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Abstract 

Age-related macular degeneration (AMD) is a degenerative retinal disease that causes 

blindness in people 60-65 years and older, with the highest prevalence appearing in 

people 90 years-old or more. Epidemiological estimates indicate that the number of cases 

is increasing, and will almost double in the next 20 years. Preventive measures require 

precise etiological knowledge. This is quite difficult, since AMD is a multifactorial condition 

with intricate relationships between causes and risk factors. In this review, we describe 

the impact of light on the structure and physiology of the retina and the pigment 

epithelium, taking into account the continuous exposure to natural and artificial light 

sources along the life of an individual. A large body of experimental evidence 

demonstrates the toxic effects of some lighting conditions on the retina and the pigment 

epithelium, and consensus exists about the importance of photo-oxidation phenomena in 

the causality chain between light and retinal damage. Here, we analyzed the transmission 

of light to the retina, and compared the aging human macula in healthy and diseased 

retinas, as shown by histology and non-invasive imaging systems. Finally, we have 

compared the putative retinal photo-sensitive molecular structures that might be involved 

in the genesis of AMD. The relationship between these compounds and retinal damage 

supports the hypothesis of light as an important initiating cause of AMD.  
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1. Introduction 

The clinical and social importance of Age-related Macular Degeneration (AMD) 

The retina is a photo-sensitive tissue that captures light and transforms it into electrical 

signals. The specialized cells that capture light include rods, specialized for nightlight 

vision, and cones, which are in charge of daylight and color vision. Rods contain the visual 

pigment rhodopsin that is sensitive to blue-green light (500 nm). Cones, instead, respond 

to short wavelengths (S-cones, 420 nm), medium wavelengths (M-cones, 530nm) and long 

wavelengths (L-cones, 560 nm).   

Near the center of the retina, the macula lutea appears as a yellowish spot, including four 

anatomical regions: the perifovea, the parafovea, the fovea and the foveola. The perifovea 

shows a high density of retinal vessels and a high rod:cone ratio, although the density of 

cones and ganglion cells is higher than in the periphery. Almost 50% of the total ganglion 

cell population resides in the macula1. Thus, the ganglion cell layer (GCL) shows more than 

one row, up to six cells deep, except at the foveola2, 3. The parafovea has a low density of 

retinal vessels and a rod:cone ratio close to 4:1. Cones become dominant in the slopes of 

the foveal pit, where vessels are restricted to a perifoveal capillary plexus. Narrowing and 

elongation of cones at the fovea are essential for visual acuity. Inner retinal layers are 

absent in the foveola, where photoreceptor cell bodies lie close to the vitreal surface2.  

AMD is a degenerative retinal disease that causes blindness in people 60-65 years and 

older, with the highest prevalence appearing in people 80 years-old or more4. Vision loss 

is preceded by early asymptomatic stages characterized by the presence of medium-sized 
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drusen (63-125 µm). The disease progresses to intermediate AMD with larger drusen 

and/or retinal pigment epithelium (RPE) alterations near the macula. The latter include 

hypo- or hyperpigmentation and accumulation of autofluorescent material (lipofuscin). In 

addition, multifocal electroretinography, optical coherence tomography (OCT), and 

spectral domain OCT (SD-OCT) have shown the presence of various photoreceptor 

changes5, 6. 

Early AMD lesions further develop into one of the two forms of late disease: geographic 

atrophy (GA) or dry AMD, characterized by loss of RPE cells and photoreceptors; and 

neovascular (or wet) AMD7, where abnormally growing choroidal vessels invade the 

subretinal space between the RPE and the neural retina8.  

With a global prevalence been estimated in 8.69 %9, AMD has replaced cataracts and 

refractive errors as the leading cause of blindness and severe vision impairment in higher-

income regions such as Western Europe, Australia, USA, Japan10 and Southern Latin 

America11. Current estimates suggest that the 2.07 million cases recorded in 2010 will 

become more than 5.00 million in 205012. 

Etiopathogenesis of AMD 

Chronic oxidant RPE injury, together with a low-level inflammatory response are 

important factors for development of early RPE lesions8, 13-15. Thus, a high risk for AMD is 

associated to cigarette smoking16, which is a well-known oxidant17, 18. Age is the main risk 

factor for developing AMD, but in most cases, genetic factors explain the overall severity 

of the disease19. That the most frequent factors associated to AMD are genetic variants 

facilitating inflammation20, points at the existence of sustained stress in the retina and the 
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RPE. Two would be the most likely causes: exposure to environmental light and the visual 

transduction processes. Since both circumstances are unavoidable in ordinary life, the 

epidemiology of AMD arguments in favor of robust endogenous mechanisms quenching 

photo-oxidative stress. Light radiation reaching the retina and the RPE provoke oxidative 

stress, which is normally restrained by endogenous antioxidant systems and by 

mechanisms extinguishing the associated inflammation stress15. The main risk factors for 

AMD probably reflect the failure of these systems and mechanisms but still, photo-

oxidation would be the initial pathogenic factor. As previously expressed by others, 

“prevention or attenuation of the initial oxidative injury will reduce the risk of developing 

AMD, regardless of genetic background”21.  

The association between this disease and environmental light is mainly based on 

epidemiological grounds, and on the physical evidence explaining the interaction of light 

with ocular tissues. Therefore, we will first analyze transmission of light to the retina, and 

then we will describe the diseased macula, as shown by modern imaging procedures. 

Finally, we will evaluate the putative retinal photo-sensitive molecular structures that 

might be involved in the genesis of AMD, which have been mainly identified by 

experimental studies in animal species or in vitro.  

2. Environmental light and AMD 

Effects of environmental light on the course of AMD must depend on the light 

wavelengths and intensities reaching the retina. Ocular structures can interact with a 

broad portion of the spectrum, ranging between 100 and 10,000 nm and including visible 
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(750-400 nm), ultraviolet (UV-A, 400-320 nm; UV-B, 320-280 nm; UV-C, <280 nm) and 

infrared wavelengths22, 23. However, almost no UV-C reaches earth’s surface24, and various 

natural ocular filters restrict radiation transmission to photoreceptors. 

Sunlight 

Retinal irradiance in daylight is in the 0.01 mW/cm2 to 0.1 mW/cm2 range, depending on 

time of day, season, presence of snow or water surfaces, wearing a hat, etc. Additionally, 

squinting, which prevents the formation of a sun image on the inferior retina, and 

photophobia, serve as biological protections against sun exposure25, 26. 

The average human retina absorbs each day approximately 1012 to 1015 photons27, which 

can be increased by workplace exposure or activities in high light environments. The 

association between sun exposure and AMD is controversial, since it has been found in 

some studies28-31 but not in others32-34. However, a meta-analysis based on 14 

epidemiological studies strongly supports the notion that more sunlight exposure 

increases risk for AMD35. Research has also emphasized the protective role of hats and 

eyeglasses and has suggested the possible relevance of individual differences in the 

reaction to sunlight exposure36, 37. Thus, the Age-related Maculopathy and Macular 

Degeneration in the elderly European populations (EUREYE) study only reported 

significant associations between blue-light  exposure and neovascular AMD for individuals 

in the quartile of lowest dietary antioxidant level—vitamin C, zeaxanthin, vitamin E, and 

zinc38.  
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Other light sources 

Welding arcs emit a wide spectrum, ranging from infrared (IR) to ultraviolet (UV). The 

cornea and the lens absorb UV radiation, whereas water absorbs far-IR. Visible light and 

near-IR may reach the retina in the unprotected eye, producing an acute macular lesion 

that often results in a bilateral central scotoma accompanied by pigmentation 

alterations39, 40. With only partial protection, UV light may generate corneal epithelial 

injury, whereas blue light destroys the center of the macula40. In a more recent study, 

macular lesions were demonstrated using OCT in 38% of welders (n = 80, age mean = 36.9 

years) that did not refer visual symptoms and showed no visual acuity problems41. Thus, it 

would be of great interest to study the evolution of these lesions with age.  

Concern has been raised about domestic and vehicular lighting, increasingly dependent on 

light-emitting diodes (LEDs). Dissemination of these devices poses a potential problem for 

the retina since billboards, and emergency lights extensively use blue LEDs. As it will be 

explained in the last part of this review, the retina is particularly vulnerable to blue-light. 

Current regulations establishes that for an exposure greater than 10,000 s, the exposure 

limit value (ELV) for blue-light radiance is about 100 W/m²/sr (or 1.0 x106J m-2 sr-1)42. 

Published spectral power distributions show that LEDs emit an intense blue-light  

component which is absent in the daylight spectra43. Cold-white LEDs are particularly 

questionable, since they emit about 3-4 times as much energy in the blue-light risk portion 

of the spectrum as warm-white LEDs43. Most important, due to their small size, it is 

relatively easy to produce LED sources of very high luminance that may generate visual 

discomfort44. A publication from the Department of Energy, U.S. reported that “the 
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proportion of blue-light in the spectrum is not significantly higher for LEDs than it is for 

any other light source at the same correlated color temperature (CCT)”45. However, this 

report emphasized that safety could not be guaranteed for blue LEDs, nor for infants in 

close proximity to bright light sources.  

Even though data from other species or in vitro cultures cannot be directly extrapolated to 

humans, we cannot disregard the experimental studies suggesting that LED blue 

irradiation might produce greater damage than other wavelengths. After exposure to 750 

lux, retinal damage in rats occurred earlier in those exposed to blue and white (CCT 6,500 

K) LEDs than in those exposed to white (CCT 6,500 K) or yellow compact fluorescent lamps 

(CFLs)46. After 9 days under blue or white LEDs, the outer nuclear layer (ONL), containing  

photoreceptor nuclei, was reduced to about 1/3, whereas no significant changes appeared 

in rats exposed to CFLs 46. With a 3-day exposure, levels of superoxide anion in the retina 

were higher in those exposed to blue LEDs than in those exposed to white LEDs and CFLs. 

Using different commercially available blue LEDs, severe retinal damage was produced  by 

radiances below the currently accepted ELV for blue-light44. Experiments in vitro also 

support the damaging potential of blue and white LED. Under the same illuminance (2,500 

lux) blue LED light damaged 661W cells (a line derived from mouse cones) more severely 

than white and green LED lights47. Only blue and white LED light significantly reduced cell 

viability when 661W cultures were exposed under the same energy conditions (0.38 

mW/cm2)47. The question of artificial light sources in AMD etiopathogeny still requires 

more evidence; however, we cannot presently exclude their potential role as a significant 

hazard. Regulations are required to control glaring from billboards and emergency lights 
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because, in addition to their potential role in retinal photo-toxicity, they might also 

conspire against security48.  

The normal eye filters UV and blue light 

Cornea and lens 

The cornea and lens absorb all UV-C light and most UV-B24. However, some UV-A radiation 

is transmitted, since it is about 10 times more abundant than UV-B in the solar spectrum24, 

49. Filtering in the human lens reflects the presence of tryptophan derivatives, the 

kynurenines, which block most of the incident light between 295 and 400 nm50-52. 

Although kynurenins decrease with age, UV filtering properties of the human lens increase 

because these compounds form covalent bonds with crystallins53. Advanced glycation end 

products (AGE) also contribute to lens UV-filters51. UV and blue-light  transmission 

decrease linearly as a function of age52. In contrast, a higher fraction of this region of the 

spectrum reaches the young retina(< 8-10 years)43, determining the rapid formation of 

lipofuscin in children54.  

A review, including a large number of studies (2003-2014), has shown clear-cut 

associations between cataract surgery and AMD. However, both increased transmission of 

short-wavelength light to the retina50, 55, and/or an inflammatory response56, 57 could 

explain the greater risk for AMD. Since the aphakic eye loses most UV- and blue-light 

filtering properties 50, 55, it seems reasonable to replace cataractous lenses with 

intraocular lenses (IOLs) with those filtering properties. UV-filtering IOLs can be untinted 

or yellow-tinted. Compared with aphakic eyes, untinted IOLs allow a 60% reduction in 
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blue-light irradiance, whereas yellow-tinted IOLs confer an additional reduction (17 to 

56%)58.  

The directly photo-sensitive retinal ganglion cells involved in the circadian rhythm are 

maximally sensitive to light at 480 nm59; therefore, concerns about tBoth the sleep-wake 

cycle following implantation of filtering IOLSs have been raised60. Decrease in the 

transmission of 480 nm light may occur, but it is very small compared to that of the aged 

lens. By the age of 80 years, transmission of 480 nm light is only 28% of the transmission 

in 10 year-old children61. A prospective study, including 961 participants has shown that 

sleep quality improves after removal of cataract, notwithstanding the type of IOL used62. 

Most important, the beneficial effect of blue-light filtering IOLs is strongly supported by a 

very recent study measuring the enlargement of the atrophic area in patients with dry 

AMD. After implantation of a non-blue filter IOL, this enlargement was almost twice as 

after implantation of a blue-blocking IOL63.  

Macular Pigment 

Macular pigment (MP) is composed of the xanthophyll carotenoids: lutein, zeaxanthin, 

and meso-zeaxanthin64. Xanthophylls gradually increase towards the center of the macula, 

and in the human fovea, they reach concentrations greater than 1 mM65. The cause of this 

elevated concentration might be explained by the low activity of β,β-carotene-9′,10′-

dioxygenase, the only known mammalian enzyme that cleaves xanthophylls, which is 

much weaker in humans and primates than in other mammals66. Xantophylls accumulate 

preferentially in the outer and inner plexiform layers (ONL and INL) where they may be 

inserted in the plasma membrane, or associated with specific binding proteins65. The 
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lutein : zeaxanthin : meso-zeaxanthin ratio changes progressively from 1 : 1 : 1 at the 

fovea to a ratio approaching 3 : 1 : 0 in the periphery. Since their peak absorbance is at 

460 nm, and because they are located in the anterior (vitreal) portion of individual 

photoreceptors, macular pigments attenuate the amount of blue-light incident on the 

photoreceptors in the most sensitive region of the retina67.  

Macular pigment optical density (MPOD), which may be measured in vitro or in vivo68, 69, is 

positively related to visual performance65, 70. Blue-light filtering improves the visibility of 

distant objects, most likely because scattered light from haze aerosols suspended on the 

horizon is predominantly blue71. The implantation of blue-light filtering IOLs after cataract 

surgery is associated with augmentation of MPOD in the absence of raised serum 

concentrations of lutein and zeaxanthin57, highlighting the efficacy of these molecules as 

blue filters. By contrast, in a sample of healthy volunteers (n = 828), MPOD levels were 

significantly and independently reduced by age, current and past smoking and AMD family 

history72.  

After the Age-related Eye Disease Study (AREDS) provided level 1 evidence that 

supplementation with vitamins C and E, β-carotene and zinc resulted in a 25% risk 

reduction of progression from intermediate to advanced AMD73, numerous clinical and 

epidemiological studies have tried to ascertain the putative protecting role of macular 

xanthophylls. Addition of lutein + zeaxanthin to the AREDS formulation did not further 

reduce the risk of progression to advanced AMD74, and only a mild beneficial effect on 

visual acuity has been observed after a one-year lutein supplementation75. However, 

functional abnormalities of the central retina in early AMD can be ameliorated by lutein 
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and zeaxanthin supplementation, an effect attributed to elevations in MPOD76. A recent 

review concluded that supplementation with macular carotenoids is probably the best 

available measure to strengthen the antioxidant defenses of the macula, thus reducing 

the risk of AMD and/or its progression67. Xanthophyll carotenoid supplementation in AMD 

would not only be significantly associated with improvements in visual acuity and contrast 

sensitivity, but also with a concomitant increase of MPOD77. Results of carotenoid 

supplementation may depend on previous nutritional conditions and genetic risk status. 

Thus, in the Blue Mountains Eye and the Rotterdam studies, an interaction between 

lutein/zexanthin intake and early AMD incidence was only found in participants with high 

genetic risk (carriers of 2 risk alleles of CFH or ARMS2)78. The impact of supplements 

containing different combinations of lutein, zeaxanthin and meso-zeaxanthin on visual 

function in normal subjects and subjects with early AMD is under investigation79.  

Independently of their filtering function in the macula, carotenoids could serve as 

antioxidants in the macula and in the RPE. They protect against singlet oxygen mediated 

photo-oxidation reactions and can also react with free radicals80. Thus, they would also 

reduce photo-oxidation of retinyl derivatives (such as A2-phosphatidylethanolamine and 

A2E, see below)81, 82. Cultured RPE cells actively uptake lutein and zeaxanthin and these 

xanthophylls prevent photo-oxidative inactivation of the proteasome, and photo-

oxidation induced changes in the expression of MCP-11, IL-8, and CFH83. Zeaxanthin has 

direct anti-oxidant actions on RPE cells, including the induction of Nrf2-mediated phase II 

enzymes such as heme-oxygenase-1, NAD(P)H:quinone oxidoreductase and γ-glutamyl-

cysteine ligase84.  
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Melanin  

Melanins, the heterogeneous polymers formed by tyrosinase (TYR) oxidation products of 

tyrosine, and L-DOPA (L-3,4-dihydroxyphenylalanine), are essential instruments for 

defense against UV exposure85. Uveal melanocytes and RPE cells contain eumelanin and 

trace amounts of pheomelanin86. Eumelanin, which has a broadband absorption spectrum 

smoothly decaying to the lower-energy end, can rapidly dissipate UV and blue-light energy 

as heat87. Thus, eumelanin light absorption followed by rapid thermal relaxation could 

quench potentially harmful photo-chemical reactions. Melanin can also scavenge free 

radicals and reduce the oxidative stress resulting from lipid peroxidation and reactive 

oxygen species (ROS) production88.  

The function of melanin in sun photo-protection seems to be undeniable86. Therefore, if 

sunlight is a stressing factor involved in the etiopathogenesis of AMD, melanin might be 

one of the anti-AMD defense mechanisms. In line with this hypothesis, AMD is more 

frequent in white persons than in persons of black African inheritance89. Most studies also 

agree that white subjects with light blue-colored irises have a higher AMD prevalence than 

those with dark-colored irises89. In the Beaver Dam Eye Study, increased risk of early AMD 

was found for persons with high sunlight exposure and light colored eyes (gray/blue), or 

light colored hair (blond/red)90. Remarkably, initial recovery of patients with neovascular 

AMD after anti-VEGF treatment shows a seasonal oscillation that is inversely correlated 

with global radiation intensity91, and functional improvement is significantly higher in 

patients with dark-colored eyes than in those with light-colored eyes91. In addition, a 
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recent report suggests a possible relationship between early AMD and TYR single 

nucleotide polymorphisms (SNPs) previously associated with skin and eye pigmentation92. 

Quantitative observations in eyes from human cadaveric donors indicate a decrease in 

RPE melanin with age, most likely related to photo-oxidation93, 94. Aging also affects 

melanosomes, and by age 90, most RPE melanin appears as melanolipofuscin95. The latter 

can generate ROS upon excitation with blue light96. Studies in vitro have shown that 

melanin may reduce the accumulation of lipofuscin in RPE cells97, and the photo-oxidation 

of its components98.  

Pupillary diameter 

The pupil modulates retinal illumination; consequently, it would also regulate retinal 

susceptibility to photo-toxicity. In eyes with little pigmentation, light might reach the 

retina by transmission through the iris and the sclera, possibly increasing the risk of light-

induced damage99. 

Light sensitivity of the pupil constriction reflex seems to be unaffected by age100; however, 

AMD patients confronted by a navigation task display larger pupillary diameters than 

controls of the same age and sex101. A larger pupillary diameter under the same luminance 

conditions might increase retinal light exposure and contribute to progression of the 

disease.  

Light-induced damage 

Electromagnetic radiation in the 100 nm-1 mm range is widely known as “optical 

radiation”42. Light absorption by biological material implies energy transfer, which may be 
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damaging for absorbing tissues. Light-inflicted damage will depend on the specific 

combination of radiation wavelength, exposure time, tissue properties and volume22.  

Photo-chemical damage arises when a cromophore, or photo-sensitive molecule, 

undergoes physico-chemical changes after the absorption of a photon. In the eye, 

chromophores include visual pigments in the photoreceptors, the macular pigments, 

absorbing in the 400-530 nm range, and the broadband absorbers melanin and lipofuscin 

in the RPE and choroid23. Effects of chromophore excitation may be transmitted to 

neighboring molecules, dissipating extra energy in various ways, including chemical bond 

splitting, hydrogen exchange and ROS production, such as singlet oxygen, superoxide, 

hydrogen peroxide and hydroxyl radicals. In turn, these radicals react with nearby 

molecules, inducing diverse photo-oxidative changes. Thus, photo-chemical damage is 

almost synonymous with photo-oxidative damage22, 102. Cells may or may not repair these 

lesions depending on the irradiation intensity and the exposure time22, 23, 27, 103. Spreading 

of photo-oxidative effects is particularly damaging in tissues with high concentration of 

cell membranes, such as photoreceptor outer segments104. Oxidative stress contributes to 

photoreceptor cell death in animal models of retinal degeneration, including light-induced 

retinopathy105, 106. 

3. Macular damage in aging and AMD 

Photoreceptors 

Eyes from 40-year or older persons without significant ocular disease show loss of 

photoreceptor nuclei in the macular ONL, together with disappearance of outer segments, 
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but without defects in the RPE or the choriocapillaris107. Quantitative microscopy studies 

in donor eyes demonstrated a steady decline in central rod number with age, without 

concomitant changes in cone numbers108. Cones, however, displayed some morphological 

abnormalities, including lipofuscin deposition109, 110. More recent studies have detected a 

significant thinning of the RPE and the choroid, together with an increase in the thickness 

of the OPL3, which in the macular region is known as the fiber layer of Henle. Greater OPL 

thickness most likely reflects activation and hypertrophy of Müller cells following 

photoreceptor loss111. Aging eyes also exhibited a reduced thickness of the retinal nerve 

fiber layer (RFNL), GCL, inner plexiform layer (IPL), INL and photoreceptor inner segments, 

except at the fovea3, 112. By contrast, width of the photoreceptor outer segment layer 

correlated positively with age, presumably reflecting the age-related decrease in RPE 

phagocytosis112. The amount of parafoveal rods significantly decreased in aging retinas108. 

Although changes in foveal cone numbers were not detected histologically108, adaptive 

optics have shown that, in old age, cone packing density decreases up to 25% within 0.45 

mm of the foveal center, but not in peripheral regions113-115. 

Histological evaluation of dry AMD showed RPE irregularities and atrophy, whereas wet 

AMD samples displayed both RPE defects and fibrovascular scars108. Foveal cone numbers 

showed few changes, but rods were almost completely lost in the parafovea. In the wet 

AMD samples, photoreceptors surviving in the neighborhood of disciform scars were 

largely cones108. Since external light is focused on the cone-rich fovea, sparing of foveal 

cones suggests that they may be more resistant than rods to light-induced damage. 

Nevertheless, since they depend on the rod-derived cone viability factor (RdCVF)116, they 
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would disappear after demise of parafoveal rods. It has been demonstrated that RdCVF 

protects 661W cells from photooxidative damage117 and, most important, that RdCVF-

deficient mice are extraordinarily sensitive to light-induced damage118. 

Histological findings are supported by analysis of rod function119, and adaptive optics 

scanning laser ophthalmoscopy120. Besides, AMD retinas also displayed reduced cone 

reflectivity, suggesting mild structural abnormalities120. Additionally, scanning laser 

polarimetry studies indicated that the number of central cone photoreceptors may be 

lower, and/or structural alterations of their axons significantly higher, than in non-AMD 

eyes of the same age121. Reduction of the RPE/photoreceptor and ONL layers overlying 

drusen has been consistently found6, 122, 123, but reports about their thinning in drusen-

free areas122 need confirmation. 

Loss of rod photoreceptors, with cone sparing, resembles the consequences of white light-

induced damage in rodents, where cones remained after complete disappearance of 

rods124. Remarkably, in rats maintained under cyclic lighting, the retinas of older animals 

suffered more damage from exposure to intense light than those of younger animals125. 

Retinal Pigment Epithelium and Lipofuscin 

The outer segments of rods and cones are under constant renewal, with old discs being 

shed from the apical tip and phagocytosed by RPE cells126, 127. A current development is 

the in vivo study of disc renewal in human cones through changes in their reflectance128.  

Daily shed outer segments are phagocytosed by the RPE and processed using a 

combination of phagocytic and autophagic mechanisms where lysosomes are fused with 

autophagosomes. Since some autophagy characteristic proteins (LC3 and Atg5) appear in 
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the membrane of phagosomes, the process is known as non-canonical autophagy or LC3-

associated phagocytosis129, 130. Most of the material is recycled to the photoreceptors; 

however, the RPE accumulates lipofuscin, a non-digested heterogeneous substance, 

within the residual bodies of the lysosomal compartment131.  

Lipofuscin distribution in the RPE shows a defined pattern, increasing from the equator to 

the posterior pole with a consistent dip at the macula. Curiously, melanin follows a 

contrasting distribution, decreasing from the equator to the posterior pole, but with a 

regular peak at the macula. This polarization fades by the age of 50, presumably because 

most melanin becomes incorporated into melanolipofuscin granules132.  

Lipofuscin has a broad excitation range (300-600 nm) and a broad emission spectrum 

(480-800 nm), allowing histological and non-invasive studies of fundus 

autofluorescence133. Wholemount studies of human donor retinas have shown that the 

topography of RPE autofluorescence follows the distribution of rod photoreceptors, being 

highest in the vicinity of the rod-rich perifoveal annulus134. The highest autofluorescence 

levels were found in 80 years or more retinas134. Older retinas displayed an increase of 

non-hexagonal shapes, without changes in RPE cell density134. Degranulation of RPE cells 

appeared in healthy and AMD aged eyes, whereas granule aggregation was only observed 

in AMD eyes. In the latter, some RPE cells were greatly enlarged and displayed 

cytoskeletal alterations135. In GA patients, the atrophic patches were usually surrounded 

by a junctional region of abnormal autofluorescence. Distinct patterns have been 

described and some of them may have a genetic basis136, 137.  
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4. Main targets of photo-toxicity 

Understanding the role of light exposure in the course of AMD requires identification of 

the molecular targets that initiate photo-oxidation reactions, which we may call primary 

targets. Some other molecules, the secondary targets, would not be directly affected by 

light, but they would become the immediate targets of ensuing photo-oxidation. Some 

compounds could be both primary and secondary targets, for example all-trans-retinal or 

lipofuscin. Available information about light molecular targets results from a large amount 

of experimental work that has been mainly done in animals or in vitro23, 27, 96, 138-140.  

Early work in albino rats showed photoreceptor damage after light exposure through blue 

(360-530 nm) and green (490-580 nm) filters. Electroretinogram (ERG) alterations, 

however, were most efficiently induced by exposure to 500 nm141. The RPE was 

sometimes involved, depending on age of the animal, temperature, previous illumination 

conditions and the intensity and duration of the damaging light142. Results suggested that 

these lesions depended, directly or indirectly, on rhodopsin excitation. Indirect damage 

would require the activation of other photo-sensitive molecules appearing under light 

adaptation conditions, perhaps including products of the rhodopsin bleaching process, 

such as vitamin A derivatives27, 139, 142. By contrast, experiments using blue light (441 nm), 

done in monkeys, showed an initial damage of the RPE, followed by alteration of the 

photoreceptor outer segments and remarkable recovery 10-11 days after exposure143.   

Available data for monochromatic-induced retinal damage support the existence of at 

least two damage action spectra. Irradiation in the 320-440 nm range predominantly 

affected photoreceptors144, whereas in the 440-550 nm range injured the RPE and/or the 
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photoreceptors103, 141, 142. Rhodopsin, and also other chromophores such as lipofuscin, 

intermediate products of the visual cycle, and even melanin, could be the photo-sensitive 

targets converting light into retinal damage27. Rhodopsin, however, is not only affected by 

500 nm light, but can also be a target for blue light-induced photoreversal of bleaching. 

This phenomenon increases the photon-catch capacity of the retina and its susceptibility 

to light damage, thus explaining why blue light has a greater damage potential than green 

light145.  

Of note, most spectral data for retinal damage has been obtained in anesthetized animals, 

often using funduscopic visible changes as threshold damage103. Therefore, lesions 

described in these experiments do not resemble aging or AMD changes, but those found 

in welders40, 41 and laser or sun-gazing accidents146, 147. Their relationship with AMD is 

conceivable, but is far from proven, particularly since these experiments provide little 

information about the damage spectra of very long exposures in freely moving subjects. 

Curiously, exposure of albino mice or rats to diffuse white light induces photoreceptor 

death, without overt RPE damage124, 148. 

Rhodopsin  

White light did not cause photoreceptor degeneration in mice lacking functional 

rhodopsin, thus, rhodopsin must play an essential role in the retinal response to excessive 

lighting138. This role is further supported by the correlation between rates of visual 

pigments regeneration and light-induced damage thresholds138, 149. Moreover, white light 

did not induce retinal damage in mice and rats under halothane anesthesia, which blocks 
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rhodopsin metabolic regeneration. In these animals, however, exposure to blue light (403 

nm) induced photoreceptor apoptosis and RPE swelling148. 

The absence of functional transducin, which blocks signaling from light-activated 

rhodopsin, did not protect from bright light-induced degeneration. However, mutant mice 

with persistent rhodopsin activation, which are extremely sensitive to low-intensity cyclic 

light, were protected138.  

Photo-transduction and oxidative stress in the outer segments 

Oxidative metabolism, which is required to support the light pathway, could also induce or 

aggravate photoreceptor damage150. Since a significant fraction of the O2 used by cells is 

converted to ROS, excessive activation of photo-transduction might determine a higher 

activity of the respiratory complexes, and a higher oxidative stress. These phenomena 

might occur within the outer segments, which contain their own machinery for ATP 

synthesis, including mitochondrial-like electron transport chains, F1-ATP synthase and the 

TCA cycle enzymes, as has been demonstrated in bovine retinas using  proteomic 

procedures and immunogold transmission electron microscopy151-153. Remarkably, bovine 

and mouse outer segments are selectively stained with mitochondrial dyes151, 154. 

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are also 

involved in light-induced oxidative stress. The primary function of NOX enzymes is the 

reduction of oxygen into superoxide anion using NADPH as an electron donor and oxygen 

as an electron acceptor155. Increase of these species is observed in mouse outer segments 

when whole eyeball cultures are irradiated with blue light (405 nm), and can be prevented 

by the NOX inhibitor apocynin154. 
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The visual cycle and the retinoids 

Photo-excitation of rhodopsin and other visual pigments leads to isomerization of their 

chromophore 11-cis-retinal to all-trans-retinal, which dissociates from the opsin protein. 

Regeneration of the visual pigments requires the restoration of 11-cis-retinal. Visual 

pigments in rods and cones recover at very different rates, about 40 min in rods but only 

2-3 min in cones156. These are the times required by their specific regeneration processes: 

the rod and the cone visual cycles156, 157. 

The rod visual cycle 

Both 11-cis- and all-trans-retinal form Schiff base adducts with phosphatidylethanolamine 

(PE). The ATP-binding cassette subfamily member 4 (ABCA4) flips this N-retinylidene-PE to 

the disk cytoplasmic leaflet158, and cytoplasmic dehydrogenases (RDHs) reduce it to all-

trans-retinol156. This retinoid is released and bound by the interphotoreceptor retinoid-

binding protein (IRBP). It is then captured by RPE cells, becoming bound to a 

retinaldehyde-binding protein (CRALBP). All-trans-retinol is esterified by lecithin-retinol 

acyltransferase (LRAT) and turned into 11-cis-retinol by the isomerase (RPE-specific 65 kDa 

protein; Rpe65). Further oxidation produces 11-cis-retinal, which abandons the RPE and is 

taken up by photoreceptors, regenerating a functional visual pigment156. 

The cone visual cycle 

The cone visual cycle is intraretinal. Instead of trafficking to the RPE, all-trans-retinol 

diffuses from cones to the Müller cells, where it is isomerized to 11-cis-retinol, probably 

by dihydroceramide desaturase-1 (DES1)159. This is a type 2 isomerase that, at difference 

with Rpe65, acts directly on all-trans-retinol159. 11-cis-retinol is rapidly sterified by 

Page 22 of 64Photochemical & Photobiological Sciences

P
ho

to
ch

em
ic

al
&

P
ho

to
bi

ol
og

ic
al

S
ci

en
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t



23 
 

multifunctional O-acyltransferase (MFAT)160. CRALBP plays an important role in the cone 

visual cycle, since its absence desensitizes cone-driven vision in humans and mice161. Both 

cone and rod dark adaptation depend on the presence of CRALBP161.  

Photoxicity of all-trans-retinal 

The possible role of all-trans-retinal as the agent of light-induced damage, initially 

discussed by Noell (1966)141, has been extensively described132, 149. Remarkably, the 

instantaneous concentration of this retinoid in the light-exposed outer segment could be 

as high as 5 mM162, 163. Bleaching less than 0.5% of all rhodopsin would still generate toxic 

levels of all-trans-retinal164. Thus, this molecule could either be an indirect damage target 

of rhodopsin activation and/or the direct target of short-wavelength light. Peak 

absorption of all-trans-retinal is at 380 nm, which is almost completely filtered by the 

human lens. However, this retinoid still shows substantial absorption at > 410 nm 

wavelengths 165. UV-A (355 nm) and blue (422 nm) light excitation of all-trans-retinal in 

the presence of oxygen generates singlet oxygen, which can in turn oxidize all-trans-

retinal166. The degradation products, including several endoperoxides, shorter-chain 

aldehydes and epoxides, significantly increase all-trans-retinal cytotoxic effects on RPE 

cells in vitro166.  

Rod photoreceptors would be the primary site of all-trans-retinal attack167. Damage is 

induced through different mechanisms, including photo-damage of its own transporter 

ABCA4165, impairment of mitochondrial function, increase in the production of superoxide 

through the activation of NOX enzymes168, and/or the activation of Toll-like-receptor 3 

(TLR-3)169, followed by microglial activation170. In addition, in vitro irradiation (400-700 
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nm) of rod outer segments in the presence of all-trans-retinal impairs the ability of 

rhodopsin to regenerate171, indicating another probable cause of photoreceptor 

degeneration. 

All-trans-retinal arrives to the RPE together with phagocytosed outer segment discs, but 

can also be synthesized in the RPE from β,β carotene or all-trans-retinol172. All-trans-

retinal is highly cytotoxic to human RPE cells in primary cultures, and potentiates the 

effect of light irradiation172. 

The pharmacological control of visual chromophore biosynthesis has been proposed as a 

preventive method for retinal diseases depending on light-induced damage, increase of 

retinoid byproducts and hyperoxia173. Emixustat hydrochloride, presently in clinical trial 

for dry AMD is an RPE65 inhibitor and retinal scavenger. This drug has significant adverse 

effects; however, it has shown that all-trans-retinal sequestration is a crucial function for 

photo-toxicity protection174. 

Lipofuscin and A2E 

Although lipofuscin has been extensively described, its composition is still poorly 

understood and might differ between the diverse regions of the retina. Lipofuscin, which 

contains little protein, would mainly derive from all-trans-retinal, docosahexaenoic acid 

(DHA), and other components from outer segments175-177. Its best known constituents are 

the bisretinoids, a complex mixture of autofluorescent compounds132, 176. Retinal isomers, 

including all-trans and 11-cis, covalently react with the amine group of PE forming N-

retinylidene-PE. The addition of a second retinal molecule produces N-retinylidene-N-

retinylphosphatidylethanolamine (A2PE). A2E forms after removal of the A2PE 
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phospholipid moiety176. Lipofuscin also contains all-trans-retinal dimers, which are more 

abundant than A2E in the retina of Abca4-/- mice27. RPE bisretinoids exhibit diverse 

excitation maxima, but they all emit fluorescence centered around 600 nm, which is 

similar to the maximum emission of the fundus autofluorescence176.  

Numerous experiments, in vivo and in vitro, support the role of lipofuscin, all-trans-retinal 

and A2E as targets for blue light. In primate eyes, visible light (488 and 568 nm) may 

photo-bleach RPE cells autofluorescence at levels previously considered safe. Experiments 

in vitro suggested that A2E might be involved in this response27. At higher intensity 

irradiation levels, but still not higher than the maximum permissible exposure, the RPE 

developed long-term structural disruption. At present, it is unclear whether these lesions 

represent a lipofuscin- or photopigment-dependent damage mechanism27. However, 

damage induced in RPE cell cultures fed isolated lipofuscin granules, and exposed to short-

wavelength visible light (390–550 nm)97, but in the absence of photoreceptors, cannot be 

attributed to a rhodopsin effect.  

A2E may be less damaging than retinaldehydes172, and it has been postulated that the 

formation of A2E and its precursor A2PE would reduce the photo-reactivity of all-trans-

retinal172. In contrast with this hypothesis, a damage spectrum has been described for 

A2E-loaded porcine RPE cells, with lesions occurring between 390 and 552 nm (maximal at 

420-450 nm)178. This apparent contradiction can be explained by the increased photo-

toxicity of A2E oxidation products179, which would contribute to RPE photo-damage in rat 

retinas exposed to blue light180. Photo-oxidation and photo-degradation of bisretinoids 

release small carbonyls involved in the formation of Advanced Glycation End-products, 
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which may accumulate in drusen and laminar deposits181. It has also been suggested that 

photo-activation and cleavage of bisretinoids promote complement attack on RPE cells182, 

183. These similarities in the cytotoxicity of lipofuscin and A2E, plus the fact that both 

molecules show the same distribution in mice RPE184, were taken as an indication that A2E 

might be the target triggering and maintaining the course of AMD185.  

A2E and its oxides have been studied in situ using high-resolution matrix-assisted laser 

desorption/ionization imaging mass spectrometry (MALDI-IMS). Whereas the RPE central 

area displayed the highest lipofuscin fluorescence intensities, the highest A2E densities 

were found in the far periphery186, 187. Comparison of A2E distribution in human and 

mouse retinas suggests that this bisretinoid is characteristic of rod-rich areas. Low levels in 

the cone-rich area macular area suggest that the cone visual cycle does not favor the 

transformation of all-trans-retinal into A2E. Thus, light-induced damage in the central 

retina would not depend on A2E. Nevertheless, the distribution of lipofuscin in a 

perifoveal ring corresponds to the localization of perifoveal rods134, which are the first 

photoreceptors to perish in aging and AMD108, 119, 120. 

On the other hand, photo-oxidative damage (448 nm) of lipofuscin-loaded primary human 

RPE cells and ARPE-19 cells activated the inflammasome, suggesting a link between photo-

oxidative damage and innate immune activation188. 

The ABCA4 gene and clearance of all-trans-retinal 

Clearance of all-trans-retinal is delayed when certain variants of the ABCA4 gene are 

present, as in recessive Stargardt’s disease (STGD1), a juvenile form of macular 
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degeneration189. Two variants of the human gene have been associated with increased 

risk for AMD190.  

STGD1 patients show a distinctive fundus autofluorescence pattern, the granular pattern 

with peripheral punctate spots (GPS+), that also appears in 2-3 % of GA AMD patients137. 

About half of the GPS+ patients carried a monoallelic ABCA4 variant, whereas only 10% of 

the GPS- patients carried these variant alleles137. Of note, light deprivation might 

contribute to reduced progression of decreased autofluorescence in STDG1 patients191. 

Although the vast majority of AMD cases are not related to ABCA4 gene variants, the 

aforementioned associations support a role of all-trans-retinal in AMD development. 

Data obtained in mice carrying Abca4 mutations suggest a complex and still controversial 

scenario. Abca-/- mice, which are more vulnerable to light-induced retinal degeneration, 

accumulate RPE lipofuscin and A2E192. Rdh8-/-Abca4-/- mice, with a delayed all-trans-retinal 

clearance, develop retinal lesions resembling human AMD (RPE/photoreceptor dystrophy, 

lipofuscin, drusen-like deposits under the RPE and choroidal neovascularization), and 

show an acute retinopathy under irradiation levels harmless for Rdh8+/+Abca4+/+ mice149. 

Abca4-/- mice increased the expression of proteins activating the complement system, and 

downregulated the complement regulatory proteins. Besides, they showed basal laminar 

deposits along the Bruch's membrane193. Moreover, all-trans-retinal sensitized human RPE 

cells in vitro to alternative complement pathway attack194, suggesting another likely link 

between light exposure, the visual cycle and AMD. 

Page 27 of 64 Photochemical & Photobiological Sciences

P
ho

to
ch

em
ic

al
&

P
ho

to
bi

ol
og

ic
al

S
ci

en
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t



28 
 

Retinal lipids 

DHA is the most abundant fatty acid in whole retinas (22-24%)195. Prolonged light 

exposure and high-light rearing environments reduce DHA levels in rod outer segments196. 

Interestingly, acute exposure to bright light did not damage photoreceptor outer 

segments in rats with dietary DHA or linolenic acid deprivation196, 197.  

Involvement of N-retinylidene-PE in the clearance of all-trans-retinal probably explains the 

extraordinarily high content of PE and its long-chain DHA in photoreceptor membranes. In 

the disc membranes, PE would act as a sink preventing diffusion of 11-cis-retinal198.  

As a precursor of neuroprotectin D1, DHA may also shield retinal cells from oxidative 

stress199. Importantly, photo-activation of rhodopsin may be regulated by the relative 

proportion of polyunsaturated lipids, such as DHA, and cholesterol, in the disc 

membranes. Thus, quantum yield of all-trans-retinal depends on the availability of DHA in 

the retina96.  

Lipid peroxidation significantly increases in the retina of rats exposed to light200. 

Moreover, it has been shown that the oxidative potential of the posterior region of the 

human eye, including the macula, increases with age201. Exposure to light induces 

phospholipid oxidation and immunoreactivity for oxidized phosphatidylcholine appears in 

photoreceptors and RPE cells at the healthy human macular area. Its levels increase with 

age and eyes with AMD show stronger immunoreactivity than age-matched normal 

eyes202. Increase of oxidized phospholipids multiplies the expression of monocyte 

chemoattractant protein-1 (MCP-1), followed by macrophage accumulation, and these 

Page 28 of 64Photochemical & Photobiological Sciences

P
ho

to
ch

em
ic

al
&

P
ho

to
bi

ol
og

ic
al

S
ci

en
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t



29 
 

effects are prevented by antioxidants. Moreover, subretinal application of oxidized 

phospholipids induces choroidal neovascularization, typical of the wet-type AMD203. 

Carboxyethylpyrrole adducts 

Carboxyethylpyrrole protein (CEP)-adducts are oxidative products derived from 

fragmentation of DHA-containing lipids. They are elevated in ocular tissues and plasma in 

AMD patients, where they can be detected in drusen204. Purified lipofuscin granules also 

contain CEP-adducts175, 205. Likewise, CEP adducts are found in the retina of rodents 

exposed to intense light206. The photo-oxidative processes that generate CEP-adducts 

could occur in photoreceptor cells, but may also take place after disc shedding in the RPE 

autophagosomes and lysosomal bodies176. CEP-adducts may well be another pathway to 

macular degeneration, since autoantibodies are present in the blood of AMD patients. 

Moreover, mice immunization with CEP-seroalbumin induced, after 12-14 months, 

numerous sub-RPE deposits and accumulation of complement proteins in the Bruch’s 

membrane207.  

Isolevuglandins 

Levuglandins (LGs) and isolevuglandins are γ-keto-aldehydes derived from the oxidation of 

arachydonyl phospholipids208, 209. These molecules are highly reactive toward free primary 

amines such as the ϵ-amine of lysine residues in proteins and the primary amino groups of 

phosphatidylethanolamines210. They also react with mitochondrial cytochrome P450 27A1 

(CYP27A1), impairing its function in sterol elimination211. Isolevuloglandins are highly 

abundant in the human retina, where immunoreactivity is mainly localized in 

photoreceptor inner segments. They are not detected in retinas of mice reared under dim 
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light, but can be found in inner segments and RPE cells after exposure to a bright light 

source (10,000 lux 2 h)212. Iso[4]levuglandin E2 adducts have been found in purified 

lipofuscin granules175. 

5. Concluding Remarks 

Evidence presented here supports the concept that light reaching the retina and the RPE 

provokes oxidative stress, leading to a buildup of toxic compounds that induce 

inflammation and cell death. Experimental and clinical findings indicate that light can 

affect oxidative homeostasis in the outer retina, either by excessive activation of photo-

transduction processes or by the impairment of waste disposal mechanisms. All-trans-

retinal and its subproducts appear as the major offenders in the retinal degeneration 

circuit.  

In experimental models, accumulations of all-trans-retinal in photoreceptors, and 

bisretinoids and lipofuscin in the RPE, are light-dependent processes. In addition, these 

compounds are both photo-reactive, and photo-toxicity inducers as well. Experimental 

evidence indicates that all-trans-retinal accumulation in photoreceptors suffices for the 

initiation of their degeneration. Therefore, early AMD might represent the direct effect of 

all-trans-retinal on photoreceptors, perhaps reinforced by lipofuscin accumulation in 

cones. In a second stage, lipofuscin, A2E, and related compounds, would increasingly 

accrue in the RPE, giving rise to a new target site for photo-toxicity. The course of the 

disease would then accelerate, since the light attack becomes possible at two different 

fronts. Differences between early and late AMD could perhaps be explained by this 
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temporal pattern. In addition, all-trans-retinal photo-toxicity includes disruption of ABCA4, 

the N-retinylidene-PE transporter. Since photoreceptor PE molecules are highly enriched 

in DHA, all-trans-retinal photo-toxicity might be involved in the formation of CEP-adducts 

that appear in drusen and lipofuscin granules. 

The availability of precise and fast analytic tools has also brought to light that rods and 

cones follow different death pathways. Most important, both histological and modern 

imaging procedures have shown that perifoveal rods die before foveal cones. This 

sequence could be associated to differences in the management of visual pigment 

regeneration, which requires an RPE step for rods, but is mainly intraretinal for cones. 

Moreover, cones seem to be more resistant to light-damage than rods. Since their light-

resistance and survival depends on RdCVF availability, loss of perifoveal rods predicts the 

future demise of foveal cones. Of note, experiments suggest that a replacement therapy 

might extend cone survival.  

Ample evidence shows that light-induced photoreceptor and/or RPE injury would trigger 

the inflammatory component, amplifying the initial damage. These processes explain the 

importance of certain gene variants for complement regulatory proteins as risk factors for 

AMD development.   

As shown by data presented in this review, the hypothesis of light as an initiation cause of 

AMD is mainly supported by the existence of molecular targets in the retina and the 

pigment epithelium which light can transform into photoreceptor toxics.  
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Graphical abstract 

 

 

Legend for Graphical Abstract 

The course of Age-related Macular Degeneration (AMD) is described as the effect of light 

(400-580 nm) on several molecular targets in photoreceptors and the retinal pigment 

epithelium (RPE). Photo-oxidative changes determine damage of cellular structures, and 

may determine the appearance of secondary molecular targets, such as bisretinoids and 

lipofuscin. Photo-damage results in severe disturbances followed by death of macular 
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photoreceptors and RPE cells. Photo-oxidation and photo-damage elicit several 

inflammatory processes that support development of characteristic drusen and VEGF-

induced angiogenesis, typical of AMD. Question marks indicate that photo-damage- and 

inflammatory-derived products could perhaps contribute other photo-sensitive molecules, 

thus increasing the initial damage.  

 

Short statement of Novelty 

The course of Age-related Macular Degeneration (AMD) is described as the effect of light 

(400-580 nm) on various molecular targets in photoreceptors and the retinal pigment 

epithelium (RPE). 
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