase morphology, poor physical and chemical interactions 
across the phase boundaries, and poor mechanical properties 
which  had limited their use in industry 3. A compatibilizing 
method is required to achieve a good interfacial adhesion 
between the two immiscible components 4. Typical examples of 
immiscible polymer blends are blends of polypropylene (PP) 
and polyamide (PA6). PP and PA6 are among the most widely 
used plastics in the world. They represent two important classes 
of polymers with complementary properties. For blends 

containing a PA6-rich phase, the polypropylene was added 
because it provides mainly high dimensional stability especially 
in humidity which improves the impact resistance of 
polyamide. On the other hand, for PP–rich blends, the main 
incentives to added polyamide have been the need to improve 
the heat resistance and tensile properties of polypropylene. To 
that end, research activities concerning the compatibilization of 
polypropylene and polyamide 6 date back to 1974, when Ide 
and Hasegawa 5 used maleic anhydride grafted PP (PPgMA) as 
a compatibilizer to enhance the miscibility between PP and 
PA6. This coupling agent is still one of the most widely used 
compatibilizers in these blends. However, PPgMA must be 
added within a large amount (10 – 20 wt% minimum) to 
achieve the desired properties leading to an increase in the price 
of the final product.  Recently, mechanochemistry of polymers 
in the solid state was used as a new strategy of 
compatibilization of immiscible polymer blends 6. Unmelted 
polymers are subjected to intense shearing action and 
interpolymer radical reactions during solid-state shear extrusion 
pulverization process was observed 7. Unfortunately, the most 
of the compatibilizing methods previously cited induces a 
significant loss of blend stiffness. Nanoparticles, especially 
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Table 2: Composition of the blends used 
 

Sample Designation m(PP):m(PA6):m(talc):m(IL) 

B0 PP:PA6 80:20:0:0 
B1 PP:PA6:HT:IL-TMP-

1% 
80:20:0:1 

B2 PP:PA6:HT:IL-TMP-
2% 

80:20:0:2 

B3 PP:PA6:HT:IL-TMP-
5% 

80:20:0:5 

B4 PP:PA6:HT:IL-TMP-
10% 

80:20:0:10 

B5 PP:PA6:HT:IL-TFSI-
1% 

80:20:0:1 

B6 PP:PA6:HT:IL-TFSI-
5% 

80:20:0:5 

 
Surface energy of talc was determined with the sessile drop method 
on a GBX goniometer. From contact angle measurements with water 
and diiodomethane as test liquids on pressed modified talc disks, 
polar and dispersive components of surface energy were determined 
using the Owens–Wendt theory 14. 
Thermogravimetric analyses (TGA) of composites were performed 
on a Q500 thermogravimetric analyzer (TA instruments). The 
samples were heated from 30 to 700 °C at a rate of 20 K min-1 under 
air flow. 
Transmission electron microscopy (TEM) was carried out at the 
Technical Center of Microstructures (University of Lyon) on a 
Phillips CM 120 microscope operating at 80 kV to characterize the 
level of dispersion of talc particles in the matrix. The samples were 
cut using an ultramicrotome equipped with a diamond knife, to 
obtain 60-nm-thick ultrathin sections. Then, the sections were set on 
copper grids. ImageJ Software (U.S. National Institutes of Health) 
was used to estimate the mean diameter of particles in each sample. 
DSC measurements were carried out by using Q20 (TA instruments) 
in the range of 10 °C to 270 °C. The samples were kept for 3 min at 
270 °C to erase the thermal history before being heated or cooled at 
a rate of 10 K min-1 under nitrogen flow of 50 mL/min. The melting 
temperature (Tm) and crystallization temperature (Tc) of PP and PA6 
phases, are determined as the maximum of melting and 
crystallization peak from second heating and cooling DSC 
thermograms respectively.  t1/2 represents the time corresponding to 
50% of the relative cristallinity.  
Uniaxial tensile measurements (elongation at break) were taken 
using a MTS 2/M electromechanical testing system at 22 ± 1 °C and 
50 ± 5% relative humidity and were performed with a speed of 40 
mm min-1. Young’s modulus measurements were taken by means of 
an extensometer using an Instron 4301 machine at a cross-head 
speed of 1 mm.min-1. A minimum of five tensile specimens were 
tested for each reported value. 
 

C Results and discussion 

C.1 Surface energy of talc fillers and polymers 
 

The contact angles and the surface energy determined by the sessile 
drop method on pressed talc powders and polymers are summarized 
in Table 3. To highlight the chemical affinity of ionic liquids with 
polymer matrices composing the blend, a drop of IL-TFSI and IL-
TMP were deposited on the neat polypropylene and polyamide 6.  
As the synthetic talc nanoparticles have a larger specific surface 
area, a higher surface energy is obtained 15. Their surface tension is 
closer to polyamide 6 matrix one compared to PP matrix one, 
particularly the high polar components are similar. In both cases, 
ionic liquids have a surface energy close to the polypropylene matrix 
with values in the range of 30.7-30.4 mN/m for IL-TMP and IL-
TFSI, respectively. These values are consistent with the literature 
where for example, different authors have also determined similar 
surface energies for these phosphonium salts 16, 17. However, 
significant differences were observed with the PP matrix. In fact, 
when a drop of ionic liquid denoted IL-TFSI is deposited on the 
polymer matrix, a contact angle of 38±5 ° is obtained while for the 
ionic liquid named IL-TMP, a value of 54 ± 4 ° is observed. These 
results highlight the best wetting of IL-TFSI with polypropylene 
matrix, therefore the chemical nature of the counter anion plays a 
key role in the dispersion of the ionic liquid within polymer blends.  
 
Table 3. Determination of total, polar, and dispersive components of 
the surface energy at 20 °C on PP, PA6, IL-TFSI, IL-TMP and  
contact angles values of ILs on polypropylene and polyamide 6. 
 

Samples Contact 
angle (°) 

ɣ polar 
(mN/m) 

ɣ 
dispersive 
(mN/m) 

Surface 
energy 
(mN/m) 

PP18 - 0.4 28.6 29 
PA619 - 29.1 23.8 52.9 
Talc ΘH20=34 

ΘCH2I2=48 
29.6 35.1 64.7 

IL-TFSI - - - 30.4 
IL-TMP - - - 30.7 
PP ΘIL-TFSI=38 

ΘIL-TMP=54 
   

PA6 ΘIL-TFSI=42 
ΘIL-TMP=41 

   

 
C.2 Effect of ionic liquids on the morphology of PP/PA6/talc 
nanocomposites 
 
In order to probe at a nanometric scale the influence of ILs on the 
morphology of talc filled PP/PA6 blends, the transmission electron 
microscopy have been performed. The distribution and dispersion of 
PA6 domains in polypropylene matrix but also the location of the 
talc layers (the dark lines) in the polymer blend are reported in 
Figures 1 and 2. It’s useful to mention that despite the precautions 
and efforts to improve the preparation of samples, the elevated 
stiffness (hardness) of some PA6 nodules particularly for samples 
containing 1wt% of ILs, generates bright white spots which appear 
in their corresponding TEM images.  
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Figure 6: TGA (a) and DTG (b) curves of virgin and talc filled 
PP/PA6/IL-TFSI composites. 
 
Table 4. TGA results of PP/PA6 blends and PP/PA6/HT/IL 
composites 
 

 
 
C.4 Effect of ionic liquids on crystallisation behaviour of 
PP/PA6/talc/IL nanocomposites 
 
The melting, crystallization temperatures and half crystallization 
time of virgin PP/PA6 binary blends and IL modified talc filled 
PP/PA6 nanocomposites are summarized in Table 5. The non-
isothermal crystallization kinetic profile of PP phase with IL-TMP 
and IL-TFSI modified talc nanocomposites are presented in Figure 7. 
With the increase of IL amount in the polymer mixtures, it was 
observed that the curve reporting the relative crystallinity was 
shifted towards the longer times. In addition, the crystallization 
temperature (Tc) was shifted towards lower temperatures while 
increasing the IL content in the blends. The crystallization 
temperature (Tc) of PP was 122.1 °C for virgin PP/PA6 samples and 
decreased to 116.5 °C with weight ratio of 10wt% of IL-TMP.  In 
the presence of IL-TFSI, Tc was lower (115.8°C) which highlights a 
better compatibility between PP and IL-TFSI compared to IL-TMP. 
The t1/2 of PP component increased of about 30 seconds when the 
amount of IL-TMP and IL-TFSI reached 10wt% and 5wt% 
respectively in the blend indicating a slow-down crystallization 
process of PP component in the presence of ionic liquids. This 
phenomenon is known in the literature: In fact, Yang et al. have 
demonstrated that the crystallization time of PP in PP/PA6 blends 
compatibilized with PP-g-MA was longer than that of 

uncompatibilized PP/PA6 blends 28. Thus, PP-g-PA6 generated by 
the chemical reaction between the functional group of PP-g-MA and 
the terminal groups of PA6 restricted the crystallization of PP.  The 
same behavior have been highlighted by Xue et al on PP-g-MA 
compatibilized poly(trimethylene terephthalate)/polypropylene 
blends 29. The crystallization temperatures (Tc ) of PTT and PP was 
shifted significantly to lower temperatures. The shift of PTT's (Tc) 
was higher than that of the PP, suggesting that addition of the PP-g-
MA had a more significant effect on PTT crystallization than on PP 
due to reaction between maleic anhydride and PTT. 
In this work, the crystallization temperatures of both PP and PA6 
phases decreased with increasing ionic liquid content in the blends. 
This phenomenon highlights a slower crystallization rate of PP and 
PA6 domains. 
 

 
Figure 7: The relative crystallinity kinetics with crystallization time of PP 

phase (a) and PA6 phase (b) in PP/PA6 blends and PP/PA6/talc/ILs 

composites at different contents of ionic liquids. 

 

Figure 7(b) shows the non-isothermal crystallization rate of PA6 
component for blends prepared in the presence of IL-TMP and IL-
TFSI respectively. The crystallization process of PA6 was also 
delayed after the addition of ionic liquids. The (Tc) of PA6 phase 
decreased gradually with the increase of IL amounts and this 
decrease was more pronounced for the PA6 component compared to 
PP matrix. Indeed, Tc of PA6 was reduced to 165.3 °C (-26.5 °C) 
when the IL-TMP concentration in the blends increased to 10 wt % 
while the (Tc) of the PP phase was shifted only to 116.5 °C (-5.6 °C). 
According to the literature, Psarski et al. explained the slowing of 
the kinetics of crystallization of PA6 phase in PP/PA6 blends by the 
reduction of size of PA6 dispersed particles, caused by the 
interactions between the functional groups of the compatibilizer (PE-
AA copolymer) and the polar groups in polyamide chain 30. By 
increasing the number of droplets per unit volume by decreasing the 
droplet size, the fraction of droplets that crystallizes at lower 
temperatures increases. But, this high shift cannot be explained only 
by the size of the PA6 domains. 
In PP/PA6 blends, two distinct melting peaks are observed at 164.0 
and 221.9 °C, corresponding to that of pure PP component and PA6 
component, respectively. The (Tm) of PP in IL modified talc filled 
PP/PA6 composites show no significant shift compared with that of 
PP/PA6 blends. However, the (Tm) of PA6 in composites varies with 
the composition in comparison with the binary blend. When the IL-
TMP was added for about 1 wt %, the (Tm) of PA6 was reduced by 
3.6 °C, and the (Tm) of PP had no significant shifts (+0.9 °C). By 
increasing ILs concentration in the blends, the (Tm) of PA6 
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decreased much more and the shifts in 5 wt%IL-TMP and 10 wt% 
IL-TMP were 5.4 and 6 °C respectively. 
Lahor et al. investigated sodium-neutralized poly(ethylene-co-
methacrylic acid) ionomer to compatibilize PE-PA6 blends (80/20) 
at different concentrations 31. They have demonstrated that the 
blends exhibited different crystallization and melting behaviours due 
to different content of ionomer. Since the ionomer has the ability to 
form interactions with both blend components, the (Tc) and (Tm) of 
PE and PA6 decreased after addition of the ionomer. This decrease 
was more pronounced when the weight ratio of ionomer increased. 
In our case, the (Tm) and (Tc) shifts suggest that the 
compatibilization in PP/PA6 blends is achieved thanks to the ILs-
nanotalc combination which promotes miscibility through mutual 
intermolecular interaction between nanotalc, IL-TMP or IL-TFSI 
and PP/PA6 phases. In fact, ILs acts as a real compatibilizer 
localized at the interface of PP/PA6 by establishing two kinds of 
interactions: i) polar – polar interactions could be formed between 
the polar groups beared by anion (sulfonamide for TFSI and 
phosphinate for TMP) and the amine groups. The level of these 
interactions will depend on the level of the polarity of each anion. ii) 
non polar – non polar interactions between the dispersive groups 
beared by the IL cation (aliphatic chains beared by phosphonium  
cation of ILs) and the non-polar units [―CH(CH3)―] of PP. These 
two kinds of interactions can promote the interfacial miscibility 
between PP and PA6 phases (Scheme 2).  
 

 

 
 

Scheme 2: Illustration of the mechanism of compatibilization 
of PP/PA6 blends by ionic liquids. 

 
Table 5: The corresponding crystallization and melting 
parameters for virgin PP/PA6 blends and PP/PA6/talc/ILs 
composites with different contents of ionic liquids. 
 

 
 
C.5 Mechanical properties of PP/PA6/Talc/Ionic liquids 
nanocomposites 
 
The mechanical properties i.e. the moduli and the fracture 
properties of the PP/PA6 blends and PP/PA6/Talc with IL-TMP 
and IL-TFSI are detailed in Figures 8 and 9. In addition, the 
tensile yield strengths for the different compositions are 
summarized in Table 6.  
In all cases, the use of ILs denoted IL-TFSI and IL-TMP led to 
an increase of the Young Modulus. In particular, the greatest 
improvements are obtained for 1 wt% of phosphonium ILs. 
However, the chemical nature of the counter anion plays a key 
role: Indeed, 1 wt% of IL-TMP induced an increase of the 
Young Modulus of 37.6 % (E = 1.88 GPa for the PP/PA6 
blends and 2.59 GPa with 1%-IL-TMP) whereas IL-TFSI led to 
an increase of 21.5 %. This result can be explained by the poor 
dispersion of nanotalc inside the PA6 nodules in the presence of 
IL-TFSI surfactants where the ionic interactions are less 
favourable (Figure 4). When the amount of ILs increases, the 
stiffness of materials tends to decrease. For 10% IL-TMP and 
5% IL-TFSI, the Young modulus was 25.7% and 21.5% lower 
compared to the PP/PA6 blend indicating that the excess of 
ionic liquid weakened the reinforcing effect. In a previous 
study, similar behaviour was already observed. Indeed, for 
PP/PA6 blends filled only with high amount of IL-TFSI and IL-
TMP, a plasticizing effect was obtained22. In the opposite, 
compared to the virgin blend, the standard deviation of Young 
modulus increased for the blends containing ionic liquids 
probably due to the heterogeneity in the samples prepared on 
the mini-molding setup. It’s interesting to note that the trend of 
the Young’s modulus in the PP/PA6/talc/ILs composites 
depending on the kind of ionic liquid used looks like 
PP/PA6/talc ternary systems previously studied 21 for which the 
highest elastic modulus was measured on PP/PA6/talc 
nanocomposites containing the more hydrophilic nanofiller. 
The strong interactions and the high quality of dispersion 
(exfoliation) of nanotalc layers inside the PA6 minor phase is  
thought to be mainly responsible for the enhanced mechanical 
properties 32, 33.  
 

Sample Tc(PP)  
(°C) 

Tc PA6  
(°C) 

t1/2 (PP)  
(min) 

t1/2 (PA6)  
(min) 

Tm(PP)  
(°C) 

Tm(PA6)  
(°C) 

PP/PA6 122.1 191.8 2.94 5.95 164.0 221.9 
PP/PA6/HT/IL-
TMP-1% 

124.5 184.2 2.67 6.69 164.9 218.3 

PP/PA6/HT/IL-
TMP-2% 

118.0 180.6 3.35 7.02 165.6 218.1 

PP/PA6/HT/IL-
TMP-5% 

117.9 174.3 3.39 7.68 164.0 216.5 

PP/PA6/HT/IL-
TMP-10% 

116.5 165.3 3.45 8.63 165.2 215.9 

PP/PA6/HT/IL-
TFSI-1% 

121.4 183.0 2.98 6.63 164.9 217.9 

PP/PA6/HT/IL-
TFSI-5% 

115.8 174.7 3.54 7.52 164.2 217.2 
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Figure 8: Stress–strain tensile curves and evolution of Young 
modulus as a function of the IL content within PP/PA6/talc 
nanocomposites. The PP/PA6 blend is given as reference.  
 
Concerning the elongation at break, the trend is reversed. 
Indeed, an increase of the amount of ILs led to an increase of 
the fracture properties. For 1% IL-TMP, the elongation at break 
was 14% slightly lower than the unfilled PP/PA6 blend (17%). 
Similar behaviours were observed by Kusmono et al. 34 who 
showed that the addition of an organoclay (montmorillonite-
octadecylamine) as a compatibilizer for PP/PA6 blend led to an 
enhancement in the stiffness of the blend but also to a decrease 
in elongation at break due to the high exfoliation of sheets that 
restricts chain mobility. Using the same PP/PA6 (80/20) blends 
filled with nanosilica, Laoutid et al. 35 found that the nanofillers 
reduced the size of the dispersed domains but at the same time 
acted as stress concentrating particles which reduced the 
ductility of the PP matrix. 
Then, the addition of higher amounts of IL gradually increases 
the ductility of the polymer blends (23% and 42% for 5% of IL-
TMP and IL-TFSI, respectively). 
Moreover, the combined use of phosphonium ionic liquids and 
talc leads to an increase of the tensile yield strengths. In 
conclusion, the IL-talc combination provides a significant 
increase in stiffness without reducing the elongation at break. 

 

 
Figure 9: Evolution of the strain at break as a function of IL 
content within PP/PA6/Talc composites. The PP/PA6 blend is 
given as reference. 
 
Table 6: The tensile yield strengths for virgin PP/PA6 blends and 
PP/PA6/talc/ILs composites with different contents of ionic liquids. 

 
 
Conclusions 

In this work, we have highlighted the good synergy between the 
nanotalc and the ionic liquids to improve the final properties of 
PP/PA6 blends. In fact, the incorporation of ionic liquid in 
PP/PA6/talc blends led to significant reductions in the size of 
the polyamide domains with a preferential localization of the 
talc in this matrix. In addition, substantial increases in the 
thermal stability (+ 60-80 °C) of the nanocomposites have been 
observed by using different amounts of ionic liquids denoted 
IL-TMP and IL-TFSI (1-5-10 wt%). Then, for mechanical 
properties, a reinforcing effect is obtained for a low amount of 
ionic liquid (1 wt%). In the opposite, when adding higher 
amount of ionic liquid, a plasticizing effect is observed causing 
a reduction in stiffness for the benefit of the deformation at 
break.  In conclusion, phosphonium ionic liquids are excellent 
compatibilizing agents of binary or ternary thermoplastic 
blends mixtures and represent a real alternative to block 
copolymers or ionomer where large quantities are used 22, 30-32 
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