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Abstract2

Two-dimensional (2D) conjugated polymers exhibit electronic structures analogous3

to that of graphene with the peculiarity of π − π∗ bands which are fully symmetric4

and isolated. In the present letter, the suitability of these materials for electronic5

applications is analyzed and discussed. In particular, realistic 2D conjugated polymer6

networks with structural disorder such as monomer vacancies are investigated. Indeed,7

during bottom-up synthesis, these irregularities are unavoidable and their impact on the8

electronic properties are investigated using both ab initio and tight-binding techniques.9

The tight-binding model is combined with a real space Kubo-Greenwood approach for10

the prediction of transport characteristics for monomer vacancy concentrations ranging11

from 0.5% to 2%. As expected, long mean free paths and high mobilities are predicted12

for low defect densities. At low temperatures and for high defect densities, strong13
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localization phenomena originating from quantum interferences of multiple scattering14

paths are observed in the close vicinity of the Dirac energy region while the absence15

of localization effects is predicted away from this region suggesting a sharp mobility16

transition. These predictions show that 2D conjugated polymer networks are good17

candidates to pave the way to the ultimate scaling and performances of future molecular18

nanoelectronic devices.19

Keywords20

2DCP, DFT, Tight-Binding, Transport, Localization21

Introduction22

The electronic structure of graphene exhibits no band gap at the Fermi level but rather a23

linear dispersion at the K-points of the Brillouin zone. The latter means that low energy24

carriers behave like free relativistic massless particles as described by the Dirac equation.1,225

Such a particular electronic structure is a direct consequence of the underlying hexagonal26

lattice composed of two symmetrically equivalent triangular sub-lattices.3 The outstanding27

properties of graphene resulting from its exotic Dirac carriers have sprung a large interest,28

and important efforts have been focused on tuning these properties. Among others, a popu-29

lar approach to modify the electronic structure of graphene Dirac carriers, and in particular30

to open a band gap, has been through confinement in the so-called graphene nanoribbons31

(GNRs). In this direction, a breakthrough has come from the bottom-up synthesis of GNRs32

from the self-assembly of organic precursors.4 Such an approach yields GNRs with well de-33

fined edges and well defined width, thus allowing an a priori knowledge of their properties.34

Similarly, it was recently shown that a careful choice of monomers could result in the bottom-35

up synthesis of two-dimensional conjugated polymer (2DCP) networks with Dirac cones at36

or near the Fermi level.5 These 2DCP networks can be described by the three fold connection37
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of a wide range of short one dimensional (1D) conjugated polymer chains. With the struc-38

tural similarities between covalent organic frameworks (COFs)6,7 and 2DCPs, the advanced39

bottom-up chemistry strategies developed for COFs have been adapted for the synthesis of40

2DCPs, thus leading to the first 2DCP synthesis using tris(4-bromophenyl)amine molecules41

as monomer precursors.8,9 Given the set of potential 2D architectures, chemical constituents,42

and functional modifications, 2DCP networks represent an interesting playground to tune43

the properties of Dirac carriers. In addition, they should be highly flexible and adjustable44

to a wide range of fundamental and applied problems.10,1145

46

In this paper, the electronic and transport properties of 2DCPs are investigated using47

first-principles techniques and an accurate tight-binding model combined with an efficient48

real space Kubo-Greenwood transport formalism. The poly(p-phenylene) (PPP)-based 2D-49

C-(PP1)3 was chosen as a representative member of 2DCPs. It displays an electronic struc-50

ture similar to graphene with massless Dirac-like fermions but on an energy scale almost ten51

times smaller.5 Electronic transport in defective graphene has already been experimentally52

measured and theoretically investigated12–15 revealing the importance of structural disorder53

on the transport performances. Because synthesizing 2DCPs with a bottom-up approach54

will inevitably introduce structural defects, it is important to study how such defects will55

affect transport behavior in 2DCPs. In particular, monomer vacancies randomly distributed56

in the honeycomb lattice of a mesoscopic size 2DCP are considered in the present study. The57

real-space Kubo-Greenwood transport formalism allows to explore all transport regimes, in-58

cluding quantum localization effects beyond the semi-classical approximation in realistic size59

systems. Rather long mean free paths and high mobilities are predicted for low defect den-60

sities, indicating the good potential of 2DCP-based nanoelectronic devices. Interestingly, at61

high defect densities, strong localization phenomena originating from quantum interferences62

of multiple scattering paths are observed in the close vicinity of the Dirac energy region while63

the absence of localization effects is predicted away from this region with a sharp transition64
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between both regions. This suggests an observable mobility edge at low temperature mea-65

surement, which in commonly believed to occur only in 3D systems.16 This theoretical work66

conveys insights onto these new 2D materials and motivates for their experimental synthesis67

and transport measurements.68

Results and discussion69

Tight binding parameterization70

First-principles calculations were conducted to obtain the optimized geometry and electronic71

spectrum of the PPP-based 2D-C-(PP1)3. The electronic structure calculations were first72

carried out using the self-consistent density functional theory (DFT) method implemented73

in the SIESTA package17,18 (see method section for details).74

75

Figure 1A (top panel) illustrates the atomic structure of 2D-C-(PP1)3. As mentioned76

already, such 2D networks can be obtained by the self-assembly of monomer precursors. The77

monomer precursor is composed of the connector atom plus three short polymer chains. In78

the present case, the chain is reduced to one benzene ring for simplicity and the connector79

is a carbon atom (i.e. C-(PP1)3). The main difference between the studied 2DCP and the80

experimentally available analogue (2D-N-(PP1)3)8,9 is the nature of the connector atoms,81

which in this case is a nitrogen atom. Carbon connectors have been chosen in this study82

as they have the peculiarity to result in a Dirac cone directly at the Fermi energy while83

the nitrogen connectors, first used in synthesis experiments, tend to shift the Fermi level84

to higher energies. It is anticipated that 2DCPs with various connectors, including carbon85

connectors, will be synthesized in a near future.86

87

Despite the atomic accuracy of the bottom-up synthesis strategy, faults will ineluctably88

occur in the self-assembly resulting in structural defects. In this study, monomer vacancies89

4
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Figure 1: Top: Inside the red cell, 4×4 super cells for a pristine 2DCP in (A), containing four
monovacancies (12.5%) in (B) and containing two monovacancies (6.25%) with an equivalent
number on both sub-lattices in (C). Bottom: ab initio (dashed blue line) and tight-binding
(red thick line) band structures and densities of states (DOS) of the corresponding atomic
structures (A), (B), and (C). The Fermi energy is aligned with E=0 eV.

are considered as prototypical structural defects. To get a first insight on the impact of90

monomer vacancies on the low-energy electronic structure, small 2D-C-(PP1)3 super cells91

containing few defects were first investigated (see Figs. 1B-C).92

93

The band structures and densities of states (DOS) corresponding to the pristine and94

defective 2D-C-(PP1)3 are reported in Figure 1 (bottom panels). To estimate the percentage95

of defects, the number of vacancies per cell is calculated. Each monomer vacancy corre-96

sponds to a monomer precursor missing. For example, in a pristine 2×2 cell, there are eight97

monomers, if one single-monomer vacancy is created in this cell, the concentration of defects98

nv becomes 12.5%. The equilibrium Fermi level (E0
F ) is taken as energy reference. Figure 199

compares the band structures computed from first-principles (dotted blue lines) with results100

obtained from an adjusted tight-binding (TB) model (red lines). In this orthogonal third101

nearest neighbors π − π* TB model, the hydrogen atoms are not explicitly accounted for.102

5
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Instead, the hydrogenated carbon on-site energies are modified to integrate out the hydrogen103

neighbors (as routinely performed for instance in TB models of GNRs). The parameters of104

the TB model, i.e. the on-site terms (εpz) and hopping terms (γ(d)), are summarized in105

Table 1. Further details are given in the methodology section. As shown in Figure 1, a very106

good agreement is achieved for the low-energy spectrum of both the pristine and the defec-107

tive 2D-C-(PP1)3 especially in the region close to the Fermi energy. The dispersion relations108

of the high-energy conduction bands is similarly accurate but the TB approximations come109

with a shift of these bands to higher energies.110

111

At low energies, the pristine 2DCP presents a band structure and DOS very similar to112

the one of graphene but on a different energy scale (see Fig. 1A). An almost symmetric113

π-π∗ bands is reported with a linear dispersion in the vicinity of the Fermi energy, forming114

a Dirac cone. These π-π∗ bands encompass an energy window of approximately 1.5 eV,115

that is roughly ten times smaller than in the graphene spectrum. The low energy bands are116

isolated from the rest of the spectrum (and in particular from the σ bands) by energy gaps117

of ∼ 1.5-2.0 eV. Plotting the wave-functions for the highest occupied band (see Fig. 1 in118

supplementary materials) reveals that the states are dispersed over the whole 2DCP skeleton119

which is a typical signature of 2D conjugated polymers. However, these ab initio calculations120

are carried at 0K, and at room temperature, benzene rings will have the freedom to rotate.121

In order to understand the effect of such rotation, dihedral angles have been tuned manually122

for a given branch or a single benzene ring. Figure 2 in supplementary materials illustrates123

the four possible situations. For each structure, the electronic band structure was calculated124

and displayed using a specific path in the Brillouin zone. These results clearly demonstrate125

that the electronic properties for the π−π∗ bands are not strongly affected by the rotation of126

the benzene rings. The only noticeable difference concerns the shift of the Dirac cone which127

is observed to be slightly delocalized from the high symmetry K-point of the Brillouin zone.128

A similar behavior has previously been observed in graphene in the presence of defects14129
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and is due to ground state symmetry breaking. These ab initio calculations demonstrate130

the robustness of the electronic properties and specially the conservation of the Dirac cone131

at higher temperature, and further highlight the possible use of these quasi-2D conjugated132

polymer network for different nanoelectronic applications.133

The band structure of a 2×2 super cell containing a single monomer vacancy (i.e. a con-134

centration of nv=12.5%) is displayed in Figure 1B. Flat band associated with defect-induced135

localized states are reported around the Fermi level. Narrow band gaps are observed on each136

sides of the zero energy mode and the band structure conserves an overall mirror symmetry137

between valence and conduction bands. From the emergence of a zero energy mode, it is138

straightforward to anticipate that electronic transport will be mainly affected in an energy139

window around the Fermi level. However, one has to stress out that the peculiar band struc-140

ture reported in Figure 1B results directly from the periodic boundary conditions imposed141

on the system. In this configuration, vacancies form a regular super-lattice affecting exclu-142

sively one of the two triangular monomer sub-lattices of the pristine 2DCP. It has already143

been demonstrated for graphene that having local disorder either on only one or on both144

sub-lattices changes qualitatively the low energy spectrum.12,19,20 To understand if a similar145

behavior is observed in 2DCP, larger super-cells have been considered where the monomer146

vacancies impact both sub-lattices. Such a case, a 4× 4 super-cell containing one monomer147

vacancy on each sub-lattice (nv=6.25%) is illustrated in Figure 1C. The emergence of defect148

induced flat bands in the low energy spectrum appears clearly in the DOS and the mirror149

symmetry between valence and conduction bands is maintained. However, one notes the150

absence of a central peak and note instead the presence of an unique small gap. Further con-151

sideration of different vacancies arrangement but still preserving the balance in sub-lattice152

disorder (see Fig. 3 in supplementary materials) emphasizes the dependence of the low en-153

ergy spectrum upon the detailed arrangement of defects within the periodic cell. Conclusions154

can be drawn from these preliminary calculations of periodic arrangements of vacancies: (i)155

there is no zero mode observed in the case of compensated sub-lattices as compared to the156

7

Page 7 of 25 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



fully uncompensated case reported in Figure 1B, (ii) the width of the so-induced energy157

gaps depends on the detailed atomic configuration. An enlightening discussion of the emer-158

gence/absence of zero energy modes in honeycomb lattices can be found in Ref. 12.159

160

Transport properties161

Larger disordered super-cells are required to capture the physics of defective mesoscopic162

2DCP samples. Figure 2 depicts the atomic structure and DOS of disordered 8×8 and163

16×16 super-cell containing nv=6.25% of defects with compensated sub-lattices. While the164

4×4 super cell displayed a noisy DOS whose positions of the peaks depend on the actual165

atomic structure (Fig.1C and Fig.3 in supplementary materials), these features are progres-166

sively averaged out as the system becomes larger as observed already for the 8×8 super cell167

DOS. Eventually, the 16×16 super cell exhibits a small hump in the DOS around the Fermi168

level associated with the overlap of defect-induced localized states whose resonant energy169

is very close to the Fermi level. Overall, 2DCPs show a similar behavior as graphene upon170

inclusion of vacancies.12,15 When vacancies are located on one sub-lattice, the corresponding171

symmetry is broken, and a gap is observed on both side of the Fermi level. Zero energy172

modes are also observed through the sharps peaks at the Fermi energy. When vacancies are173

randomly distributed, it follows the theorem described in Ref. 21, and the gap on each side174

of the Fermi level disappear and a broader central peak is observed.175

176

Transport properties of this defective 2DCP are then investigated, and it is important to177

consider the charge and discharge of the system as it would be associated under the appli-178

cation of a gate voltage. The transport approach is based on linear response approximation179

within a real-space Kubo-Greenwood methodology, where the filling in electrons or holes is180

accounted for as a rigid shift of the Fermi energy (EF ) with respect to the equilibrium Fermi181

energy position (E0
F ). As reported in Figure 3, the rigid shift model provides a very good182

8
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Figure 2: (A) Atomic structures of defective 2DCP: 8×8 (A) and A 16×16 (B) super-cell
containing 6.25% of vacancies (with the same number of vacancies on each sub-lattice), (C)
The respective DOS for A (red) and B (blue) (Inset is a zoom in at the Fermi level).
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approximation for the charge/discharge in such conjugated polymer crystals. Figure 3 shows183

the impact on the electronic band structure of adding and removing electrons from pris-184

tine 2D-C-(PP1)3. Here, a background charge density has been added to the first-principles185

calculations in order to preserve overall charge neutrality as is commonly done to simulate186

doped systems. Bands near the equilibrium Fermi energy (equivalently around the Dirac187

point) are not significantly modified by variations of the charge density up to two electrons188

per unit-cell which corresponds to the depletion/filling of an entire electronic band. The189

integrity of the system is maintained and the 2D-C(PP1)3 geometry is only slightly modi-190

fied. The calculations predict change in dihedral angle of a maximum of 1.42◦ of the PPP191

branches. This stability is generally observed in carbon allotropes where the σ bonds ensure192

the mechanical stability.22 Such large variation of the charge density, ∆n = 7.57 1013 cm−2,193

would correspond to a gate voltage (∆Vg) of 12.13 V for an associated gate capacitance (Cg)194

of 1 µF cm−2 (that is approximately the gate capacitance of a 15 nm thick HfO2 film23). One195

can therefore imagine to probe entirely the π bands in a transport experiment provided a196

good dielectric is used for the oxide gate. An alternative to the physical electrostatic gating197

with oxide substrate is the electrochemical gating. It consists in putting the system in a198

charged ionic solution which for 2DCPs is a suitable approach owing to their porous nature.199

200

201

The transport properties of large 2D-C-(PP1)3 sheets (400×400 nm2, containing ∼2.4202

millions of atoms ignoring the hydrogens atoms) with a concentration of vacancy defects203

(nv) randomly distributed in the honeycomb lattice ranging from 0.5% to 2.0% are inves-204

tigated using the just-developed TB model. Since the position of monomer vacancies is205

random, the sub-lattice disorder is almost compensated (∼50% of defects in each sub-lattice206

with a maximum deviation of 5%). The DOS of these large 2DCPs, displayed in Figure 4A,207

are calculated using the Haydock recursion technique24 using a set of eight random phase208

wavepackets and are averaged on two disorder configuration samples (note that an important209
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Figure 3: Electronic band structures using the simulate doping technique coded in SIESTA
for a 2D-C-(PP1)3 primitive unit cell. The Fermi energy is set to zero. The band structures of
positively, neutral, and negatively charged systems are plotted with green, red, and blue lines
respectively. To evidence the rigid-band approximation, the shifted neutral band structure
is also reported in dashed red lines in case of excess charge of -2 | e | and +2| e |.
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average over disorder configurations is already obtained within a single sample as the system210

is very large). As highlighted previously in Figure 2, when considering a random distribution211

of vacancy in a large enough 2DCP, the DOS is characterized by a small hump located at212

the Dirac point.213

214
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Figure 4: (A) Densities of states of 400×400 nm2 of a 2D-C-(PP1)3 in the pristine case and
with various concentrations of vacancy defects randomly distributed (0.5%,1.0%,2.0%). (B)
Carrier mean free paths (le) of the corresponding defective 2DCP monolayers. Black dotted
lines are fits obtained following the Fermi golden rule.

The time-dependent diffusivity curves D(E,t) computed within Kubo-Greenwood formal-215

ism are the signature of various transport regimes. In the semi-classical picture, the diffu-216

sivity increases and then saturates to a maximal value Dmax in the thermodynamic limit, i.e.217

after a large enough number of scattering events. However, in the quantum regime, construc-218

tive interferences between scattering paths can yield localization which causes a decrease in219

diffusivity. Eventually, for long enough propagation time, or equivalently for long enough220
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propagation length, the diffusivity decreases exponentially and carriers enter the strong lo-221

calization regime. Figure 6A and B shows the diffusivity of the defective 2DCPs with 0.5%222

and 2.0% monomer vacancies, respectively, as a function of propagation time and for an223

energy range encompassing the π and π∗ bands. It is obvious from this picture that the224

diffusivity is strongly reduced in absolute value with increasing density of vacancy denoting225

the global degradation of transport properties which are described in more details in the226

following. At first, we report on the elastic mean free path and the semi-classical carrier227

mobility, i.e. le and µsc, that are semi-classical quantities deduced from the maximum of228

diffusivity curves. Then, the impact of quantum interferences is assessed and localization229

phenomena are discussed later.230

The calculated elastic mean free path (le) is plotted in Figure 4B. The maximum of le231

is reached just after the van Hove singularity (E ∼ ±0.3 eV), and drops rapidly to val-232

ues close to zero at the Dirac point (E = 0 eV) and at the band extrema (E ∼ ±0.7233

eV). Even at defect concentrations as high as 2% the elastic mean free path is around 50234

nm, and it surpasses 200 nm for 0.5% vacancies. The results associated to the mean free235

path suggest a tendency to follow the Fermi golden rule and could therefore be evaluated236

for any concentration as l[nv ]
e =l[n

0
v ]

e
n0
v

nv
. A good fit for dependence in energy of l[1%]

e is given237

by l[1%]
e (E)= A0 |sin(A1E)| + A2E

2 + A3E
4 + A4E

6, with A0=404.27, A1=-2.17933, A2=-238

1706.07, A3=4000.87, A4 =-3972.53. This fit was used to determine l[0.5%]
e and l[2.0%]

e in Figure239

4B (black dotted lines) which confirms the straightforward relation between defect densities240

and transport properties.241

242

The charge carriers mobility (µ) can be evaluated as µ(EF , T )=(σ(EF , T ))/(e n(EF , T )),243

where e is the elementary charge, σ is the conductivity, and n(EF , T ) is the charge carrier244

density which is defined as245

n(EF , T ) =

[∫ ED

−∞
ρ(E)

(
1− fFD(E,EF , T )

)
dE

]
−
[∫ +∞

ED

ρ(E)fFD(E,EF , T )dE

]
(1)
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Figure 5: (A) Charge carrier mobilities (µsc) and (B) charge carrier densities (n) in the
defective 2DCP monolayers as a function of the Fermi energy (EF ).
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where fFD(E,EF , T ) is the Fermi-Dirac distribution function for a given Fermi energy EF246

and temperature T . ρ(E) is the DOS per unit of area, and ED=0 eV is the Dirac point247

energy. The semi-classical mobility (µsc) is evaluated using the semi-classical conductivity248

(σsc) (see method section).249

Figure 5 displays the semi-classical mobility and charge density at room temperature (T=300K).250

By definition µ is inversely proportional to n, and the value of the mobility diverges when n251

tends to zero. Away from this divergence, the semi-classical mobilities are found in the range252

[2-8] 103 cm2V−1s−1 for concentration nv ranging from 2.0 to 0.5% respectively. Such values253

of mobilities are high enough to envision electronic devices based on 2DCPs. However, they254

do not account for other sources of elastic scattering such as charged impurities trapped in255

the oxide substrate and neither inelastic scattering coming for instance from electron-phonon256

coupling at finite temperature, which are beyond the scope of the present paper. As for mean257

free path, µ[1%]
sc can be fitted and used to determine the mobility at any concentration fol-258

lowing Fermi golden rule (black dotted line in Fig.5A). The fit for the energy dependence of259

µ
[1%]
sc is given by µ[1%]

sc (E) = A0/E2 +A1 +A2E
2 +A3E

4 +A4E
6 +A5E

8, with A0=1.09806,260

A1=4595.83, A2=-52860.3, A3=262905, A4=-580563, A5=462335. The properties discussed261

above, i.e. le and µsc, are semi-classical quantities that do not account for quantum inter-262

ferences and carriers localization. From Figure 6A and B, it seems that time dependent263

diffusivity saturates at a maximal value indicating a semi-classical regime and the absence264

of quantum correction. However, when re-scaling the diffusivity to its maximal value and265

looking closer to the zero energy region (Fig.6C and D), it turns out that localization ef-266

fects emerge in the vicinity of the Dirac point. Although those effects are rather small for267

nv=0.5%, the impact of interferences is much clearer for nv=2.0%. For nv=2.0%, the energy268

window corresponding to localization is in the range of 50 meV and displays a sharp tran-269

sition between localized and semi-classical regimes indicating a rapidly varying localization270

length.271

272
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Figure 6: 3D plots of the diffusivity as a function of time and energy for 2D-C-(PP1)3 with
vacancy defect concentration of 0.5% (A) and 2.0% (B) respectively. (C) and (D) are the
normalized diffusivity of (A) and (B) at smaller energy range.
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Transport regimes273

In order to obtain a deeper understanding of this sharp transition between localized and274

semi-classical transport regimes, we calculated the inverse participation ratio (IPR) which275

measures the degree of localization of a wave function. For an ideally localized wave function,276

i.e. localized on a single orbital j, IPR is equal to 1. Inversely, the IPR of an ideally277

delocalized wave function equals to 1/Norb. Figure 7A shows the IPR for a pristine and278

a defective 2DCP 16×16 super cell. Interestingly, for a pristine 2DCP, the wave function279

is not fully delocalized (Fig. 7A). This is further highlighted in supplementary Figure 1B280

where the wave function of a pristine 2DCP is calculated for the K-point of the Brillouin281

zone at the Fermi energy. For a concentration of defects of 1.56%, the degree of localization282

increases as expected and is almost twice the IPR value of the pristine case at energies283

away from the Fermi level. For energies around the Fermi level, the IPR varies to show an284

increase in localization with its maximum at EF=0 eV. The effects of localization on charge285

carrier mobility is highlighted in Figure 7B. One observes that the semi-classical mobility286

µsc, see also Figure 5, strongly varies around the Dirac point as a function of the temperature287

(black dashed dotted and dashed lines). The quantum mobility (at T=0K and accounting288

for possible quantum interferences) increases as a function of the propagation length and289

saturates to µsc(T=0K) for energies outside the localization window. Around the Dirac290

point, localization effects are at stake and the quantum mobility vanishes for large enough291

propagation lengths. These two opposite behaviors create sharp variations of mobility, called292

mobility edges, around energies indicated by the arrows in Fig. 7B. Figure 7A-B corroborates293

the strong localization around the Fermi energy and the two different behaviors leading to294

the mobility edge in 2DCP. Such a mobility edge is signature of the separation between295

transport regimes based on extended and localized states and is a priori only expected in296

3D materials.16 However, it has been shown that the nature of disorder plays an important297

role in this commonly accepted prediction and that mobility edge can actually be induced298

in low-dimensional materials.25,26 This explains why such mobility edge signature is highly299
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sought in 1D and 2D systems. Similar semimetal-insulator transitions were also reported in300

graphene.27,28301
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Figure 7: (A) Inverse participation ratio (IPR) for an ideal delocalized wave function (dashed
line), for a pristine (black circle), and for a 1.56% defects (white circle) 2DCP; (B) the
mobilities in the semi-classical (µsc) and in the quantum (µ) regime for a 2DCP containing
nv=2.0% of randomly distributed vacancies.

Conclusions302

The electronic structures of 2DCPs share various similarities with graphene, notably the303

linear energy dispersion giving rise to massless Dirac fermions characteristics around the304
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Fermi energy. However, the major differences are the energy bandwidth and the complete305

isolation of the fully symmetric π − π∗ bands. This makes the 2D-C-(PP1)3 an interesting306

material to probe the transport properties of π-π∗ manifold. It is predicted that the bottom307

(top) of the π valence (π∗ conduction) band could be accessible in a transport experiment308

using an appropriate high-κ dielectric as gate oxide. These structures are robust to chemical309

doping and retain the linear dispersive bands upon large variations of charge density. The310

transport properties of realistic large 2DCP sheets containing randomly distributed monomer311

vacancy defects have been investigated. The carriers exhibit good transport properties with312

long mean free paths and high mobilities (in the range 103 cm2 V−1 s−1) allowing to envision313

2DCP-based electronic devices. Sharp variation of the low temperature mobility around314

the Dirac point are reported for systems containing large concentration of defects indicating315

the possibility to observe a mobility edge in 2DCPs. As the 2DCPs topology gives them a316

flexibility which might not be accessible to graphene, the peculiar electronic and transport317

properties reported in this study are expected to stimulate further research on these new318

materials in view of their implementation in future polymer-based electronic devices.319

Methods320

Ab initio approach321

Ab initio calculations have been performed using the Siesta package.17,18 The exchange-322

correlation energy and electron-ion interaction are described using GGA-PBE29 functional323

and norm-conserving pseudopotentials30 in the fully non local form, respectively. A double-ζ324

polarized basis set of numerical atomic orbitals is used and the energy cutoff for real-space325

mesh is set to 300 Ry. A Fermi-Dirac distribution function with an electronic temperature326

of 10 meV is used to populate the energy levels. The geometries are fully relaxed until the327

forces on each atom and on the unit cell are less than 0.01 and 0.03 eV/Å, respectively.328

Periodic boundaries were applied with inter-layer vacuum distance >10 Å for single layers.329
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A fine k-point grid of at least 20×20×1 for monolayers was chosen using Monkhorst-Pack330

scheme.31 Atomic positions and lattice parameters were geometrically optimized prior to331

band structure calculations. All these parameters ensured the convergence of the ground332

state properties (geometric and electronic structures) to less than one meV/atom.333

Tight-binding model334

Tight-binding calculations have been performed using the TB_Sim package. The hopping335

terms are distant-dependent and reads as γ(d) = ±γ0e
−3.37

(
d

dCC
−1

)
where dCC=1.42 Å is the336

stable sp2 carbon-carbon distance, and d is the interatomic distance of a given carbon atoms337

pair with a cutoff of ∼3.2Å accounting therefore up to the third nearest neighbors. The338

sign (±) in this formula is negative only for second nearest neighbors This parametrization339

has been performed by fitting the ab initio band structure described in Figure 1C. The same340

TB parametrization stands for the 2×2 super-cell containing a monomer vacancy defect,341

meaning that no special treatment is performed for the carbon atoms which are left with a342

missing neighboring carbon atoms which we thus considered to be saturated by hydrogen in343

the experiment.344

Table 1: Tight-binding parameters of the pristine 2DCP. Two carbon species are accounted
for in this model, depending on whether they are hydrogenated edge atoms (C2), or not (C1).
The on-site terms (ε) of each carbon species is given first, followed by the hopping terms
(γ0) as defined in the text. All the energy terms are given in eV.

on-site terms (ε)
C1 0.00
C2 -0.60

hopping terms (γ0)
C1-C1 -3.55
C1-C2 -2.85
C2-C2 -2.55

20

Page 20 of 25Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



Transport methodology345

The transport properties are computed from the dynamics of propagating electronic wavepack-346

ets with a real-space Kubo-Greenwood method described in details in Refs.14,32,33 The dy-347

namics is monitored through the time-dependent diffusivity coefficientD(E, t) = ∆R2(E, t)/t,348

with E the energy of the carriers, ∆R2 = ∆X2 + ∆Y 2, and ∆X2(E, t)=Tr[δ(E− Ĥ)|X̂(t)−349

X̂(0)|2]/Tr[δ(E − Ĥ)] the quadratic spreading along the x direction. Tr is the trace over350

pz orbitals and Tr[δ(E − Ĥ)]/S = ρ(E) is the total DOS (per unit of surface S). The351

results are averaged over multiple initial random phase wavepackets. The transport prop-352

erties are inferred from the time evolution of D(E, t). At very short times, the wavepacket353

dynamics is quasi-ballistic, so that D(E, t) ∝ ν2(E)t, where ν(E) is the carrier velocity.354

The dynamics further becomes diffusive as the carriers get scattered by the disorder, and355

D(E, t) reaches a maximum value Dmax(E) = 2ν(E)le(E), where le(E) is the mean free path.356

The semi-classical conductivity then reads σsc(E)=(1/4)e2ρ(E)Dmax(E). All the simulations357

are conducted at 0 K meaning that the electronic transport is fully coherent. However, it358

is possible to account for a physical temperature in the evaluation of σ through the use359

of Fermi-Dirac distribution. σsc(EF , T )=−1
4
e2
∫ +∞
−∞ ρ(E) Dmax(E)∂f

FD(E,EF ,T )
∂E

. The semi-360

classical mobility is then defined as µsc(EF , T )=(σsc(EF , T ))/(e n(EF , T )) where n(EF , T ) is361

the charge carrier density. At longer propagation times weak localization corrections due362

to multiple scattering events per carrier can cause D(E, t) to decrease and possibly vanish363

when reaching the strong localization regime. To describe evolution of the conductivity and364

mobility in the transient regime, either between ballistic and diffusive regimes, or between365

diffusive or localized regime, one can defines σ and µ at any propagation time or equiva-366

lently at any propagation length using D(E, t) instead of Dmax(E). The conductivity and367

the mobility become then extensive quantities which now depend on L computed from the368

spreading of wave packets as L=2
√

∆R2(t, E).369

21

Page 21 of 25 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



Inverse participation ratio370

The inverse participation ratio (IPR) is a measure of the localization of the eigenstates. For371

a particular eigenstate ψα, it is defined as372

IPRα =

∑Norb

i=1 |ψαi |4

|
∑Norb

i=1 |ψαi |2|2
(2)

where Norb is the number of orbitals. In the present TB model, it is equal to the number of373

atoms Nat. For normalized eigenstates (
∑Norb

i=1 |ψαi |2 = 1) this reduces to IPRα =
∑Norb

i=1 |ψαi |4.374

This quantity can be integrated over the Brillouin zone to evaluate the energy-dependent375

IPR. For a wave function localized on a single orbital j, ψαi = 0 for i 6= j, and hence IPR=1.376

For a perfectly delocalized wave function on all orbital, ψαi has an equal weight on each377

orbital 1√
Norb

, and hence IPR= 1
Norb

.378
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