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Abstract

A Pd-catalyzed and single-step C-H arylation of dioxythiophene derivates bearing
unprotected reactive functional groups (-OH, -COOH, -N3) in a phosphine-free manner has
been developed. Various dioxythiopene-based oligoarenes with extended m-conjugation are
obtained with good yields (up to 90%). These oligoarenes display suitable optical properties
(absorption and emission maxima, quantum vyields) and contain reactive functional groups
suitable for further conjugations with bioactive molecules. This new methodology is step
economical (fewer synthetic steps), environmental friendly (no toxic metal-containing
side-poducts) and the oligoarenes synthesized are potentially applicable for bio-labeling,

bioimaging, and biosensing.

Keywords: C-H arylation, phosphine-free, m-conjugated materials, oligothiophene, organic

electronic material.

Page 2 of 22



Page 3 of 22

Organic & Biomolecular Chemistry

Introduction

Oligoarenes originated from thiophene moieties with extended m-conjugation attract
a lot of research interests due to their exceptional electrical and optical properties. They
have been used in various organic electronic and optoelectronic applications, including
light-emitting diodes, field-effect transistors’ and photovoltaic cells.> On top of these
established applications in organic electronics, thiophene-based poly-/oligoarenes exhibit
potential applications in biological/biomedical research as molecular probes because they
can provide optical or electrical signals.* For these areas, it is preferred that the probes
contain reactive functional groups, e.g. hydroxyl, carboxylic acid, or azide, because such
groups can be linked to bioactive building blocks by simple chemical transformations,
including esterification, amidation and copper-catalyzed azide-alkyne cycloaddition.” As a
result, specific or enhanced bio-labeling/-imaging will be achieved.® Therefore, simple, direct
and efficient synthetic approaches to extend thiophene conjugation with arenes bearing
reactive functional groups is of highly significance.

Traditional approaches for thiophene-containing oligoarene synthesis often employ
expensive, reactive and environment unfriendly thienyl organometallic reagents.” Moreover,
these reagents are often synthesized from protonated thiophene precursors. Therefore, the
synthetic routes utilized are neither atom-economical nor environmentally benign although
these approaches were efficient to construct various oligoarenes at early stage to
understand the potential of these materials. Considering the pit-falls, synthesis of thiophene
containing oligoarenes through direct C-H arylations has become a viable and convenient
alternative.® To date, direct C-H arylations catalyzed by Pd, Ir and Rh complexes have been
well reported.’ In addition, there are often tedious protection and deprotection steps in

order to synthesize thiophene-contaning oligoarenes bearing reactive functional groups.
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Although direct arylations of oligothiophenes bearing unprotected -OH or -NH, groups have
been disclosed, these reactions usually proceed with an excess amount of starting materials
at a high temperature (120-160 °C) for a long reaction time (16-20 h).'® Therefore, there is an
urgent need to discover more efficient and milder conditions to extend the m-conjugation of

thiophene moieties with unprotected functional groups.
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Results and discussion

We  reported previously a  Pd-catalyzed direct arylation of 3,
4-ethylenedioxythiophene (EDOT), which avoided the tedious preparation of the required
organometallic coupling partners and provided an efficient route to a variety of EDOT-based
functional m-conjugated molecules.'* Considering all the plausible applications of
thiophene-based oligoarenes for bio-related research, we report herein significant advances
on a Pd-catalyzed and one-step synthetic approach for the preparation of extended
T-conjugated oligoarenes containing dioxythiophenes with unprotected functional groups as
illustrated in Scheme 1. In order to expand the substrate scope and overcome the limitations
of the functional group tolerance, we anticipate that the dioxythiophene derivatives 1-4
would undergo the Pd-catalyzed direct C-H bond arylations with aryl halides in the presence
of unprotected hydroxyl, carboxylic acids, and azides to vyield dioxythiophene-based
oligoarenes 5. Furthermore, this new approach provides another advantageous feature with
no environmental unfriendly metal-containing by-products.

We first examined the direct arylation of hydroxymethyl-functionalized EDOT 1
because hydroxyl group are less reactive comparing to other functional groups.
Oligothiophenes displayed promising performance for organic thin film transistors so we
would like to first target on the synthesis of those molecules bearing functional groups as
shown in Table 1. Similar to the optimized reaction condition reported previously, ** 1 was
treated with 2-bromothiophene in the presence of Pd(OAc), (5 mol%), P(m-tolyl)s (10 mol%),
and Cs,CO3 (2.4 equiv.) in toluene at 110 °C. Unfortunately, only 5% of the desired product 5a
was isolated after the reaction was carried out for 24 hours. We continued to test other
reaction conditions. Schipper and Fagnou reported the synthesis of thiophene-based organic

optoelectronic molecules by using the combination of PCysHBF,; ligand, pivalic acid and
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K,CO3.22 However, we did not obtain any product when carrying out reaction under this
condition. After several unsuccessful attempts, we observed that a greatly enhanced isolated

yield was obtained using Pd(OAc), catalyst under a phosphine-free condition.'

Using
potassium acetate as base and tetrabutylammonium bromide (nBusNBr) as a phase-transfer
agent, several earlier reports demonstrated efficient C-H arylation on thiophenes bearing
electron-donating groups to form corresponding oligothiophenes or polythiophenes.'> When
we performed C-H arylation using this condition in DMF, the isolated yield of 5a reached 77%
after heating at 90 °C for only 1.5-2 h. These preliminary results encouraged us to further
investigate the reaction scope using various kinds of aryl bromides which are promising
building blocks for organic electronic or optoelectronic materials.

With the optimized reaction condition at hand, we commenced our investigation
from EDOT derivate 1 as summarized in Table 2. Anisole derivative 5b could be readily
prepared in 75% yield by using the phosphine-free reaction condition shown in Table 1.
Likewise, treating 1 with the ethyl 4-bromobenzoate afforded the desired product 5c in good
yield (85%). Oligoarene 5d bearing triphenylamines, which is of particular interest as hole
injection/transport layer in organic electronic devices™, was efficiently synthesized and
isolated in 83% yield. A potential candidate 5e for the n-type organic field-effect transistors
(OFET)14 was produced in 82% yield under similar reaction condition. In addition, the easily
obtained diarylated adducts 5f-g bearing alkyl end groups (80% and 46%) could exhibit
interesting optoelectronic properties™ or be applied as liquid crystals*® as well as organic
crystal transistors.'” A sensitive methyl ketone functionality is also compatible with the mild
C-H arylation conditions and the expected diketone 5h was isolated in good yield (82%). We

have also found a straightforward synthesis of the fluorene- and spirobifluorene-capped

EDOT derivatives 5i-j (77% and 90%) which could be used as efficient emitters for organic
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light-emtting diodes."®

Opposite to asymmetric oligoarenes from EDOT 1, oligoarenes from
hydroxyl-functionalized 3,4-propylenedioxythiophene (ProDOT) 2 exhibited plane symmetry
and different optical and electrical properties might present. As shown in Table 2, different
bromoarenes reacted efficiently with 2 in the presence of Pd(OAc), under identical reaction
conditions to yield the corresponding ProDOT-based m-conjugated molecules (5k-5m) in
moderate to good isolated vyields (48-79%). It should be noted that good vyields were
obtained regardless of the electron-donating or electron-withdrawing substituents on
bromoarenes.

Optical properties of these new reactive dioxythiophene-based oligoarenes 5b-5m
were also examined and the results were summarized under each molecule. As the result of
extended m-conjugation after diarylation, the absorption and emission maxima of the
compounds fell in the range of 340 ~ 480 nm and 389 ~ 475 nm, respectively. The
Strokes-shift of these products fell in the range of 47 ~ 97 nm. The smallest Strokes-shift was
observed for compound 5e (47 nm) and the biggest Strokes-shift was observed for
compounds 51 and 5m (74 nm). When the coupled arenes contained only alkyl or no
substituents, the products from diarylation (5f, 5i and 5j) displayed higher quantum
efficiency (® = 0.26~0.34). In contrast, both electron-donating and electron-withdrawing
groups (5b, 5¢, 5d, 5e and 5h) lead to reduced quantum efficiency (® = 0.03~0.15). It is also
observed that diarylation adducts (5k-m) from hydroxyl-ProDOT 2 displayed absorption and
emission maxima at shorter wavelength compared to similar adducts from EDOT 1. For
example, the absorption maximum of 5k (361 nm) showed a 14 nm blue-shift to the
absorption maximum of 5¢ (375 nm) with almost identical quantum vyields. Similar

phenomenon was observed with 5m and 5f. One plausible explanation was that the P,
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orbitals of oxygen in EDOTs are more perpendicular with the heterocycle ring plane than in
ProDOTs. This results in a less destabilization of the electrons in ProDOT."

The initial success on hydroxyl functionalized dioxythiophenes prompted us to
investigate those containing more reactive and suitable functional groups for bioconjugation.
We first evaluated the reactivity of the carboxylic acid group bearing EDOT derivate 3. To our
delight, successful C-H arylations were observed and the carboxylic acid group could be well
tolerated. As a result, a variety of EDOT-containing molecules bearing a carboxylic acid group
5n-t were readily synthesized in yields of 53-78% (Table 3) by means of the direct C-H
coupling of the EDQOT derivative 3 with various kinds of aryl bromides. The single crystal X-ray
analysis of compound 50 (shown in Figure 1) demonstrated the molecule was not sterically
congested. The torsional angle between EDOT and phenyl ring was measured to be 16.7°.
And the torsional angle between two phenyl rings was measured to be 1.5°. The planar
structure would facilitate m-conjugation along the backbone. The single crystal X-ray analysis
of compound 5f and 5h were also shown in the supporting information.

In most cases, the introduction of carboxylic acid did not change the optical
properties (absorption and emission maxima, quantum yields) of the adduct 5. Only in the
synthesis of ethyl benzoate adduct (5t), we observed significant shifts on the absorption and
emission maxima to longer wavelength comparing to the hydroxyl-functionalized EDOT and
ProDOT adducts (5¢ and 5k). An enhanced quantum yield was also measured.

The Pd-catalyzed direct C-H bond arylation is also possible in the case of
azide-substituted EDOT derivative 4 (Table 3). Regarding to an azide function group in
cross-coupling reactions, our phosphine-free C-H arylation would be a better synthetic
alternative than the traditional cross-coupling approach involving phosphine ligands because

they may trigger the decomposition/reduction of the azide moiety.® In the presence of

Page 8 of 22



Page 9 of 22

Organic & Biomolecular Chemistry

Pd(OAc),, KOAc, and BusNBr in DMF, reaction of 4 with the bromoarenes afforded the
desired products 5u-z after 2 h at 90 °C with moderate yields (20-68%, Table 3). These
compounds 5u-z carrying the azide moiety®" would be able to undergo the copper-catalyzed
azide-alkyne cycloadditions with alkynes to orthogonally conjugate biologically important
molecules.? It was also noted that azide groups did not change the optical performances of
the molecules.

The calculations of frontier orbital of some coupling products were conducted using
density functional calculations (B3LYP/6-31G* level) and shown in Figure 2. Generally, both
HOMO and LUMO orbitals of the compounds (5a, 5¢, 5d, 5e, 5j, 5k, 5r and 5s) were observed
to localize all through the molecular backbones. The results witnessed good m-conjugation of
the molecules. Due to the robust electron donating capability of triphenylamine moiety in
compound 5d, the LUMO was observed to less localize in the triphenylamine group
comparing to the HOMO. The partially charge separation suggested compound 5d could be
potentially applied in as hole injection/transport layer in organic electronic devices.
Additionally, the UV-vis absorption maxima of the coupling products (5b to 5z) were also
calculated. As shown in Table S1, the calculation results showed a general red-shift in UV-vis
maxima, which is widely seen in the density functional calculations. Furthermore, the
detailed DFT calculations of energies and Cartesian coordinates of the optimized structures

for all the compounds are shown in supporting information.
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Conclusions

In conclusion, we have demonstrated a general and single-step approach for the
facile preparation of dioxythiophene-containing molecules with extended m-conjugation
bearing reactive functional groups (-OH, -COOH, -N3). Through Pd-catalyzed direct C-H
arylations, dioxythiophene derivatives yield relative bis-arylation adducts without the
protection of reactive functional groups. The optimized reaction condition is phosphine-free
and all reactions proceed under a milder temperature (90 °C) and a much shorter reaction
time (1.5-2 h) without the production of environmental unfriendly metal-halide by-products.
This approach allows us to synthesize m-conjugated molecules with functional groups
suitable for conjugation with biomolecules. Several products displayed favorable
absorption/emission at the visible range with reasonable quantum yields. Therefore, they are

potentially applicable for biolabeling, bioimaging, and biosensing.

10
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Scheme 1. Traditional and step-economical synthetic routes of the EDOT-containing

functional building blocks.

One-step Direct C-H Arylation
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Table 1. Different reaction conditions for Pd-catalyzed direct C-H arylation of EDOT-OH 1 with

2-bromothiophene.

/_(—OH /_(OH

O O 0 O

Pd-Catalyzed
> .8 S

H‘@*H + Br-@ Direct C-H Arylation \ /S\ \ /
1, 1.0 equiv. 2.0 equiv. 5a
Ph(?sph|ne Additive Temp. Time Yields

Ligand
P(m-Tol), Cs,CO, 110°C 24 hr trace
PCy;HBF, PivOH, K,CO, 100 °C 24 hr ND

None KOAc, nBu,NBr 90 °C 1.5 hr 77%
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Table 2: Pd-catalyzed direct arylation of the -OH containing dioxythiophenes 1-2 with aryl

. a
bromides.
(+=0H (A OH
“Nn /7 Nn
h Pd(OAc), o 90
R\ +  Ar—Br M
H s H KOAc, nBu,NBr, DMF Ar s Ar
90°C, 2 h
lor2 5b-5m

Products (isolate yield, absorption and emission maximum, guantum yield)

OH
OH OH
e Q X~ O
8 O O
H,CO O s O OCH

3 3 C,Hs0 OC,Hs

5b, 75% 5¢, 85% 5d, 83%
340 nm (abs), 393, 413 nm (em) 375 nm (abs), 416, 436 nm (em) 398 nm (abs), 453 nm (em)

® =0.035 ©=0.119 D =0.148

/_(O—OH /_{_OH /_<—OH

0 o o
1\ I\
CeHys \S/ 5 \S CgHys
FiC i e - y
Se, 82% 3 5f, 80% 37 5g, 46%
351 nm (abs), 391, 405 nm (em) 370 nm (abs), 426, 448 nm (em) 383 nm (abs), 429, 452nm (em)
©=0.073 @®=0.333 ®=0.039
/_(OH /—(_OH
o] o} o] 0
o\ 7\
Oaa VVENNGOaa sty
5h, 82% 5i, 77% 5j, 90%
386 nm (abs), 435, 457 nm (em) 385 nm (abs), 430, 455 nm (em) 390 nm (abs), 436, 461 nm (em)
=0.116 =0. =0.262
OH OH OH
CHs0 OCHs C H15C7 15 G5 H763H7
5k, 79% 51, 48% 5m, 68%
361 nm (abs), 417, 429 nm (em) 357 nm (abs), 421, 440 nm (em) 357 nm (abs), 421, 440 nm (em)
d=0.116 ®=0.312 d=0.313

? Reaction conditions: -OH functionalized dioxythiophene derivatives 1-2 (1.0 equiv.), aryl
bromides (2.2 equiv.), Pd(OAc); (0.1 equiv.), KOAc (2.4 equiv.), nBusNBr (1.0 equiv.), DMF (3

mL mmol™ of EDOT derivatives), 90 °C, 1.5-2 h.
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Table 3: Pd-catalyzed direct arylation of the functionalized EDOT derivatives 3-4 with aryl
bromides.?

/_<—FG /_<—FG

o 0

/Zj\ Pd(OAc),
A\ +  Ar—Br M
H g H KOAc, nBu,NBr, DMF Ar s Ar
90°C,2h
3ord 5n-5z
Products (isolate yield, absorption and emission maximum, quantum yield)
/_COOH O,—coon
ﬂ O / \ O
AT T O D )
5n, 70% 50, 72% CHy
352 nm (abs ), 391, 410 nm (em) 370 nm (abs), 425, 449 nm (em)
=0.067 @ =0.305
/—COOH
/—COOH
@ Q °
3CCH3
5p, 75% 5q, 53% 5r, 66%
398 nm (abs), 453 nm (em) 346 nm (abs), 389, 408 nm (em) 378 nm (abs), 475 nm (em)
®=0.126 @ =0.056 @®=0.135
,—COOH
~
o] o]
7\
VWaata oW
C,H0 OC,Hs
5s, 77% 5t, 78%
391 nm (abs), 436, 462nm (em) 385 nm (abs), 429, 455 nm (em)
®=0.268 ®=0.288

/_(_Ns N3 Na
o] 0

C,H0 OC,Hs

5u, 61% 5v, 23% 5w, 63%
373 nm (abs), 417, 438 nm (em) 386 nm (abs), 442 nm em) 350 nm (abs), 389, 408 nm (em)
@ =0.132 @ =0.112 @ =0.066

/—(_N3 N3

5x, 68% 5y, 31% 5z, 20%
408 nm (abs), 465 nm (em) 383 nm (abs), 431 453 nm (em) 384 nm (abs), 430, 456 nm (em)
@ =0.135 @ =0.033 @ =0.266

® Reaction conditions: EDOT derivatives with carboxylic acid group 3 and azide group 4 (1.0
equiv.), aryl bromides (2.2 equiv.), Pd(OAc), (0.1 equiv.), KOAc (2.4 equiv.), nBusNBr (1.0
equiv.), DMF (3 mL mmol™ of EDOT derivatives), 90 °C, 1.5-2 h.
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Figure 1: Single crystal structure of compound 50.
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5a 5¢ 5d S5e

oo ol e, WM W,

Figure 2: Calculated frontier orbitals of the selected coupling products.
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One-step Direct C-H Arylation
(i FG i FG
J Ar-Br, [Pd] FaA
M\ "phosphine-free", "protecting group free" n
H S H Ar 5 Ar
/—co H
~ > t/l\\ /—(_ /—(_ B

o] o] 0] [¢]

s O s G 5 ¢

A single-step, phosphine-free C-H arylation of dioxythiophenes bearing unprotected reactive

functional groups is developed to afford dioxythiopene-based oligoarenes with good yields.
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