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Flexoelectricity in Two-dimensional Crystalline and Biological Mem-
branes

Fatemeh Ahmadpoora, Pradeep Sharmab†

The ability of a material to convert electrical stimuli into mechanical deformation i.e. piezoelectricity, is a remarkable property of
a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics
exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-
uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and ac-
cordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between curvature and
electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional
(2D) membranes—whether crystallines ones such as dielectric graphene nano ribbons or the soft lipid bilayer membranes that
are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly
emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing
mechanism and ion transport among others.

1 Introduction

There are numerous types of electromechanical coupling
mechanisms in dielectric materials. Piezoelectricity and
the Maxwell stress effect∗ are fairly well-known and exten-
sively studied. The former, piezoelectricity, is a genuine
two-way linear coupling that allows a material to convert a
uniformly applied electric field into mechanical deformation
and vice-versa. Piezoelectricity is considered to be the
dominant electromechanical transduction mechanism and has
been exploited for a plethora of applications such as energy
harvesting, sensing and actuation, advanced microscopes,
artificial muscles, minimally invasive surgery among oth-
ers1–4. Piezoelectricity is however restricted to dielectrics
that possess a non-centrosymmetric crystalline structure and
is usually found in hard brittle ceramics like barium titanate,
and lead zirconate titanate. Quartz is another common
example. The so-called Maxwell stress and electrostriction
are universally present in all dielectrics. However both rep-
resent a one-way electromechanical coupling. Due to either
electrostriction or the Maxwell stress effect, all dielectrics
deform under the action of an electric field however, in
these phenomena, mechanical deformation does not lead to
the development of an electric field. In fact, in both cases,
the mechanical strain produced due to an imposed electric
field scales as ∼ εE2/Y where ε is the dielectric constant,
E is the electric field and Y represents the elastic modulus.
As evident, reversal of the electric field will not lead to
the reversal of mechanical strain. This peculiar nonlinear

∗Electrostriction is mathematically identical to the Maxwell stress effect al-
though physically distinct. Since this subtlety is not germane to the present
article, we avoid further discussion on this and simply refer the reader to Zhao
et al. 5 for further clarification.

nature of the one-way coupling limits the applications
of these two phenomena. Specifically, the effect is signif-
icant only for very soft materials such as dielectric elastomers.

The term “flexoelectricity” first originated in the context of
liquid crystals6 and refers to the two-way linear coupling be-
tween the electric polarization and strain gradients. Exper-
imental and theoretical works have since then confirmed its
presence in both crystalline and amorphous dielectrics7–16.
Like the Maxwell stress effect or electrostriction, flexoelec-
tricity is also a universal phenomenon and is exhibited by all
dielectrics. However, unlike them, the coupling occurs in a
linearized sense and a converse effect does exist. Mathemati-
cally, piezoelectricity is often introduced through the follow-
ing linear relation:

Pi ∼ di jkε jk (1)

In Equation (1), the components of the polarization vec-
tor Pi are related to the components of the second order strain
tensor ε jk through the third order piezoelectric tensor com-
ponents di jk. Due to the tensor transformation properties, all
odd-ranked tensors vanish under inversion- center symmetry.
Thus, most of the common crystalline dielectrics, such as sil-
icon, and NaCl do not exhibit piezoelectric behavior whereas
ZnO and GaAs do. Flexoelectricity, on the other hand relates
polarization to extent of the non-uniformity of the strain field
or in other words, strain gradient6–9,17:
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Pi ∼ di jkε jk + fi jkl
∂ε jk

∂xl
(2)

where fi jkl are the components of the so called flexoelectric
tensor. Two representative examples of non-uniform strain
modes are bending and torsion. Group theory tells us that
fourth order material property tensors are admissible in mate-
rials of any symmetry and accordingly, as alluded to before,
flexoelectricity is indeed universal and is even present in
centrosymmetric dielectrics where the piezoelectric tensor (d)
vanishes18. Indeed, flexoelectricity has been experimentally
confirmed in both centrosymmetric materials like NaCl10 as
well as in ferroelectrics like barium titanate11,12 among others.

The focus of the present review article is on flexoelectric-
ity in two-dimensional membranes that are (nearly) atomisti-
cally thin. This begs the question: what is special about flex-
oelectricity in 2D structures? Unlike piezoelectricity, flexo-
electricity is strongly scale dependent17,19. By and large, in
most materials, the flexoelectric coefficients are of the mag-
nitude such that significant strain gradients are required for
an appreciable flexoelectric based electrical response. Two-
dimensional crystalline membranes are atomistically thin and
biological membranes possess thicknesses on the order of just
a few nanometers. In the context of membranes (–lets say
isotropic membranes for now), flexoelectricity just boils down
to the following simple relation:

P∼ f κn (3)

Here κ is the mean curvature and n is the normal vector to
the membrane. As can be easily appreciated, it is relatively
easy to bend or induce curvature in thin paper-like structures.
Such structures, as per Equation (3), readily polarize and
produce an electric field. In fact, with two-dimensional
structures, a strain gradient in the form of bending is the
easiest form of deformation. It is therefore not too far-fetched
to claim that nearly all 2D thin (dielectric) structures are
multifunctional in nature. Boron Nitride (BN) sheets, lipid
bilayers, dielectric graphene nano ribbons, MoS2 sheets are
but some of the examples of such structures. The unique
feature of 2D materials to display flexible mechanical behav-
ior and, due to flexoelectricity, a coupled electrical behavior,
paves the way for tantalizing applications such as energy
harvesting, sensors and actuators, biomedical devices among
others. Several recent works have already provided thorough
reviews of flexoelectricity in three dimensional crystalline
materials20–22. In this article, we will focus primarily on the
unique aspects of flexoelectricity in 2D materials with an
emphasis on the review of mathematical and computational

developments, recent experimental findings, applications and
rapidly emerging areas.

2 Flexoelectricity in Crystalline Membranes

2.1 Physical and microscopic mechanisms

The microscopic mechanism of flexoelectricity involves
the redistribution of charges in the lattice structure when
subjected to a non-uniform strain field. A full understanding
of this necessarily requires a quantum viewpoint. Here,
keeping in mind that we are primarily concerned with 2D
materials, we present a simplified discussion.† Broadly,
two microscopic contributions to flexoelectricity may be
identified: ionic and electronic.

• Ionic Flexoelectricity: To explain this, we assume that
crystalline dielectrics consist of well-defined point
charges as shown in Figure 1. In an undeformed
centrosymmetric lattice structure, the centers of positive
and negative charges coincide, and thus polarization
is absent. Even if we were to strain it uniformly, the
centers of positive and negative charges will continue
to coincide and (consistent with our understanding
of non-piezoelectric crystals) a polarization will not
develop. However, upon application of a strain gradient
like bending, the internal ions will shift in a non-affine
manner. This non-affine shift of internal atoms in
proportion to the imposed strain gradient leads to a
development of polarization.

The ionic contribution to flexoelectricity was first de-
scribed in detail by Tagantsev8. Later, using a lattice-
dynamical approach, Maranganti and Sharma23 evalu-
ated the flexoelectric response of certain cubic crystalline
ionic salts, perovskite dielectrics, III-V and II-VI semi-
conductors. Recently, focusing primarily on the ionic
contribution, an effective Hamiltonian approach was de-
veloped and used to study the temperature dependence of
flexoelectricity in ferroelectric thin films such as BaTiO3
and SrTiO3

24,25.

• Electronic Flexoelectricity: The discussion of ionic
flexoelectricity is based on a classical picture and is

† A well-known issue pertaining to the discussion of polarization in periodic
crystalline materials is its dependence on the choice of the unit cell. The
reader is referred to the paper by Resta and Vanderbilt 26 and references
therein for a detailed discussion on this matter and how the concept of the
so-called Berry phase has been used to resolve this controversy. We refer
the reader to the work by Marshall and Dayal 27 who provide an interesting
insight into this issue from a purely classical viewpoint.
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Fig. 1 (a): Deformed configurations of atoms in a centrosymmetric
lattice under a uniform strain. (b): Deformed configuration of atoms
in a centrosymmetric lattice under a non-uniform strain field. The
atoms experience internal displacements in the presence of strain
gradient that result in flexoelectric polarization. Adapted from
reference20. (c): Flexoelectricity in the context of bending: When a
part of a material is bent, the positions of the negative and positive
charges transform in such a way that do not cancel out each other
and lead to a strain gradient induced polarization.

reasonable enough to explain flexoelectricity in ionic
solids however it ignores the distinctly quantum nature of
the flow of electronic charge under mechanical distortion
and the modern theory of polarization developed over the
last two decades (—see Resta and Vanderbilt for a review
on the modern theory of polarization and references
therein26). For example, the ionic flexoelectricity mech-
anism outlined in the preceding paragraph would lead
us to believe that a mono-atom material like graphene
(dielectric) nano ribbon will not polarize upon bending.
However, explicit quantum calculations show that even a
mono-atomic material like graphene will polarize under
bending28–31. Upon bending of such non-polar systems,
as shown in Figure. 2, the symmetry of the electron
distributions in the out-of-plane direction is broken and
a net dipole moment is induced at each atomic site. As a
side note, it is worthwhile to mention that if the circularly
bent graphene nano ribbon is completely closed (to form

Fig. 2 Bending of graphene: upon bending, the symmetry of the
electron distribution at each atomic site is broken, which leads to the
polarization normal to the graphene ribbon; an infinite graphene
sheet is semi-metallic; however, finite graphene nanoribbons can be
dielectric depending upon surface termination. Adapted from
reference29.

a circular nanotube), the net dipole moment will vanish.

With specific emphasis on electronic flexoelectricity, sev-
eral works have investigated flexoelectricity from a quan-
tum viewpoint26,28–31. In a recent work, Hong and Van-
derbilt32 developed a general density functional theory
based formulation to compute piezoelectric and flexo-
electric tensors and presented numerical values for var-
ious cubic insulators. Stengel33, using a density func-
tional perturbation theory that includes both ionic and
electronic effects, has derived the complete flexoelectric
tensor of an arbitrary dielectric in terms of a linear re-
sponse to atomic displacements. He further elaborates
on some of the relevant topics such as electrical bound-
ary conditions, static and dynamic flexoelectric responses
and pure and mixed contributions of piezoelectricity and
flexoelectricity. It is also worthwhile to mention that con-
troversial perspectives exist in the literature on the sur-
face and bulk contributions to material flexoelectctric-
ity. Resta34, inspired by Martin35, has theoretically dis-
cussed the effect of a free surface on flexoelectricity and
argued that it is indeed a bulk property and that there
is no surface contribution to the flexoelectric response.
This assertion is countered by Tagantsev36 who showed
that due to the non-zero contribution of the quadruple
moment tensor, the surface flexoelectricty indeed exists.
The surface flexoelectricity contribution has been elab-
orated further by Tagantsev in a recent review paper22.
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Also, Stengel37, using a first principle approach, pro-
vided quantitative evidence of surface flexolelectricity
and demonstrated that depending on the surface termina-
tion, a SrTrO3 film can exhibit either positive or negative
flexoelectric voltage.

2.2 Mathematical description and review of the modeling
literature

Several recent works have mathematically studied flex-
oelectricity in 2D materials38–43. In general, as alluded to
earlier in the context of Equation (3), flexoelectricity in 2D
structures essentially refers to the interplay between curvature
and electrical degrees of freedom. The modeling of coupled
mechanical systems can superficially differ from one work
to the other based on choice of independent variables e.g.
displacement and polarization vs displacement and electric
field, or in the manner in which the derivations are carried
out–e.g using a true minimum variational principle or directly
invoking the equations of motion. In some cases, this can
cause confusion. We refer the reader to two works of Liu
which clarify much of these issues38,39. Mohammadi et. al.42

presented a simple (linearized) model of crystalline flexoelec-
tric membranes and, using the developed framework, studied
the effective properties of heterogeneous membranes. Starting
from the viewpoint of a liquid crystal, Rey40 developed the
formulation of an isotropic (fluid) flexoelectric membrane
under tension, bending and pressure and illustrated how
flexoelectricity renormalizes the membrane tension, shear and
bending effects. Also Gao et. al.41 using the framework given
by Ou-Yang44 studied the flexoelectric shape transformation
of spherical and cylindrical vesicles in the presence of electric
field. Here we briefly outline the formulation by Mohammadi
et. al.42 and Deng et. al.43.

Let U ⊂ R2 be an open bounded domain in the xy-
plane. Consider a thin dielectric membrane occupying U ×
(−h/2,h/2)⊂ R3, where h is the thickness of the membrane.
If the thickness h� 1 the thin membrane may be idealized
as a two-dimensional body; the thermodynamic state may be
described by displacement vector w : U → R3 and the po-
larization areal density vector P : U → R3. Thus the inter-
nal electromechanical energy density can be postulated as
W = W (w,P). The membrane can experience a number of
deformation modes, such as shearing, stretching or compres-
sion and bending. Moreover, these various modes of deforma-
tions can be coupled in cases such as graphene and uncoupled
for many others such as lipid bilayers which are fluid mem-
branes that cannot undergo shearing strains. A complete con-
tinuum model to account for the coupled deformations modes
in anisotropic 2D structures has not yet been established in
the literature. For the simpler case wherein the membrane’s

deformation is restricted to bending, the electromechanical en-
ergy density for an isotropic membrane may be expanded up
to quadratic orders of curvature and polarizations as:

W [w,P] =
1
2

κbκ
2 +

1
2

a|P|2 + f P ·nκ (4)

where κ is the mean curvature and n is the normal vector of the
surface. κb is the associated bending stiffness, a is the inverse
dielectric susceptibility and can be expressed in terms of vac-
uum and dielectric permittivities (ε0,ε) and the thickness of
the membrane h as: a = 1/(ε− ε0)h. Also, f is the flexoelec-
tric coefficient. Furthermore, the self-field energy associated
with the electric field induced by polarization—constrained by
Maxwell equation—can be written as:

ξ
self[w,P] =

∫
R3

ε0

2
|∇ζ |2, div[−ε0∇ζ +P] = ρ0 (5)

in which ζ is the potential field and ρ0 is the external charge
density (if present). For the case of small deflections, using the
so-called Monge gauge, the curvature in turn can be written as
κ =−∆w. The total free energy is then the summation of the
internal electromechanical and self-field contributions:

F [w,P] =
∫

U
(W [w,P]−P.Eext)+ξ

self[w,P] (6)

where the second term is the work done by the external elec-
tric field Eext. The equilibrium state is such that the total free
energy is minimized over all possible variations of state vari-
ables:

min F [w,P]
[w,P]⊂S (7)

The variational procedure can be readily carried out
and the reader is referred to Mohammadi et. al.42 for the
complete description of the pertinent (Euler-Lagrange) partial
differential equations and the associated boundary conditions
governing isotropic flexoelectric membranes. In their work, to
“custom-design” flexoelectric properties, the aforementioned
mathematical model was solved to find the effect of shape,
volume fraction and the electromechanical properties of the
inhomogeneities on the apparent flexoelectric response of
2D crystalline heterogeneous membranes. Deng et. al.43

also have presented some illustrative examples such as the
interaction of a charged particle with an isotropic flexoelectric
membrane among others.

Using a model similar (but not identical) to what has been
described above, bending induced flexoelectric effects on nano
plates and nano beams have been studied by several au-
thors45–49.
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Fig. 3 Duerloo and Reed53 found that a bilayer consisting of two
BN monolayers exhibits a strong curvature induced
electromechanical coupling. Using quantum mechanical
calculations and a continuum model, they found that these bilayers
(in response to an external electric field) amplify in-plane
displacements by factors of as much as 103−104—when compared
with a single monolayer. Reproduced with permission from
reference. 53

2.3 Review of the literature and applications

The idea of employing strain gradients to induce polariza-
tion suggests a potential to enhance the electromechanical re-
sponse in thin films such as atomically thin sheets of BN or
MoS2—which are piezoelectric to begin with. We note that
BN and MoS2 do not exhibit piezoelectric behavior in bulk
crystalline form, however the symmetry properties of their
monolayers endows them with piezoelectric behavior. More-
over, the strength of piezoelectricity in these monolayers is
either comparable to, or exceeds, that of several common 3D
piezoelectric crystals such as Quartz and AIN60. Unlike the
case of an isotropic graphene, where bending does not lead
to an in-plane polarization, 2D anisotropic materials like BN
and MoS2 are expected to deviate from the simpler isotropic
relation in Equation (3). In other words, even under perfect
circular bending, the resulting polarization response is likely
to be at an angle to the normal direction of the membrane and
therefore polarization is also likely develop within the plane.
Though flexoelectricity is typically referred to the interplay
between the curvature and the out-of-plane polarization, for
many cases of 2D anisotropic systems such as BN , the in-
plane flexoelectric contribution may be of more interest28.
Accordingly, for these anisotropic membranes, one may have
to separately relate the in and out of plane components of the
polarization to the curvature using their corresponding flexo-
electric coefficients:

Pn ∼ fnκ n
Pt ∼ ftκ t (8)

It is also worthwhile to mention that a nonlinear flexoelec-
tric response for some cases of noncentrosymmetric crystals

such as BN sheets has been observed, where the polarization
is related to the square of curvature (Pt ∼ (1/R2))50–52. An
interesting discovery was made by Duerloo et. al.53 where
they found that bilayer stacking nano sheets of BN, strongly
enhanced the curvature induced (in plane) polarization53.
One possible explanation for this observation is that in this
bilayer stacking configuration, the sheets under bending,
experience further strain gradient at the interface that lead to
enhanced polarization. Quantum mechanical calculations53,
show that flexoelectric response in bilayer BN is larger (by a
factor of 103-104) than the corresponding value in single layer
sheet. To the authors of this review article, the reasons for
this large amplification in polarization response due to bilayer
stacking are not clear and therefore represent a tantalizing
avenue for future study.

A rather intriguing application of flexoelectricity is to
make apparent piezoelectric materials/structures without
actually using piezoelectric materials. A simple example of
this was proposed by Fousek et. al.54, who argued that a
truncated pyramid like structure will act like a piezoelectric
material. Due to the varying cross-sectional area, a uniformly
imposed stress or load will result in strain gradients in the
interior of the structure and thus cause polarization. This was
later experimentally observed in BST truncated pyramids
arrays55,56. The resulting apparent piezoelectric response is
found to be size-dependent and, at sub-micro length scales,
an effective piezoelectric response rivaling that of common
piezoelectric ceramics may be achieved.

Pyramids are more of a “structure” rather than a “material”
and an alternative approach to create apparently piezoelectric
materials (in the more traditional sense) without using
piezoelectric materials is via the use of defects and inclusions.
This approach has been proposed for graphene—which is
manifestly a non piezoelectric material. Chandratre and
Sharma57 showed, using first principle calculations, that
merely by introducing triangular shaped holes in dielectric
graphene nano ribbons, the material behaves like a piezo-
electric. A non-piezoelectric sheet without any defects,
does not show any piezoelectric response under uniform
stretching. Now consider a non- piezoelectric sheet with
circular holes (Figure 4). A uniform stretch results in a
non-uniform strain field around the boundary of the holes.
However, due to the symmetry of the holes, the total net
polarization will be zero. Finally, now imagine the case of
non-centrosymmetric shaped holes such as the triangular ones
shown in the bottom of Figure 4. In this case, under the action
of uniform mechanical stretch or compression, a non-zero net
polarization will emerge. While Chandratre and Sharma57,
using quantum calculations, were able to illustrate this notion
for graphene nano ribbons, experimentally realizing small
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Fig. 4 The first figure schematically depicts a non-piezoelectric 2D
sheet with circular pores. Under uniform stretching, strain gradients
develop in the vicinity of the holes and therefore the local
polarization due to flexoelectricity is non-zero, however the net or
average polarization remains zero, and thus overall there is no
apparent piezoelectric response. The second figure shows the same
sheet with triangular pores. In this case, again, locally, in the
vicinity of the triangular holes, polarization develops. Unlike the
previous case, however, there also exists now a net non-zero
polarization and thus this hypothetical material with triangular holes
exhibits an apparent piezoelectricity even though the native material
itself is non-piezoelectric. Adapted from reference58.

triangular holes in graphene nano ribbons is impractical.
Fortunately, a close “cousin” of graphene, so-called graphene
nitride nano sheets naturally exhibit triangular holes in
one of its phases. Zelisko et. al.58 characterized graphene
nitride nano-sheets (g-C3N4) both experimentally and via
ab initio simulations. Intrinsically, pristine graphene nitride
nano sheets are non-piezoelectric however, in one of its
stable form, the sheets are riddled with triangular holes59,
as shown in Figure 5. In their work, it was confirmed that
indeed flexoelectricity, together with triangular defects cause
graphene nitride to exhibit an apparent piezoelectricity. A
comparison between the corresponding piezoelectric coeffi-
cient of g-C3N4 (induced due to flexoelectricity and defects)
is made with those of common piezoelectric 2D structures
such as hexagonal boron nitride (h-BN), MoS2 and WS2 in
Table 1. Graphitic carbon nitride sheets exhibit a greater
piezoelectric response than hexagonal boron nitride (h-BN),
but smaller than that of molybdenum disulphide (MoS2) and
tungsten disulphide (WS2)60. More importantly, when it
comes to multi layered structures of the these piezoelectric
materials, only graphene nitride exhibits piezoelectricity. Due
to the antiparallel stacking sequence, h-BN, MoS2 and WS2
are centrosymmetric and hence non-piezoelectric. In contrast,
sheets of g-C3N4 in their multi-layered form are not stacked
in the same way and thus maintain their piezoelectricity.

Fig. 5 Graphene nitride nano sheet, riddled by triangular holes, was
experimentally and computationally shown to exhibit an apparent
piezoelectric response. Adapted from reference58.

Table 1 Comparison between the piezoelectric coefficient of
g-C3N4 (induced due to flexoelectricity and defects, shown in
Figure 5)58 with some of common piezoelectric 2D structures.

Material Piezoelectric coefficient (10−10Cm−1)
g-C3N4 2.18
h-BN 1.3860

MoS2 3.6460

WS2 2.4760

In addition to mechanical defects described in the preced-
ing paragraph, apparent piezoelectricity may also be induced
through chemical doping61–65. Adsorption of various atoms
on the surface, breaks inversion symmetry and may generate
strain gradient that lead to a flexoelectric response. This
approach has been employed for graphene. In a recent work,
Ong and Reed65, using density functional theory, studied
the effect of doping on the electromechanical response
of graphene. They considered various adatoms including
lithium (Li), potassium (K), hydrogen (H), and fluorine (F)
atoms and calculated the in plane deformation in response
to an external out-of-plane electric field. They found an
approximately linear relationship between the field and strain
at field amplitudes between -0.5 to 0.5 V/Å. Their finding of
a linear relationship between strain and polarization appears
to imply an emergent piezoelectric behavior. Nevertheless,
the mechanism cannot be uniquely attributed to pure piezo-
electricity or flexoelectricity. A possible approach to check
for the contribution of flexoelectricity is to calculate the
in-plane strain gradient field. We speculate that in the vicinity
of inhomogeneities (doping domains) there is a sharp strain
gradient which leads to a flexoelectric contribution in the lines
of the previously discussed cases of pore-riddled graphene
and/or graphene nitride.

Composites of multi-layered systems is another alternative
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Fig. 6 Chemical doping of graphene surface with different
components such as Nitrogen, polymers, and various metals can
induce a piezoelectric response. Reproduced with permission from
reference64

Fig. 7 Schematic of a comparison between periodic bilayer and
trilayer superlattices. Red arrows indicate polarization. In a periodic
bilayer, under uniform stretching or compression, the induced dipole
moment in a layer cancels out the dipole moment induced in the
other layer. Thus the overall average polarization in a periodic
bilayer super- lattice is zero. In contrast, a periodic trilayer
superlattice shows that careful choice of material properties and
superlattice topology can break the geometric centrosymmetry.
Averaged strain gradients and thus the averaged induced
polarization over the unit cell of a periodic trilayer superlattice are
nonzero. Adapted from reference66

approach to create apparently piezoelectric materials without
using piezoelectric materials. Sharma et. al.66 proposed a
model of a superlattice of thin films stacked in an odd-ordered
sequence to induce strain gradient under normal loading. To
elucidate the corresponding physical mechanism, Consider
a periodic bilayer of thin films. Each layer in such a peri-
odic bilayer feels identical strain gradients but in opposite
directions at each interface. Due to the inversion symmetry
of the strain gradient, the resulting dipole moment in one
bilayer is canceled out by the dipole moment appeared in the
next bilayer, and hence the overall average polarization in
the composite is zero. Nevertheless, careful choice of elastic
properties and superlattice sequence can break the geometric
centrosymmetry. If one inserts a third layer, the inversion
symmetry is broken. This periodic tri-layered superlattice
thus is capable of inducing a non-zero polarization in the
system.

A flexoelectric model of a multi-layered structure of
barium strontium titanate(BST) was also proposed67 to en-
hance electromechanical sensitivity. The proposed cantilever
structure is composed of two active layers (piezoelectric
or non-piezoelectric) and a supporting layer in between.
Under a mechanical load at the end of the cantilever, the
layers undergo bending and generate strain gradient along
the normal direction and consequently induce electric polar-
ization. The resulting response from theoretical calculations
and experimental measurements was compared to that of a
single layered model of BST. A remarkable enhancement
in the flexoelectric response was found in the multilayered
structure. A comparison between the piezoelectric response
of a single layer BST with the flexoelectric response of the
proposed multilayer structure shows that at small thicknesses,
the proposed flexoelectric model is significantly stronger.
When the thickness of the cantilever beam is large enough,
the electromechanical response converges to that of what is
expected from a pure piezoelectric mechanism. Furthermore,
careful choice of material in the middle layer with regard to
its mechanical properties allows the possibility of tailoring a
desired electromechanical response.

One of the most tantalizing applications of flexoelec-
tricity is in nano generators and harnessing energy from
mechanical vibrations. The reader is referred to a recent
review on some of the novel experimental attempts in this
area by Jiang et. al.68. Energy harvesting from dynamical
systems69–72, primarily for applications in self-powered
miniature sensors and electronic devices, has emerged as a
intensely researched topic. To date, research on this topic
is centered around piezoelectric materials. Examples of
exploiting piezoelectricity for energy harvesting range from
shoe-mounted inserts73,74 to unmanned aerial vehicles75. Due
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Fig. 8 Schematic of a centrosymmetric flexoelectric energy
harvester under base excitation. The cantilever beam is covered by
conductive electrodes on its top and bottom surfaces. Due to
application of an external force or the movement of the base, the
cantilever beam undergoes bending vibrations. Due to flexoelectric
contribution, an alternating potential difference is generated across
the electrodes. Adapted from reference79.

Fig. 9 Generating wavy piezoelectric ribbons on silicone rubber for
application in flexible energy conversion. (a): From top to bottom:
the ribbons are patterned on an MgO substrate; a slab of pre-strained
PDMS is laminated against the PZT ribbons and peeled off quickly;
PZT ribbons are transferred onto PDMS and form wavy/buckled
structures due to strain relaxation. (b): SEM image of PZT ribbons
transfer printed to PDMS with zero pre-strain. (c): Buckling of PZT
ribbons under pre-strained conditions. The buckled ribbons exhibit
enhanced piezoelectric performance compared to their flat
counterparts. Reproduced from reference81.

to the universal nature of flexoelectricity, we expect the latter
to offer some advantages in situations where piezoelectric
materials cannot be used or alternatively, to greatly enhance
the energy harvesting capabilities of materials that are already
piezoelectric. For example, many ferroelectrics loose their
piezoelectricity above a certain temperature due to phase
transformations. Flexoelectricity, in contrast can persist to
fairly high temperatures. In a recent work, Mbarki et. al.76

exploited flexoelectricity in functionally graded thin films to
tunable high temperature piezoelectrics.

The basic idea of flexoelectricity based energy harvesting
was proposed first by Majdoub et. al.77,78. More recently
Deng et. al.79 developed a theoretical continuum model for
flexoelectric nanoscale energy harvesting (Figure. 8). The
cantilever beam is covered by conductive electrodes on its top
and bottom surfaces. Due to application of an external force
or the movement of the base, the cantilever beam undergoes
bending vibrations. As a result, an alternating potential
difference is generated across the electrodes. Accordingly,
the symmetric thin beam can be used as a good alternative
for the flexoelectric energy harvester at sub-micron scales.
A dramatic size effect in flexoelectric energy harvesting is
observed in this model79. Upon reduction of the beam’s
thickness from 3µm to 0.3µm, the mechanical-to-electrical
energy conversion efficiency was found to increase by two
orders of magnitude! Such a remarkable size effect in
flexoelectric energy harvesters, makes them quite favorable
for micro and nano scale systems.

However, notwithstanding the developments described in
the preceding paragraphs, the exploitation of flexoelectricity
for energy harvesting is still at its infancy and most recent
advancements in this area have been towards enhancing
piezoelectric behavior80–82. One example is shown in Fig-
ure 9 where the piezoelectric PZT ribbons on rubber substrate
are employed for flexible energy conversion80,81 where in rib-
bons of the piezoelectric ceramic PZT is rendered stretchable
by printing onto a pre-stretched PDMS substrate to induce
bending deformations. The resulting wavy shaped ribbons can
undergo larger strains with enhanced piezoelectric response
due to the presence of strain gradients and flexoelectric
effect. The pre-existing curvature in the ribbons provides the
possibility of using flexoelectric curvature induced electric
field to dramatically improve the sensitivity of the nano
ribbons to small deformations. It has been also discussed80

that the pre-existing curvature may be designed for a desired
electromechanical response.

Flexoelectric effects are stronger, when the material expe-
riences large deformations. Soft materials, due to their flexi-
bility are good candidates to exploit flexoelectric effects. The
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model by Deng et. al.79 can also be used for soft materials—in
the linearized regime. Inspired by flexoelectricity in biologi-
cal membranes, Rey et. al.83 also proposed an energy harvest-
ing consisting of a soft thin membrane subjected to harmonic
forces due to contacting bulk fluid. It was shown that both
bending modulus and bending viscosity have significant roles
in the resulting electric field and efficiency83.

3 Flexoelectricity in soft and biological mem-
branes

Flexoelectric behavior has also been extensively studied in
the context of soft condensed matter–specifically liquid crys-
tals and biological membranes13,14,84–87. The phospholipid
molecules in most biomembranes consist of two components:
hydrophilic heads and hydrophobic tails. Accordingly, when
they are dispersed in an electrolyte, they arrange themselves
into two sheets including charges and dipole moments on the
surfaces. The resulting membrane is fluid-like within the plane
but can sustain a variety of mechanical deformation modes in-
cluding bending and compression in its thickness direction.
The typical thickness of the ideal lipid bilayers and biolog-
ical membranes is between 3-5 nm. Given that the bending
moduli of bio-membranes are typically small— 10−20kBT —
these 2D structures undergo large thermal fluctuations even
at room temperature. Needless to say, relatively little energy
is required to induce curvature in these soft biomembranes.
During curvature deformation, the density of the charges and
dipoles on the top and bottom of the surface alter and a non-
zero net polarization is developed. In contrast to crystalline
membranes, the microscopic mechanisms underpinning flex-
oelectricity in biomembranes can be explained purely using
classical electrostatics and continuum mechanics based argu-
ments.‡ Mathematically, the flexoelectric behavior can be de-
scribed by the same energy formulation as Equation (4) which
may be interpreted as an extension of Helfrich Hamiltonian
that includes the flexoelectric electromechanical coupling and
the dielectric energy. Most of the pioneering theoretical works
in this area have emerged from the physics of liquid crys-
tals13–16. We highlight that the notation of the flexoelectric-
ity in most of the literature13–16 on biomembranes is different
from what has been introduced in Equation(4). In the work of
Petrov et. al., the flexoelectric constitutive law is expressed as
follows:

P = f e
κ (9)

‡ The relevant length scales for flexoelectricity in biological membranes are
larger than in monolayer crystalline membranes and accordingly classical me-
chanics provides a reasonable description rendering quantum considerations
unnecessary.

Fig. 10 A small part of a cylindrically deformed membrane is
considered. Lipid molecules may carry charges and dipoles. The
distribution of charges may vary due to ion transport. In this model
it is assumed that the dipole and charge densities are functions of the
radii and are uniformly distributed along the surface. Reproduced
from reference99.

Use of the above equation conceals the inherent elastic
coupling and it is best to use the complete model outlined in
Equation (4). The flexoelectric coefficient f that appears in
(4) is related to f e as f e =− f/a. The typical values of f e for
biomembranes have been experimentally16,95–97 measured to
be in the range of 10−21−10−18C.

Flexoelectricity is likely to be the key electromechanical
mechanism in biomembranes. This statement can be easily ap-
preciated if we recognize that fluid membranes cannot (easily)
have the low symmetry needed for a phenomenon like piezo-
electricity to occur—as it does in some 2D crystalline mem-
branes such as BN or MoS2. Despite this, there has been rela-
tively scant work on the topic of biological flexoelectricity and
much of what exists has been pioneered by Petrov.13–16,95–98

3.1 Physical and microscopic mechanisms

The detailed microscopic mechanism underlying flexoelec-
tricity in biological membranes was recently clarified in the
work by Ahmadpoor et. al.99. The central postulate of that
work is that geometrical nonlinearity, in combination with
the presence of external charges and/or dipolar distributions
leads to the flexoelectric effect. They examined the effect
of external charges and dipolar distributions on the apparent
flexoelectricity of a lipid bilayer membrane. In a naively
linearized setting, external charges do not change the apparent
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Fig. 11 This model of flexoelectricity driven ionic pump is
proposed by Petrov94. Due to conformation transitions of the
protein induced by ATP and ions, the phospholipid bilayer becomes
curved. This curvature results in flexoelectric polarization and an
electric field ensues which acts as the driving force for ion
translocation. Adapted from reference94.

flexoelectricity. However, Ahmadpoor et. al.99 showed, using
a rigorous mathematical model, that carefully accounting
for geometric nonlinearity and the associated change in
the polarization permits the observation of some nontrivial
coupling effects. Prior insightful works in this direction
were those due to Petrov13–16 and Hristova et. al.100. In
the latter, equations of Langmuir adsorption were used to
evaluate the redistributed charge density (under bending)
of the membrane electric double layers. In a similar vein,
Derzhanski101 presented a simple model of a spherically
deformed membrane to describe the relation between the
radius of curvature and the induced membrane voltage.

We briefly summarize the model put forth by Ahmadpoor
et. al.99. For simplicity, here we consider a small part of a
cylindrically deformed lipid membrane inside an electrolyte
bath Figure 10. The membrane thickness is h and let the radii
of the inner, outer and mid surfaces be r1, r2 and rm . Lipid
molecules may carry dipoles or charges either along the thick-
ness of the membrane or on the surfaces. These dipoles and
charges might be “external” or the intrinsic properties of the
lipid molecules. The former may be due to proteins and ion
channels, for instance. In general, the charges and dipoles
may be distributed in and around the membrane in a complex
manner however, to present the central results developed in
Ref.99, we consider the simplest possible case, in which the
distributions of the charges and dipoles are radial; neglect-
ing any angular variation. The external charges and dipoles
are uniformly distributed along the surface of the membrane
with densities of ρe(r) and Pe(r). Also let f0, fC and fP be
the intrinsic flexoelectric coefficient, that due to the presence
of external charges and that due to the presence of external
dipoles, respectively. Then the effective flexoelectric constant

was derived to be:

feff = f0 + fC + fP (10)

wherein fC and fP are99:

fC =−
(

1+
h

2rm
+

h2

6r2
m
+ · · ·

)
×a

∫ r2

r1

1
r

∫ r

r1

r1(r′− rm)ρ
e(r′)dr′dr

fP =

(
1+

h
2rm

+
h2

6r2
m
+ · · ·

)
a
∫ r2

r1

r1(r− rm)

r
Pe(r)dr

(11)

The expressions in Equation (11) exhibit the nonlinear
and curvature-dependent nature of the flexoelectricity in
highly curved membranes. Such nonlinear behavior has been
observed in experiments88.

3.2 Biological implications of flexoelectricity and litera-
ture review

As mentioned earlier, due to the fluidity of biological
membranes and the fact that their bending stiffness is about
10-20kBT , they are likely to experience large thermal undula-
tions. These thermal fluctuations are an important element of
a variety of biophysical phenomena and a detailed discussion
of this topic is certainly beyond the scope of the present
article. It is sufficient to say here that statistical mechanics
of biological membranes is a keenly studied subject and
the reader is referred to the following literature for further
information102–109. One of outcomes of thermal fluctuations
is that they generate repulsive force between two membranes
in close vicinities. Helfrich102 showed that this repulsive en-
tropic force between two membranes is proportional to 1/d3

where d is the distance between the membranes. Petrov109

investigated the effect of flexoelectricity on this repulsion and
concluded that it leads to an attractive component, that at a
certain distance cancels out the entropic repulsive force. In his
model, such flexoelectric attraction becomes quite significant
at shorter distances. Recently, using the formulation in
Equation (4) Liu and Sharma110, investigated the influence
of flexoelectricity and thermal fluctuations on the mechanical
and dielectric properties of biomembranes. It is well-known
in the biomembrane literature that thermal fluctuations cause
a softening of the membranes. Liu and Sharma110 showed
that flexoelectriciy enhances the softening effects of thermal
fluctuations, while temperature appears to have a decreasing
effect on the flexoelectric coefficient.
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Fig. 12 (a) Cross-section of the organ of corti and hair bundles on the apical surface of inner hair cells (iHcs) and outer hair cells (oHcs). (b)
Scanning electron microscopy image looking at the apical surface of hair cells with the tectorial membrane removed. iHc and oHc hair
bundles are pseudo-colored orange and red, respectively. (c) Elongation of a schematic of the hair bundle and hair cell apical surface. When
hair bundles are stimulated, the stereocilia are tilted towards the tallest row of stereocilia. Reproduced with permission from reference 119.

Both Mohammadi et. al.42 and Deng et. al.43 have
presented a mathematical framework for flexoelectricity in
biomembranes (summarized in section in 2.2). Deng et. al.43

specifically present some illustrative examples such as the
deformation of a biomembrane due to the interaction with
an ion. Recently Rey111 has also presented a theoretical
framework that includes tension, bending, pressure, and
flexoelectric effects to determine the equilibrium shape
of the vesicle. Gao et. al.112 established an electrome-
chanical liquid crystal model of cell’s membrane based on
Eringen’s micropolar theory113. They studied the shape
deformation of spherical and cylindrical vesicles in response
to an externally imposed electric field, incorporating the
contributions of elastic bending, osmotic pressure, surface
tension, flexoelectricity and Maxwell pressure into the free
energy of the system. Finally, Loubet et. al.114 derived the
electrostatic contribution to membrane mechanical properties,
such as bending stiffness, tension, spontaneous curvature and
flexoelectric coefficient. In their model, they considered an
infinite planar membrane with a uniform areal charge and
dipole densities that vary along the thickness. They used the
Poisson-Boltzmann approach—which is a mean-field approx-
imation and does not take into account the ion correlations—
and derived the equilibrium stress equations. Abou-Dakka et.
al.115 formulated a flexoelectric actuation model of a tethered
circular membrane in the presence of an oscillating electric
field. Their model can be employed to explain how the outer
hair cells in mammalian ears function.

Flexoelectricity has a number of implications in biology,
including ion transport, electromotility and mammalian
hearing mechanism. Voltage gated channels are transmem-
brane proteins that are activated in response to the change in

local electric fields. The membrane, due to flexoelectricity
undergoes conformational deformations in the presence
of external fields which impose mechanical forces on the
boundaries of the channel that make it activated. The usual
sources of electric fields are ionic concentration gradients in
the local environment of the cell. The ion pumps use flexo-
electricity in a similar manner. As a result of the conformation
transformations of the protein induced by ATP and ions, the
membrane becomes curved. The resulting curvature as shown
in Figure 11 induces polarization and a so called depolarizing
electric field emerges that results in the generation of a driving
force for ion pumping94,116.

Electromotility117 is the cell’s movement in the presence
of electric field across the cell membrane. As observed in
experiments118, the mammalian hearing mechanism critically
relies on cell’s electromotility. Hair cells are the primary
sensory receptors in the auditory system that transform the
mechanical vibrations of sound into sensible electrical action
potential119. Though, the corresponding mechanism is still
not fully understood, one possible explanation is that the
stereocilia in inner hair cells are flexoelectric. Hair bundles
consist of several stereocilia (as shown in Figure 12) that
are connected by thin fibers called tip links and organized in
rows of decreasing height. The axes of hair bundles point
away from the center of the cochlea. Mechanosensitive ion
channels are located within the wall of the stereocilia near the
top and tethered to adjacent stereocilia by tip link tension.
Bending of the hair bundle toward the tallest row imposes tip
link tension on channels in the shorter neighbor causing them
to open and make the cellular inner environment more electri-
cally positive. Similarly, bending the bundle in the opposite
direction, closes the channel, causing the cell to become
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more negative. During these processes, a voltage difference
emerges across the thickness of the stereocilia membrane and
due to the flexoelectric properties of cellular membrane, the
radius of the stereocilia changes. Accordingly, the height of
the stereocilia increases (or decreases) to maintain the fixed
volume. The contribution of electromechanical coupling
in hearing mechanism was first hypothesized by Hudspeth
and Corey120–124 and based on several interesting experi-
ments, Brownell and co-workers88–90,125,126 have argued that
flexoelectricity is indeed the mechanism that serves to link
mechanics and electricity in this context. Interestingly, the
hair bundles not only transduce the mechanical signals into
electric ones, but also amplify the weak mechanical stimuli.
The corresponding mechanism involves the emergence
of instability phenomenon, namely–Hopf bifurcation127 a
discussion of which is beyond the scope of this paper. For
further details, the reader is referred to the recent review on
hearing mechanism by Reichenbach and Hudspeth128.

4 Concluding remarks and future directions

Flexoelectricity is a fascinating form of electromechanical
coupling and is especially relevant to the easily curved 2D
materials such as graphene and biological membranes. De-
spite a fair amount of recent activity, several open questions
remain and there are numerous avenues for future research.
First and foremost, the complete characterization of the
flexoelectric properties of many of the 2D materials is still
incomplete. Although the first 2D material, graphene, was
synthesized just a short while ago, several novel material
systems have emerged since then e.g. boron nitride129,130,
black phosphorous131,132, molybdenum disulfide133,134,
tungsten disulphide135,136 and others. With the exception of
graphene, BN and (to some degree) graphene nitride28,30,58,60,
a characterization of the flexoelectricity in these 2D materials
is still missing. In particular, we note that to date, flexoelec-
tricity has not been experimentally evaluated for any of the
2D inorganic materials —however, as described in the main
text, considerably more progress has been made in the case of
lipid bilayers15,16,95–97.

Simulating flexoelectricity 2D materials and their variants
(e.g. layered or composite structures) from an atomistic
viewpoint is quite challenging. The quantum mechanical
approaches are computationally expensive since modeling of
bending (or other nonuniform deformation modes such as
torsion) necessarily precludes the use of periodic boundary
conditions to simplify computations. Furthermore, even if
quantum methods are cleverly used, they are limited in the
sense that, practically speaking, only zero Kelvin information
can be obtained. As an alternative, empirical force-field

based molecular dynamics may be used, however developing
potentials to model electromechanical behavior is notoriously
difficult and that itself is an active area of research137.
Recently, a piezoelectric molecular dynamics model for
boron nitride nanotubes has been proposed by Yamakov et.
al.138. Similar works are also required for other 2D materials.
Regarding quantum mechanical calculations, a promising
recourse may be found in the recently developed Objective
Structures based approach139–141.

A theoretical framework for 2D membranes that properly
accounts for large deformations and possible anisotropic
effects is still absent. The former is important for biological
membranes while the latter is of interest in the case of crys-
talline membranes. In particular, for crystalline membranes,
in-plane elastic behavior is coupled with bending which
makes the modeling of such membranes quite complex. As
already alluded to earlier, works on experimental character-
ization of flexoelectric response in 2D structures are rather
scarce.

One of the applications of flexoelectricity is in energy
harvesting. Existing theoretical and computational works are
based on the linear flexoelectricity effect79,83—we expect
much to be gained from examining nonlinear effects and
is thus an open avenue for research. In particular, inspired
by how mammalian hearing mechanism works, possible
flexoelectricity based energy harvesting schemes may be
created. On these lines we note that several bio-inspired
applications of soft materials have been proposed in the lit-
erature e.g. liquid crystalline elastomer (LCE) soft actuators
that are extensively used in artificial muscles, micro-robots
and MEMS143–145.

Several other open questions remain regarding flexo-
electricity in 2D materials. As an example, Duerloo and
Reed53 found that the polarization-curvature in BN bilayers
is amplified by 3-4 orders of magnitude compared to a single
BN layer. We can only speculate about the mechanisms
underpinning this observation and further investigation of
this topic is an interesting avenue for future study. Likewise,
Tagantsev22,36 presents a careful distinction between surface
flexoelectricity and bulk flexoelectricity. What are the ramifi-
cations of this in the context of 2D materials?

Finally we point out the phenomenon of
photoflexoelectricity–which is the coupling between,
light, mechanical strain gradients and electrical field. It
was first observed in lipid membranes146,147 and later in
liquid crystals148. Recent studies of the phenomenon include
investigation of the use of photochromic elastomers149–152

as actuators and energy harvesting systems. Beyond the few
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cited references, hardly any work has gone into investigating
this effect.
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