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A highly atom-economic allylation of oxindoles with vinyl 

cyclopropanes catalyzed by Pd(PPh3)4 has been developed, which 

set up a practical venue for the installation of an all-carbon 

quaternary center at the 3-position in oxindoles under mild 

reaction conditions. Importantly, the reaction proceeded well 

without any additives and no waste produced, affording linear 

products with high regioselectivities (> 20:1). Enantioselective 

allylic alkylation has also been realized to provide the desired 

products in good yields and 35% ee. 

The 3,3-disubstituted oxindoles are ubiquitous in alkaloid 

natural products and pharmaceutical compounds.
1 

Many of 

these compounds, such asmollenine,
2 

physostigmine,
3 

and 

flustramine B,
4 

contain an allyl chain at the C3 position of 

oxindole skeletons. This structural motif could be constructed 

in an effective fashion utilizing Trost allylic alkylation 

methodology (Scheme 1, a).
5 

Traditionally, such kind of 

transformation took place employing activated allylic alcohol 

derivatives as precursor of π-allyl transition metal 

intermediate T that inevitably generates stoichiometric 

amount of waste.
6 

And in most cases the addition of a large 

amount of base for the formation of the nucleophilic enolates 

is necessary. From the standpoint of green chemistry, more 

atom-/step-economic and sustainable approach towards these 

synthetic purposes is still increasingly in demand.
7
 In our 

previous work,
8
 through the direct use of allylic alcohol instead 

of its derivatives in the allylation of oxindoles under Pd 

catalysis with 5 mol% PhCO2H as co-catalyst, the degree of 

atom economy was enormously improved due to only water is 

formed as by-product (Scheme 1, b).
8a 

On the basis of these 

achievements, we wondered whether vinyl cyclopropanes  
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Scheme 1 Construction of 3,3-disubstituted oxindoles via palladium-catalyzed allylic 

alkylation. 

(VCPs)
9
 could be used as simple reactant for the synthesis of 

biological important oxindoles bearing an all-carbon 

quaternary center at the C3 position via palladium-catalyzed 

allylic alkylation pathway.  

 VCPs recently emerged as a family of useful organic 

synthons, which can be transformed easily into allyl metal 

complex T through β-carbon elimination (C-C bond activation) 

in the presence of low-valent transition metals. However, most 

investigations into the reactivity of these allyl metal complexes 

have centered on the [3+2] cycloaddition
10

 with olefins or 

other dipolarphiles, while nuleophilic addition to afford linear 

or branched ring-opened products is far less established. In 

2009, Fürstner group reported an example of the addition of 

vinyl cyclopropanes with Grignard reagents by iron catalysis, 

affording the linear products with moderate selectivity.
11

 Later, 

Plietker and co-workers showed that the reaction between 

vinyl cyclopropanes and soft carbon nucleophiles could occur 

with Bu4N[Fe(CO)3(NO)] as catalyst.
12

 Szabó et al,
13a-b

 Hyland et 

al,
14

 and Guo et al
15

 independently developed palladium 

catalyzed ring-opening process of vinyl cyclopropanes with 

boronates, boronic acids, and purines serving as another 
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reaction partners, respectively. Up to date, allylic alkylation 

between vinyl cyclopropanes and carbon nucleophiles by 

palladium catalysis has scarcely been reported.
16

 In this article, 

we presentthe preliminary results on the direct allylic 

alkylation reaction of oxindoles with vinyl cyclopropanes in 

place of allylic alcohol and their derivatives under mild 

reaction conditions. Importantly, the reaction proceeded well 

catalyzed by Pd
0
 without additives (base or acid), and no any 

waste produced, affording the linear products with superior 

selectivity over the branched products, which offers an highly 

atom-/step-economic route for the synthesis of 3,3-

disubstitued oxindoles (Scheme 1, c). 

Table 1 Optimization of the reaction conditions for the allylation of oxindole 1a 

with vinyl cyclopropane 2a
a
 

 
Entry Cat. [mol%] L [mol%] Solvent Yield

b
 L/B

c
 

1 Fe(acac)3 [5] PPh3 [10] Toluene - - 

2 Cu(OAc)2 [5] - Toluene - - 

3 Ni(AcAc)2 [5] - Toluene - - 

4 Sc(OTf)3 [5] PPh3[10] Toluene -  

5 Mn(OAc)2 [5] PPh3[10] Toluene - - 

6 Pd(PPh3)4[10] - Toluene 99% > 20:1 

7 Pd(PPh3)4[10] - THF 99% > 20:1 

8 Pd(PPh3)4[10] - Dioxane 91% > 20:1 

9 Pd(PPh3)4[10] - Hexane - - 

10 Pd(PPh3)4[10] - PhNO2 - - 

11 Pd(PPh3)4[10] - PhCl - - 

12 Pd(PPh3)4[5] - THF 99% > 20:1 

13 Pd(PPh3)4[2] - THF 97%
d
 > 20:1 

14 Pd(PPh3)4[1] - THF 80% > 20:1 

a 
Reaction conditions: oxindole 1a (0.1mmol), vinyl cyclopropane 2a (0.12mmol, 

1.2 equiv.), catalyst and ligand in 1 mL of solvent at 25 °C for 3 h under nitrogen 

atmosphere. 
b 

Yield was determined by NMR analysis. 
c 

The L/B ratio was 

determined by 
1
H NMR analysis. 

d 
Isolated yield. 

 Initially, the studies were carried out to examine the 

catalytic activities of many different metals to the model 

reaction of oxindole 1a with vinyl cyclopropane 2a in toluene 

at room temperature. The desired product was not detected 

under catalysis of 5 mol% of Fe(acac)3 with PPh3 as the ligand 

(Table 1, entry 1). Other metal salts including Cu(OAc)2, 

Ni(AcAc)2, Sc(OTf)3, Mn(OAc)2, and Pd(PPh3)4 were then 

screened, and excitingly a conversion of up to 99% with a 

linear/branched (L/B) ratio of > 20:1 for 3a was achieved when 

10 mol% Pd(PPh3)4 was utilized as catalyst (entries 2-6). 

Toluene and THF were proved to be equally superior reaction 

media than other solvents (entries 6-11). The amount of 

catalyst Pd(PPh3)4 can be reduced to 2 mol% while maintaining 

the best outcomes, 3a was isolated in 97% yield (entries 12-13). 

Further reducing of the catalyst loading to 1 mol% is 

detrimental to the reaction results (entry 14). 

 Having established the optimized reaction conditions, we 

investigated the generality of this alkylation by variation of 

oxindoles with vinyl cyclopropane 2a as another reaction 

partner and the results were showed in scheme 2. 

Scheme 2 Oxindole scope with vinyl cyclopropane 2a as the nucleophile
a
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a 
Reaction conditions: oxindole 1 (0.3 mmol), vinyl cyclopropane 2a (0.36 mmol, 

1.2 equiv.), Pd(PPh3)4 (2 mol%) in 2 mL of THF at 25 °C for 6 h under nitrogen 

atmosphere. 
b
 Isolated yields. 

c
 The L/B ratio was determined  by 

1
H NMR 

analysis. 

Oxindoles possessing a substituent such as methyl, methoxyl 

or halogen at the 5-position are applicable to this process, and 

the reaction proceeded smoothly to give the desired products 

3b-f in excellent yields and regioselectivities (>90% 

yields, >20:1 L/B ratios). Meanwhile, the introduction of 

fluorine element at the C7 position had no any obvious 

influence on the reaction outcomes and 3g was obtained with 

more than 20:1 L/B ratio as well. To our delight, the same 

outstanding results were achieved for a variety of 3-aryl 

substituted oxindoles (1h-1l), regardless of the electronic 

property of substituent in the aromatic ring at the C3 or C4 

position. Crucially, substrates can be extend to multi-

substituted oxindoles, allylated products 3m-3o can be 

isolated readily in high yields and excellent L/B ratios. We were 

pleasant to find that vinyl group did not hamper the reactivity 

of the oxindoles, 88% yield and perfect L/B ratio of >20:1 was 

acquired for product 3p from this transformation. Significantly, 

dialkylated 3q can be composed in 91% yield with more than 

20:1 L/B ratio when 3-cyclohexane oxindole 1q was utilized as 

reaction reactant. The allylic alkylation also worked well with 

the existence of other N-protecting groups, namely methyl (3r) 

and benzyl (3s). Unfortunately, N-protection-free oxindole 1t is 

inactive to the transformation. 

 Next, a series of esters were tested under the optimal 

reaction conditions and the results were outlined in scheme 3. 

The diethyl ester can be converted to dimethyl and 

ditrifluoethyl ester, and generated the corresponding products 

3u and 3v in high yields with more than 20:1 L/B ratio, 
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respectively. Gratifyingly, cyano was successfully employed in 

this reaction as well, affording exclusively 3w in almost  

Scheme 3 Screening of various ester in vinyl cyclopropane 2
a
 

 

a 
Reaction conditions: 3-substituted oxindole 1a (0.3 mmol), vinyl cyclopropane 2 

(0.36 mmol, 1.2 equiv.), Pd(PPh3)4 (2 mol%) in 2 mL of THF for 6 h under nitrogen 

atmosphere. 
b 

Isolated yields. 
c
 The L/B ratio was determined  by 

1
H NMR analysis. 

quantitative yield. Furthermore, a satisfied result in terms of 

both yield and regionselectivity was achieved for reactant 

containing sulfone and cyno functionalities which offer ample 

opportunities for further derivatization of the molecular 3x. 

 Finally, we poured much attention into an attempt for the 

asymmetric allylic alkylation of 1a and 2a by Pd2(dba)3 catalysis 

with chiral P-containing ligands (Scheme 4). The reaction didn’t 

occur with the use of typical phosphine ligands P-1 and P-2 

Scheme 4 Preliminary attempt for the asymmetric allyllation reaction
a
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a 

Reaction conditions: oxindole 1a (0.1 mmol), 2a (0.12 mmol), Pd2(dba)3 (2 mol%) 

and Ligand (8 mol%) in 1mL of THF for 6 h under nitrogen atmosphere. 
b 

Isolated 

yields. 
c
 The ee values was determined  by chiral HPLC analysis. 

(entries 1 and 2). Ferrocene-diphosphine ligand P-3 led to 3a in 

35% yield with 7% ee (entry 3). Remarkably, the unique SKP 

ligand P-4
17

 demonstrated highly efficient reactivity, resulting 

in full conversion and 25% ee, lowering the temperature to -

25°C improved enantioselectivity to 35% with the decrease of 

yield (entry 4). Finally, other typical monophosphine ligands P-

5 and P-6 were tested for this transformation and no 

acceptable result was acquired (entries 5 and 6). 

 In summary, we have demonstrated that vinyl 

cyclopropanes can be utilized as very effective reactant in the 

Pd
0
-catalyzed allylic alkylation for quickly assembling an all-

carbon quaternary allylic center at the 3-position of oxindole in 

good yields with excellent regioselectivites. Importantly, this 

special strategy provided a very high atom-economic protocol 

for the synthesis of 3,3-disubstituted oxindoles, that the 

addition of additives is no longer indispensable and no any 

waste produced. Moreover, this transformation tolerates a 

wide scope of functional groups in both substrates. The 

enantioselective allylic alkylation has also been realized to 

afford the desired product in high yield and 35% ee. Further 

efforts will be devoted to the improvement of the ee values of 

the enantioselective reactionfor the preparation of optical 

purity oxindoles in our laboratory. 
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